1
|
Zhao FX, Wang MH, Huang ZY, Zhu MH, Chen C, Pan QH, Yu B, Wang YT, Guo X, Qian YJ, Zhang LW, Qiu XJ, Sheng SZ, He Z, Wang JL, Yu SH. Bio-inspired Mechanically Responsive Smart Windows for Visible and Near-Infrared Multiwavelength Spectral Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408192. [PMID: 39155803 DOI: 10.1002/adma.202408192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.
Collapse
Affiliation(s)
- Fu-Xing Zhao
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mei-Hua Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zong-Ying Huang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meng-Han Zhu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian-Hao Pan
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bang Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu-Tao Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Guo
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi-Jian Qian
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Wen Zhang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Jing Qiu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Si-Zhe Sheng
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen He
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jin-Long Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shu-Hong Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Department of Materials Science and Engineering, Institute of Innovative Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Chen H, Chang G, Lee TH, Min S, Nam S, Cho D, Ko K, Bae G, Lee Y, Feng J, Zhang H, Kim JK, Shin J, Hong JW, Jeon S. Compression-sensitive smart windows: inclined pores for dynamic transparency changes. Nat Commun 2024; 15:8074. [PMID: 39277587 PMCID: PMC11401924 DOI: 10.1038/s41467-024-52305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Smart windows, capable of tailoring light transmission, can significantly reduce energy consumption in building services. While mechano-responsive windows activated by strains are promising candidates, they face long-lasting challenges in which the space for the light scatterer's operation has to be enlarged along with the window size, undermining the practicality. Recent attempts to tackle this challenge inevitably generate side effects with compromised performance in light modulation. Here, we introduce a cuttlefish-inspired design to enable the closing and opening of pores within the 3D porous structure by through-thickness compression, offering opacity and transparency upon release and compression. By changing the activation mode from the conventional in-plane to through-thickness direction, the space requirement is intrinsically decoupled from the lateral size of the scatterer. Central to our design is the asymmetry of pore orientation in the 3D porous structure. These inclined pores against the normal direction increase the opaqueness upon release and improve light modulation sensitivity to compression, enabling transmittance regulation upon compression by an infinitesimal displacement of 50 μm. This work establishes a milestone for smart window technologies and will drive advancements in the development of opto-electric devices.
Collapse
Affiliation(s)
- Haomin Chen
- Department of Materials Science and Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Gunho Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Tae Hee Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Seokhwan Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Sanghyeon Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Donghwi Cho
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, 34114, Daejeon, Republic of Korea
| | - Kwonhwan Ko
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Yoonseong Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Jirou Feng
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Heng Zhang
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jang-Kyo Kim
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- School of Mechanical & Manufacturing Engineering, University of New South Wales, NSW, 2052, Sydney, Australia
| | - Jonghwa Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea
| | - Jung-Wuk Hong
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea.
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, 02841, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Li H, Feng D, Guo Q, Lu S, Ma Z, Wang C, Li J, Chen R, Lin X, Zhong S, Yang Y, Yuan Z, Zhang Z, Chen X. Interfacial Wrinkling Structures Based on a Double Cross-Linking Strategy Enable a Dual-Mode Optical Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43006-43015. [PMID: 39086278 DOI: 10.1021/acsami.4c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface wrinkling structures based on a bilayer system are widely employed in storing and encrypting specific optical information. However, constructing a stable wrinkling structure with high-level security remains an extensive challenge due to the delamination issue between the skin layer and the substrate. Herein, a double cross-linking strategy is introduced between a hydrogel layer doped with fluorescent molecules and polydimethylsiloxane to establish a stable interfacial wrinkling structure with dual-mode functionality, in which the light reflection of the wrinkles and fluorescence intensity of fluorescent molecules can be simultaneously regulated by the modulus ratio between the two layers. The spontaneous wrinkling structures with a physically unclonable function can enhance the photoluminescence emission intensity of the wrinkling area under ultraviolet radiation. Meanwhile, the skin layer constructed of acrylamide and acrylic acid copolymer protects the interfacial wrinkling patterns from the loss of a detailed structure for authentication due to external damage. The stable interfacial wrinkling structures with fluorescence can find potential applications in the fields of information storage and encryption.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dengchong Feng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Guo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaolin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zetong Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Cheng Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Jing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Rui Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shilong Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Yuzhao Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zhongke Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
5
|
Yang M, Chen S, Zhang Z, Cheng L, Zhao J, Bai R, Wang W, Gao W, Yu W, Jiang X, Yan X. Stimuli-responsive mechanically interlocked polymer wrinkles. Nat Commun 2024; 15:5760. [PMID: 38982046 PMCID: PMC11233622 DOI: 10.1038/s41467-024-49750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
Artificial wrinkles, especially those with responsive erasure/regeneration behaviors have gained extensive interest due to their potential in smart applications. However, current wrinkle modulation methods primarily rely on network rearrangement, causing bottlenecks in in situ wrinkle regeneration. Herein, we report a dually cross-linked network wherein [2]rotaxane cross-link can dissipate stress within the wrinkles through its sliding motion without disrupting the network, and quadruple H-bonding cross-link comparatively highlight the advantages of [2]rotaxane modulation. Acid stimulation dissociates quadruple H-bonding and destructs network, swiftly eliminating the wrinkles. However, the regeneration process necessitates network rearrangement, making in situ recovery unfeasible. By contrast, alkaline stimulation disrupts host-guest recognition, and subsequent intramolecular motion of [2]rotaxane dissipate energy to eliminate wrinkles gradually. The always intact network allows for the in situ recovery of surface microstructures. The responsive behaviors of quadruple H-bonding and mechanical bond are orthogonal, and their combination leads to wrinkles with multiple but accurate responsiveness.
Collapse
Affiliation(s)
- Mengling Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shuai Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenbin Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenzhe Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
6
|
Yuan W, Deng X, Wang Z, Ma T, Yan S, Gao X, Li J, Ma X, Yin J, Hu K, Zhang W, Jiang X. Photochemical Design for Diverse Controllable Patterns in Self-Wrinkling Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400849. [PMID: 38567824 DOI: 10.1002/adma.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Harnessing the spontaneous surface instability of pliable substances to create intricate, well-ordered, and on-demand controlled surface patterns holds great potential for advancing applications in optical, electrical, and biological processes. However, the current limitations stem from challenges in modulating multidirectional stress fields and diverse boundary environments. Herein, this work proposes a universal strategy to achieve arbitrarily controllable wrinkle patterns via the spatiotemporal photochemical boundaries. Utilizing constraints and inductive effects of the photochemical boundaries, the multiple coupling relationship is accomplished among the light fields, stress fields, and morphology of wrinkles in photosensitive polyurethane (PSPU) film. Moreover, employing sequential light-irradiation with photomask enables the attainment of a diverse array of controllable patterns, ranging from highly ordered 2D patterns to periodic or intricate designs. The fundamental mechanics of underlying buckling and the formation of surface features are comprehensively elucidated through theoretical stimulation and finite element analysis. The results reveal the evolution laws of wrