1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Torii T, Miyamoto Y, Yamauchi J. Myelination by signaling through Arf guanine nucleotide exchange factor. J Neurochem 2024; 168:2201-2213. [PMID: 38894552 DOI: 10.1111/jnc.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Shirai R, Cho M, Isogai M, Fukatsu S, Okabe M, Okawa M, Miyamoto Y, Torii T, Yamauchi J. FTD/ALS Type 7-Associated Thr104Asn Mutation of CHMP2B Blunts Neuronal Process Elongation, and Is Recovered by Knockdown of Arf4, the Golgi Stress Regulator. Neurol Int 2023; 15:980-993. [PMID: 37606396 PMCID: PMC10443297 DOI: 10.3390/neurolint15030063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B (CHMP2B), have predominantly ALS phenotypes, whereas patients with other mutations have predominantly FTD phenotypes. A few mutations result in patients having both phenotypes approximately equally; however, the reason why phenotypes differ depending on the position of the mutation is unknown. CHMP2B comprises one part of the endosomal sorting complexes required for transport (ESCRT), specifically ESCRT-III, in the cytoplasm. We describe here, for the first time, that CHMP2B with the T104N mutation inhibits neuronal process elongation in the N1E-115 cell line, a model line undergoing neuronal differentiation. This inhibitory phenotype was accompanied by changes in marker protein expression. Of note, CHMP2B with the T104N mutation, but not the wild-type form, was preferentially accumulated in the Golgi body. Of the four major Golgi stress signaling pathways currently known, the pathway through Arf4, the small GTPase, was specifically upregulated in cells expressing CHMP2B with the T104N mutation. Conversely, knockdown of Arf4 with the cognate small interfering (si)RNA recovered the neuronal process elongation inhibited by the T104N mutation. These results suggest that the T104N mutation of CHMP2B inhibits morphological differentiation by triggering Golgi stress signaling, revealing a possible therapeutic molecular target for recovering potential molecular and cellular phenotypes underlying FTD/ALS7.
Collapse
Affiliation(s)
- Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Mizuka Cho
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Mikinori Isogai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Shoya Fukatsu
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyoto 610-0394, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Fukushima N, Shirai R, Sato T, Nakamura S, Ochiai A, Miyamoto Y, Yamauchi J. Knockdown of Rab7B, But Not of Rab7A, Which Antagonistically Regulates Oligodendroglial Cell Morphological Differentiation, Recovers Tunicamycin-Induced Defective Differentiation in FBD-102b Cells. J Mol Neurosci 2023; 73:363-374. [PMID: 37248316 DOI: 10.1007/s12031-023-02117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
In the central nervous system (CNS), insulative myelin sheaths are generated from the differentiated plasma membranes of oligodendrocytes (oligodendroglial cells) and surround neuronal axons to achieve saltatory conduction. Despite the functional involvement of myelin sheaths in the CNS, the molecular mechanism by which oligodendroglial cells themselves undergo differentiation of plasma membranes remains unclear. It also remains to be explored whether their signaling mechanisms can be applied to treating diseases of the oligodendroglial cells. Here, we describe that Rab7B of Rab7 subfamily small GTPases negatively regulates oligodendroglial cell morphological differentiation using FBD-102b cells, which are model cells undergoing differentiation of oligodendroglial precursors. Knockdown of Rab7B or Rab7A by the respective specific siRNAs in cells positively or negatively regulated morphological differentiation, respectively. Consistently, these changes were supported by changes on differentiation- and myelination-related structural protein and protein kinase markers. We also found that knockdown of Rab7B has the ability to recover inhibition of morphological differentiation following tunicamycin-induced endoplasmic reticulum (ER) stress, which mimics one of the major molecular pathological causes of hereditary hypomyelinating disorders in oligodendroglial cells, such as Pelizaeus-Merzbacher disease (PMD). These results suggest that the respective molecules among very close Rab7 homologues exhibit differential roles in morphological differentiation and that knocking down Rab7B can recover defective differentiating phenotypes under ER stress, thereby adding Rab7B to the list of molecular therapeutic cues taking advantage of signaling mechanisms for oligodendroglial diseases like PMD.
Collapse
Affiliation(s)
- Nana Fukushima
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Sayumi Nakamura
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Arisa Ochiai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1, Setagaya, Tokyo, 157-8535, Japan.
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1, Setagaya, Tokyo, 157-8535, Japan.
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| |
Collapse
|
6
|
Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development. Nat Commun 2022; 13:7397. [PMID: 36456556 PMCID: PMC9715697 DOI: 10.1038/s41467-022-35101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
7
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
8
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
UNC5B Overexpression Alleviates Peripheral Neuropathic Pain by Stimulating Netrin-1-Dependent Autophagic Flux in Schwann Cells. Mol Neurobiol 2022; 59:5041-5055. [PMID: 35668343 DOI: 10.1007/s12035-022-02861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Lesions or diseases of the somatosensory system can cause neuropathic pain (NP). Schwann cell (SC) autophagy plays an important role in NP. Uncoordinated gene 5 homolog B (UNC5B), the canonical dependent receptor of netrin-1, is known to be exclusively expressed in SCs and involved in NP; however, the underlying mechanisms were unclear. A rat model of sciatic nerve chronic constriction injury (CCI) was used to induce peripheral neuropathic pain. Adeno-associated virus (AAV) overexpressing UNC5B was applied to the injured nerve, and an autophagy inhibitor, 3-mechyladenine (3-MA), was intraperitoneally injected in some animals. Behavioral tests were performed to evaluate NP, the morphology of the injured nerves was analyzed, and autophagy-related proteins were detected. A rat SC line (RSC96) undergoing oxygen and glucose deprivation (OGD) was used to mimic an ischemic setting to examine the role of UNC5B in autophagy. Local UNC5B overexpression alleviated CCI-induced NP and rescued myelin degeneration. Meanwhile, UNC5B overexpression improved CCI-induced impairment of autophagic flux, while the autophagy inhibitor 3-MA reversed the analgesic effect of UNC5B. In cultured SCs, UNC5B helped recruit netrin-1 to the cell membrane. UNC5B overexpression promoted autophagic flux while inhibiting apoptosis, which was further augmented with exogenous netrin-1 and reversed by netrin-1 knockdown. The enhanced phosphorylation of AMP-activated protein kinase (AMPK) and Unc51-like autophagy activating kinase 1 (ULK1) by UNC5B overexpression was also correlated with netrin-1. Our results suggest that UNC5B facilitates autophagic flux in SCs via phosphorylation of AMPK and ULK1, dependent on its ligand netrin-1, protecting myelin and partly preventing injury-induced NP.
Collapse
|
10
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
11
|
Zhao M, Chang Q, Yang H, Wang M, Liu Y, Lv N, Lei Q, Wei H. Epothilone D modulates autism-like behaviors in the BTBR mouse model of autism spectrum disorder. Neuroscience 2022; 490:171-181. [DOI: 10.1016/j.neuroscience.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|
12
|
Thalamuthu A, Mills NT, Berger K, Minnerup H, Grotegerd D, Dannlowski U, Meinert S, Opel N, Repple J, Gruber M, Nenadić I, Stein F, Brosch K, Meller T, Pfarr JK, Forstner AJ, Hoffmann P, Nöthen MM, Witt S, Rietschel M, Kircher T, Adams M, McIntosh AM, Porteous DJ, Deary IJ, Hayward C, Campbell A, Grabe HJ, Teumer A, Homuth G, van der Auwera-Palitschka S, Schubert KO, Baune BT. Genome-wide interaction study with major depression identifies novel variants associated with cognitive function. Mol Psychiatry 2022; 27:1111-1119. [PMID: 34782712 PMCID: PMC7612684 DOI: 10.1038/s41380-021-01379-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.
Collapse
Affiliation(s)
- Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Natalie T Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Mark Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Service, Salisbury, SA, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Department of Psychiatry and Psychotherapy, University Hospital Münster, University of Münster, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Miyamoto Y, Torii T, Homma K, Oizumi H, Ohbuchi K, Mizoguchi K, Takashima S, Yamauchi J. The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin-2 in myelinating Schwann cells in mice. Sci Signal 2022; 15:eabi5276. [PMID: 35077201 DOI: 10.1126/scisignal.abi5276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mature myelin sheaths insulate axons to increase nerve conduction velocity and protect nerve fibers from stress and physical injury. In the peripheral nervous system, the myelin sheath is produced by Schwann cells. The guanine-nucleotide exchange factor cytohesin-2 activates the protein Arf6 to promote Schwann cell myelination. Here, we investigated the regulation of cytohesin-2 and found that the phosphorylation status of Tyr381 in cytohesin-2 is central to Schwann cell myelination. Knockin mice with a nonphosphorylatable Y381F mutation in cytohesin-2 exhibited reduced myelin thickness and decreased Arf6 activity in sciatic nerve tissue. In HEK293T cells, cytohesin-2 was dephosphorylated at Tyr381 by the protein tyrosine phosphatase PTP4A1, whereas phosphorylation at this site was maintained by interaction with the adaptor protein SH2B1. Schwann cell-specific knockdown of PTP4A1 in mice increased cytohesin-2 phosphorylation and myelin thickness. Conversely, Schwann cell-specific loss of SH2B1 resulted in reduced myelin thickness and decreased cytohesin-2 phosphorylation. Thus, a signaling unit centered on cytohesin-2-with SH2B1 as a positive regulator and PTP4A1 as a negative regulator-controls Schwann cell myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University Graduate School of Brain Science, Kyotanabe, Kyoto 610-0394, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
14
|
Jiang L, Wang X. The miR-133b/brefeldin A-inhibited guanine nucleotide-exchange protein 1 (ARFGEF1) axis represses proliferation, invasion, and migration in cervical cancer cells. Bioengineered 2022; 13:3323-3332. [PMID: 35048795 PMCID: PMC8973932 DOI: 10.1080/21655979.2022.2027063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cervical cancer is a common gynecological malignancy, and miR-133b is an abnormally expressed cervical cancer gene, which suggests that miR-133b may be involved in the occurrence and development of cervical cancer. However, the underlying mechanism is still unclear. miR-133b was overexpressed or silenced in the cervical cancer cell line C33A. Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (ARFGEF1) was combined with overexpression of miR-133b in C33A cells. Cell Counting Kit-8, clone formation, and Transwell assays were performed to determine the influence of miR-133b and ARFGEF1 on clone formation, proliferation, migration, and invasion of C33A cells. The interaction between miR-133b and ARFGEF1 was verified using a luciferase reporter assay. Finally, the mRNA and protein expression of miR-133b and ARFGEF1 in the tumor and adjacent normal tissues of cervical cancer patients was detected by real-time quantitative PCR, Western blotting, and immunohistochemistry. The results indicated that miR-133b up-regulation suppressed the proliferation, invasion, migration, and clone formation abilities of C33A cells (P < 0.05). However, silence of miR-133b promoted the proliferation, invasion, and migration of C33A cells (P < 0.05). Clone formation ability of C33A cells was also elevated by miR-133b deficiency (P < 0.05). Moreover, miR-133b interacted with ARFGEF1 and repressed ARFGEF1 expression in C33A cells (P < 0.05). ARFGEF1 overexpression weakened miR-133b overexpression-mediated inhibition of proliferation, invasion, and migration of C33A cells (P < 0.05). miR-133b expression was decreased, and ARFGEF1 was up-regulated in tumor tissues of cervical cancer patients (P < 0.05). All results revealed that miR-133b suppresses cervical cancer progression by inhibiting proliferation, invasion, and migration of cervical cancer cells via targeting ARFGEF1. Thus, our study determined the mechanism of miR-133b in cervical cancer, and confirmed miR-133b/ARFGEF1 may become a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, Zhejing, China
| | - Xuexin Wang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, Zhejing, China
| |
Collapse
|
15
|
You Z, Yang Z, Cao S, Deng S, Chen Y. The novel KLF4/BIG1 regulates LPS-mediated neuro-inflammation and migration in BV2 cells via PI3K/Akt/NF-kB signaling pathway. Neuroscience 2022; 488:102-111. [DOI: 10.1016/j.neuroscience.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
|
16
|
Sawaguchi S, Tago K, Oizumi H, Ohbuchi K, Yamamoto M, Mizoguchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 7 (HLD7)-Associated Mutation of POLR3A Is Related to Defective Oligodendroglial Cell Differentiation, Which Is Ameliorated by Ibuprofen. Neurol Int 2021; 14:11-33. [PMID: 35076634 PMCID: PMC8788570 DOI: 10.3390/neurolint14010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Hypomyelinating leukodystrophy 7 (HLD7) is an autosomal recessive oligodendroglial cell-related myelin disease, which is associated with some nucleotide mutations of the RNA polymerase 3 subunit a (polr3a) gene. POLR3A is composed of the catalytic core of RNA polymerase III synthesizing non-coding RNAs, such as rRNA and tRNA. Here, we show that an HLD7-associated nonsense mutation of Arg140-to-Ter (R140X) primarily localizes POLR3A proteins as protein aggregates into lysosomes in mouse oligodendroglial FBD-102b cells, whereas the wild type proteins are not localized in lysosomes. Expression of the R140X mutant proteins, but not the wild type proteins, in cells decreased signaling through the mechanistic target of rapamycin (mTOR), controlling signal transduction around lysosomes. While cells harboring the wild type constructs exhibited phenotypes with widespread membranes with myelin marker protein expression following the induction of differentiation, cells harboring the R140X mutant constructs did not exhibit them. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), which is also known as an mTOR signaling activator, ameliorated defects in differentiation with myelin marker protein expression and the related signaling in cells harboring the R140X mutant constructs. Collectively, HLD7-associated POLR3A mutant proteins are localized in lysosomes where they decrease mTOR signaling, inhibiting cell morphological differentiation. Importantly, ibuprofen reverses undifferentiated phenotypes. These findings may reveal some of the pathological mechanisms underlying HLD7 and their amelioration at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan;
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
17
|
Wang G, Yin W, Shin H, Tian Q, Lu W, Hou SX. Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. NATURE AGING 2021; 1:1024-1037. [PMID: 37118341 DOI: 10.1038/s43587-021-00130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Weiqin Yin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hyunhee Shin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Steven X Hou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Knockdown of Golgi Stress-Responsive Caspase-2 Ameliorates HLD17-Associated AIMP2 Mutant-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurochem Res 2021; 47:2617-2631. [PMID: 34523057 DOI: 10.1007/s11064-021-03451-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease's effects.
Collapse
|
19
|
Small GTPases of the Rab and Arf Families: Key Regulators of Intracellular Trafficking in Neurodegeneration. Int J Mol Sci 2021; 22:ijms22094425. [PMID: 33922618 PMCID: PMC8122874 DOI: 10.3390/ijms22094425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer’s and Parkinson’s diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Collapse
|
20
|
Hypomyelinating Leukodystrophy 15 (HLD15)-Associated Mutation of EPRS1 Leads to Its Polymeric Aggregation in Rab7-Positive Vesicle Structures, Inhibiting Oligodendroglial Cell Morphological Differentiation. Polymers (Basel) 2021; 13:polym13071074. [PMID: 33805425 PMCID: PMC8037150 DOI: 10.3390/polym13071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/28/2023] Open
Abstract
Pelizaeus–Merzbacher disease (PMD), also known as hypomyelinating leukodystrophy 1 (HLD1), is an X-linked recessive disease affecting in the central nervous system (CNS). The gene responsible for HLD1 encodes proteolipid protein 1 (plp1), which is the major myelin structural protein produced by oligodendroglial cells (oligodendrocytes). HLD15 is an autosomal recessive disease affecting the glutamyl-prolyl-aminoacyl-tRNA synthetase 1 (eprs1) gene, whose product, the EPRS1 protein, is a bifunctional aminoacyl-tRNA synthetase that is localized throughout cell bodies and that catalyzes the aminoacylation of glutamic acid and proline tRNA species. Here, we show that the HLD15-associated nonsense mutation of Arg339-to-Ter (R339X) localizes EPRS1 proteins as polymeric aggregates into Rab7-positive vesicle structures in mouse oligodendroglial FBD-102b cells. Wild-type proteins, in contrast, are distributed throughout the cell bodies. Expression of the R339X mutant proteins, but not the wild-type proteins, in cells induces strong signals regulating Rab7. Whereas cells expressing the wild-type proteins exhibited phenotypes with myelin web-like structures bearing processes following the induction of differentiation, cells expressing the R339X mutant proteins did not. These results indicate that HLD15-associated EPRS1 mutant proteins are localized in Rab7-positive vesicle structures where they modulate Rab7 regulatory signaling, inhibiting cell morphological differentiation. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD15.
Collapse
|
21
|
Miyamoto Y, Torii T, Terao M, Takada S, Tanoue A, Katoh H, Yamauchi J. Rnd2 differentially regulates oligodendrocyte myelination at different developmental periods. Mol Biol Cell 2021; 32:769-787. [PMID: 33596091 PMCID: PMC8108512 DOI: 10.1091/mbc.e20-05-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the CNS, oligodendrocyte precursor cells differentiate into oligodendrocytes to wrap their plasma membranes around neuronal axons, generating mature neural networks with myelin sheaths according to spatial and temporal patterns. While myelination is known to be one of the most dynamic cell morphological changes, the overall intrinsic and extrinsic molecular cues controlling myelination remain to be fully clarified. Here, we describe the biphasic roles of Rnd2, an atypical branch of the Rho family GTPase, in oligodendrocyte myelination during development and after maturation in mice. Compared with littermate controls, oligodendrocyte-specific Rnd2 knockout mice exhibit decreased myelin thickness at the onset of myelination but increased myelin thickness in the later period. Larger proportions of Rho kinase and its substrate Mbs, the signaling unit that negatively regulates oligodendrocyte myelination, are phosphorylated at the onset of myelination, while their smaller proportions are phosphorylated in the later period. In addition, we confirm the biphasic role of Rnd2 through experiments with oligodendrocyte-specific Rnd2 transgenic mice. We conclude that Rnd2 positively regulates myelination in the early myelinating period and negatively regulates myelination in the later period. This unique modulator thus plays different roles depending on the myelination period.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junji Yamauchi
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| |
Collapse
|
22
|
Hattori K, Tago K, Memezawa S, Ochiai A, Sawaguchi S, Kato Y, Sato T, Tomizuka K, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. The Infantile Leukoencephalopathy-Associated Mutation of C11ORF73/HIKESHI Proteins Generates de novo Interactive Activity with Filamin A, Inhibiting Oligodendroglial Cell Morphological Differentiation. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8020009. [PMID: 33535532 PMCID: PMC7912763 DOI: 10.3390/medicines8020009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 04/20/2023]
Abstract
Genetic hypomyelinating diseases are a heterogeneous group of disorders involving the white matter. One infantile hypomyelinating leukoencephalopathy is associated with the homozygous variant (Cys4-to-Ser (C4S)) of the c11orf73 gene. Methods: We observed that in mouse oligodendroglial FBD-102b cells, the C4S mutant proteins but not the wild type ones of C11orf73 are microscopically localized in the lysosome. And, they downregulate lysosome-related signaling in an immunoblotting technique. Results: The C4S mutant proteins specifically interact with Filamin A, which is known to anchor transmembrane proteins to the actin cytoskeleton; the C4S mutant proteins and Filamin A are also observed in the lysosome fraction. While parental FBD-102b cells and cells harboring the wild type constructs exhibit morphological differentiation, cells harboring C4S mutant constructs do not. It may be that morphological differentiation is inhibited because expression of these C4S mutant proteins leads to defects in the actin cytoskeletal network involving Filamin A. Conclusions: The findings that leukoencephalopathy-associated C11ORF73 mutant proteins specifically interact with Filamin A, are localized in the lysosome, and inhibit morphological differentiation shed light on the molecular and cellular pathological mechanisms that underlie infantile hypomyelinating leukoencephalopathy.
Collapse
Affiliation(s)
- Kohei Hattori
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 321-0498, Japan;
| | - Shiori Memezawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Arisa Ochiai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Yukino Kato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
23
|
Sumiyoshi M, Kotani Y, Ikuta Y, Suzue K, Ozawa M, Katakai T, Yamada T, Abe T, Bando K, Koyasu S, Kanaho Y, Watanabe T, Matsuda S. Arf1 and Arf6 Synergistically Maintain Survival of T Cells during Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:366-375. [PMID: 33310872 DOI: 10.4049/jimmunol.2000971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation factor (Arf) family consisting of six family members, Arf1-Arf6, belongs to Ras superfamily and orchestrates vesicle trafficking under the control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. It is well established that brefeldin A, a potent inhibitor of ArfGEFs, blocks cytokine secretion from activated T cells, suggesting that the Arf pathway plays important roles in T cell functions. In this study, because Arf1 and Arf6 are the best-characterized members among Arf family, we established T lineage-specific Arf1-deficient, Arf6-deficient, and Arf1/6 double-deficient mice to understand physiological roles of the Arf pathway in the immune system. Contrary to our expectation, Arf deficiency had little or no impact on cytokine secretion from the activated T cells. In contrast, the lack of both Arf1 and Arf6, but neither Arf1 nor Arf6 deficiency alone, rendered naive T cells susceptible to apoptosis upon TCR stimulation because of imbalanced expression of Bcl-2 family members. We further demonstrate that Arf1/6 deficiency in T cells alleviates autoimmune diseases like colitis and experimental autoimmune encephalomyelitis, whereas Ab response under Th2-polarizing conditions is seemingly normal. Our findings reveal an unexpected role for the Arf pathway in the survival of T cells during TCR-induced activation and its potential as a therapeutic target in the autoimmune diseases.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yui Kotani
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.,Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Yuki Ikuta
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Iruma-gun, Saitama 350-0495, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan;
| |
Collapse
|
24
|
A Golgi-associated lipid kinase controls peripheral nerve myelination. Proc Natl Acad Sci U S A 2020; 117:30873-30875. [PMID: 33188090 DOI: 10.1073/pnas.2021130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020; 117:28102-28113. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.
Collapse
|
26
|
Li XX, Zhang SJ, Man KY, Chiu AP, Lo LH, To JC, Chiu CH, Chan CO, Mok DK, Rowlands DK, Keng VW. Schwann cell-specific Pten inactivation reveals essential role of the sympathetic nervous system activity in adipose tissue development. Biochem Biophys Res Commun 2020; 531:118-124. [DOI: 10.1016/j.bbrc.2020.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
|
27
|
Fujii K, Matsumine H, Osaki H, Ueta Y, Kamei W, Niimi Y, Hashimoto K, Miyata M, Sakurai H. Accelerated outgrowth in cross-facial nerve grafts wrapped with adipose-derived stem cell sheets. J Tissue Eng Regen Med 2020; 14:1087-1099. [PMID: 32592279 DOI: 10.1002/term.3083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/11/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
In this study, we devised a novel cross-facial nerve grafting (CFNG) procedure using an autologous nerve graft wrapped in an adipose-derived stem cell (ADSC) sheet that was formed on a temperature-responsive dish and examined its therapeutic effect in a rat model of facial palsy. The rat model of facial paralysis was prepared by ligating and transecting the main trunk of the left facial nerve. The sciatic nerve was used for CFNG, connecting the marginal mandibular branch of the left facial nerve and the marginal mandibular branch of the right facial nerve. CFNG alone, CFNG coated with an ADSC suspension, and CFNG wrapped in an ADSC sheet were transplanted in eight rats each, designated the CFNG, suspension, and sheet group, respectively. Nerve regeneration was compared histologically and physiologically. The time to reinnervation, assessed by a facial palsy scoring system, was significantly shorter in the sheet group than in the other two groups. Evoked compound electromyography showed a significantly higher amplitude in the sheet group (4.2 ± 1.3 mV) than in the suspension (1.7 ± 1.2 mV) or CFNG group (1.6 ± 0.8 mV; p < .01). Toluidine blue staining showed that the number of myelinated fibers was significantly higher in the sheet group (2,450 ± 687) than in the suspension (1,645 ± 659) or CFNG group (1,049 ± 307; p < .05). CFNG in combination with ADSC sheets, prepared using temperature-responsive dishes, promoted axonal outgrowth in autologous nerve grafts and reduced the time to reinnervation.
Collapse
Affiliation(s)
- Kaori Fujii
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hajime Matsumine
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hironobu Osaki
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshifumi Ueta
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Wataru Kamei
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Niimi
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuki Hashimoto
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Mariko Miyata
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
28
|
PP1C and PP2A are p70S6K Phosphatases Whose Inhibition Ameliorates HLD12-Associated Inhibition of Oligodendroglial Cell Morphological Differentiation. Biomedicines 2020; 8:biomedicines8040089. [PMID: 32316234 PMCID: PMC7235839 DOI: 10.3390/biomedicines8040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Myelin sheaths created by oligodendroglial cells encase neuronal axons to achieve saltatory conduction and protect axons. Pelizaeus-Merzbacher disease (PMD) is a prototypic, hereditary demyelinating oligodendroglial disease of the central nervous system (CNS), and is currently known as hypomyelinating leukodystrophy 1 (HLD1). HLD12 is an autosomal recessive disorder responsible for the gene that encodes vacuolar protein sorting-associated protein 11 homolog (VPS11). VPS11 is a member of the molecular group controlling the early endosome antigen 1 (EEA1)- and Rab7-positive vesicle-mediated protein trafficking to the lysosomal compartments. Herein, we show that the HLD12-associated Cys846-to-Gly (C846G) mutation of VPS11 leads to its aggregate formation with downregulated signaling through 70 kDa S6 protein kinase (p70S6K) in the oligodendroglial cell line FBD-102b as the model. In contrast, wild-type proteins are localized in both EEA1- and Rab7-positive vesicles. Cells harboring the C846G mutant constructs decrease differentiated phenotypes with web-like structures following differentiation, whereas parental cells exhibit them suitably. It is of note that we identify PP1C and PP2A as the protein phosphatases for phosphorylated Thr-389 of p70S6K essential for kinase activation in cells. The respective knockdown experiments or inhibitor treatment stimulates phosphorylation of p70S6K and ameliorates the inhibition of morphological differentiation, as well as the formation of protein aggregates. These results indicate that inhibition of p70S6K phosphatases PP1C and PP2A improves the defective morphological differentiation associated with HLD12 mutation, thereby hinting at amelioration based on a possible molecular and cellular pathological mechanism underlying HLD12.
Collapse
|
29
|
Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem Biophys Rep 2019; 20:100705. [PMID: 31737794 PMCID: PMC6849085 DOI: 10.1016/j.bbrep.2019.100705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
30
|
Teoh J, Subramanian N, Pero ME, Bartolini F, Amador A, Kanber A, Williams D, Petri S, Yang M, Allen AS, Beal J, Haut SR, Frankel WN. Arfgef1 haploinsufficiency in mice alters neuronal endosome composition and decreases membrane surface postsynaptic GABA A receptors. Neurobiol Dis 2019; 134:104632. [PMID: 31678406 DOI: 10.1016/j.nbd.2019.104632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022] Open
Abstract
ARFGEF1 encodes a guanine exchange factor involved in intracellular vesicle trafficking, and is a candidate gene for childhood genetic epilepsies. To model ARFGEF1 haploinsufficiency observed in a recent Lennox Gastaut Syndrome patient, we studied a frameshift mutation (Arfgef1fs) in mice. Arfgef1fs/+ pups exhibit signs of developmental delay, and Arfgef1fs/+ adults have a significantly decreased threshold to induced seizures but do not experience spontaneous seizures. Histologically, the Arfgef1fs/+ brain exhibits a disruption in the apical lining of the dentate gyrus and altered spine morphology of deep layer neurons. In primary hippocampal neuron culture, dendritic surface and synaptic but not total GABAA receptors (GABAAR) are reduced in Arfgef1fs/+ neurons with an accompanying decrease in the number of GABAAR-containing recycling endosomes in cell body. Arfgef1fs/+ neurons also display differences in the relative ratio of Arf6+:Rab11+:TrfR+ recycling endosomes. Although the GABAAR-containing early endosomes in Arfgef1fs/+ neurons are comparable to wildtype, Arfgef1fs/+ neurons show an increase in the number of GABAAR-containing lysosomes in dendrite and cell body. Together, the altered endosome composition and decreased neuronal surface GABAAR results suggests a mechanism whereby impaired neuronal inhibition leads to seizure susceptibility.
Collapse
Affiliation(s)
- JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America.
| | - Narayan Subramanian
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, United States of America; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ariadna Amador
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ayla Kanber
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of America
| | - Jules Beal
- The Saul R. Korey Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sheryl R Haut
- The Saul R. Korey Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States of America; Department of Genetic and Development, Columbia University Irving Medical Center, New York, NY, United States of America
| |
Collapse
|
31
|
Lu FI, Wang YT, Wang YS, Wu CY, Li CC. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis. FASEB J 2019; 33:9959-9973. [PMID: 31199673 DOI: 10.1096/fj.201900342rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
VEGF stimulates the formation of new blood vessels by inducing endothelial cell (EC) proliferation and migration. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (BIG)1 and 2 accelerate the replacement of bound GDP with GTP to activate ADP-ribosylation factor (Arf)1, which regulates vesicular transport between the Golgi and plasma membrane. Although it has been reported that treating cells with BFA interferes with Arf1 activation to inhibit VEGF secretion, the role of BIG1 and BIG2 in VEGF trafficking and expression, EC migration and proliferation, and vascular development remains unknown. Here, we found that inactivation of Arf1 reduced VEGF secretion but did not affect the levels of VEGF protein. Interestingly, however, BIG1 and BIG2 knockdown significantly decreased the levels of VEGF mRNA and protein in glioblastoma U251 cells and HUVECs. Furthermore, depletion of BIG1 and BIG2 inhibited HUVEC angiogenesis by diminishing cell migration. Angioblast migration and intersegmental vessel sprouting were also impaired when the BIG2 homolog, Arf guanine nucleotide exchange factor (arfgef)2, was knocked down in zebrafish with endothelial expression of green fluorescent protein (GFP). Depletion of arfgef2 by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) also caused defects in vascular development of zebrafish embryos. Taken together, these data reveal that BIG1 and BIG2 participate in endothelial cell angiogenesis.-Lu, F.-I., Wang, Y.-T., Wang, Y.-S., Wu, C.-Y., Li, C.-C. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis.
Collapse
Affiliation(s)
- Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,The Integrative Evolutionary Galliforms Genomics Research (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shan Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Imaizumi N, Takeuchi Y, Hirano H, Torii T, Seki Y, Morimoto T, Miyamoto Y, Sakagami H, Yamauchi J. Data on the effects of Charcot-Marie-Tooth disease type 2N-associated AARS missense mutation (Arg329-to-His) on the cell biological properties. Data Brief 2019; 25:104029. [PMID: 31194127 PMCID: PMC6554220 DOI: 10.1016/j.dib.2019.104029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 11/27/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) diseases are genetic neuropathies in the peripheral nervous system (PNS). Type 1 CMT diseases are neuropathies in Schwann cells, PNS myelinating glial cells, whereas type 2 CMT diseases are axonal neuropathies. In addition, there are other types of categories in CMT diseases. CMT diseases are associated with approximately 100 responsible genes. Taiwanese mutation (Asn71-to-Tyr) of alanyl-tRNA synthetase (AARS) in type 2N CMT disease has been reported to have several pathological effects on properties of AARS proteins themselves [1]. Also, some mutations in other responsible genes affect cell biological properties of their gene products [2,3]. Herein we provide the data regarding the effects of another type 2N CMT disease-associated AARS mutation (Arg329-to-His) in French family on the cellular properties.
Collapse
Affiliation(s)
- Naoko Imaizumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Haruka Hirano
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yoichi Seki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0734, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
33
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
34
|
Bhatt JM, Hancock W, Meissner JM, Kaczmarczyk A, Lee E, Viktorova E, Ramanadham S, Belov GA, Sztul E. Promiscuity of the catalytic Sec7 domain within the guanine nucleotide exchange factor GBF1 in ARF activation, Golgi homeostasis, and effector recruitment. Mol Biol Cell 2019; 30:1523-1535. [PMID: 30943106 PMCID: PMC6724685 DOI: 10.1091/mbc.e18-11-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A-inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF's targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William Hancock
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aneta Kaczmarczyk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ekaterina Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
35
|
Jung K, Park JH, Kim SY, Jeon NL, Cho SR, Hyung S. Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Sci Rep 2019; 9:3487. [PMID: 30837563 PMCID: PMC6401157 DOI: 10.1038/s41598-019-40173-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/24/2019] [Indexed: 11/18/2022] Open
Abstract
Schwann cells (SCs) constitute a crucial element of the peripheral nervous system, by structurally supporting the formation of myelin and conveying vital trophic factors to the nervous system. However, the functions of SCs in developmental and regenerative stages remain unclear. Here, we investigated how optogenetic stimulation (OS) of SCs regulates their development. In SC monoculture, OS substantially enhanced SC proliferation and the number of BrdU+-S100ß+-SCs over time. In addition, OS also markedly promoted the expression of both Krox20 and myelin basic protein (MBP) in SC culture medium containing dBcAMP/NRG1, which induced differentiation. We found that the effects of OS are dependent on the intracellular Ca2+ level. OS induces elevated intracellular Ca2+ levels through the T-type voltage-gated calcium channel (VGCC) and mobilization of Ca2+ from both inositol 1,4,5-trisphosphate (IP3)-sensitive stores and caffeine/ryanodine-sensitive stores. Furthermore, we confirmed that OS significantly increased expression levels of both Krox20 and MBP in SC-motor neuron (MN) coculture, which was notably prevented by pharmacological intervention with Ca2+. Taken together, our results demonstrate that OS of SCs increases the intracellular Ca2+ level and can regulate proliferation, differentiation, and myelination, suggesting that OS of SCs may offer a new approach to the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
| | - Ji Hye Park
- Gradaute Program of Translational Neuroscience, Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Sung-Yon Kim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Noo Li Jeon
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea. .,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Sujin Hyung
- Multiscale Mechanical Design School of Mechanical and Aerospace Engineering Institute of Advanced Machinery and Design, Seoul National University, Seoul, Korea. .,BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, Seoul, Korea. .,Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, USA.
| |
Collapse
|
36
|
miR-215 suppresses papillary thyroid cancer proliferation, migration, and invasion through the AKT/GSK-3β/Snail signaling by targeting ARFGEF1. Cell Death Dis 2019; 10:195. [PMID: 30814512 PMCID: PMC6393497 DOI: 10.1038/s41419-019-1444-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
The incidence of papillary thyroid cancer (PTC) has been rapidly increasing in recent years. PTC is prone to lymph node metastasization, which further increases the recurrence rate and mortality of thyroid cancer. However, the underlying mechanisms of this process remain elusive. Several reports have shown that the microRNA miR-215 plays an important role in cancer metastasis. Here, we investigated, for the first time, the potential association between miR-215 and metastasis in PTC. The results of qPCR analysis demonstrated that miR-215 was downregulated in PTC cell lines and tissues, and lower levels of miR-215 correlated with lymph node metastasis of PTC. In vitro and in vivo assays revealed that restoration of miR-215 dramatically inhibited PTC cell proliferation and metastasis. We identified ADP ribosylation factor guanine nucleotide-exchange factor 1 (ARFGEF1) as the target, which mediated the function of miR-215. The expression of ARFGEF1 was inhibited by miR-215, and the effects of miR-215 were abrogated by re-expression of ARFGEF1. Moreover, we found that miR-215 suppressed PTC metastasis by modulating the epithelial–mesenchymal transition via the AKT/GSK-3β/Snail signaling. In summary, our study proves that miR-215 inhibits PTC proliferation and metastasis by targeting ARFGEF1 and indicates miR-215 as a biomarker for PTC prognosis.
Collapse
|
37
|
Tatsumi Y, Matsumoto N, Iibe N, Watanabe N, Torii T, Sango K, Homma K, Miyamoto Y, Sakagami H, Yamauchi J. CMT type 2N disease-associated AARS mutant inhibits neurite growth that can be reversed by valproic acid. Neurosci Res 2018; 139:69-78. [PMID: 30261202 DOI: 10.1016/j.neures.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is composed of a heterogeneous group of hereditary peripheral neuropathies. The peripheral nervous system primarily comprises two types of cells: neuronal cells and myelinating glial Schwann cells. CMT2 N is an autosomal dominant disease and its responsible gene encodes alanyl-tRNA synthetase (AARS), which is a family of cytoplasmic aminoacyl-tRNA synthetases. CMT2 N is associated with the mutation, including a missense mutation, which is known to decrease the enzymatic activity of AARS, but whether and how its mutation affects AARS localization and neuronal process formation remains to be understood. First, we show that the AARS mutant harboring Asn71-to-Tyr (N71Y) is not localized in cytoplasm. The expression of AARS mutant proteins in COS-7 cells mainly leads to localization into lysosome, whereas the wild type is indeed localized in cytoplasm. Second, in N1E-115 cells as the neuronal cell model, cells expressing the N71Y mutant do not have the ability to grow processes. Third, pretreatment with antiepileptic valproic acid reverses the inhibitory effect of the N71Y mutant on process growth. Taken together, the N71Y mutation of AARS leads to abnormal intracellular localization, inhibiting process growth, yet this inhibition is reversed by valproic acid.
Collapse
Affiliation(s)
- Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kazunori Sango
- Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0734, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
38
|
Urai Y, Yamawaki M, Watanabe N, Seki Y, Morimoto T, Tago K, Homma K, Sakagami H, Miyamoto Y, Yamauchi J. Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation. Biochem Biophys Res Commun 2018; 503:2047-2053. [PMID: 30078678 DOI: 10.1016/j.bbrc.2018.07.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The intracellular molecular transport system is a basic and general cellular mechanism that is regulated by an array of signaling molecules. Sar1 small GTPases are molecules that play a key role in controlling vehicle transport between the endoplasmic reticulum (ER) and Golgi bodies. Like other small GTPases, the activities of Sar1a depend on their guanine-nucleotide-binding states, which are regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the well-known function of mammalian Sar1 in the intracellular transport system, little is known about when and how Sar1 is activated during cell morphological changes. Here we show that the C-terminal, but not the N-terminal, regions of Sec23A and Sec23B, the effector proteins of Sar1a, specifically bind to the active, GTP-bound form of Sar1a. An affinity precipitation (pull-down) assay using a recombinant C-terminal region of Sec23B reveals that Sar1a is activated following differentiation in neuronal cell lines. In neuronal N1E-115 cells, GTP-bound Sar1a is increased when cells elongate neuronal processes. Similar results are observed in morphological differentiation in oligodendroglial FBD-102b cells. Additionally, prolactin regulatory element binding (PREB), the GEF for Sar1 (Sar1 activator), increases the binding ability to the nucleotide-free form of Sar1a when morphological differentiation occurs. Nucleotide-free small GTPases preferentially interact with the cognate, active GEFs. These results provide evidence that using previously unreported pull down assays reveals that Sar1 and PREB are upregulated following the induction of morphological differentiation, suggesting the potential role of signaling through Sar1a during morphological differentiation.
Collapse
Affiliation(s)
- Yuri Urai
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Minami Yamawaki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoich Seki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0734, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|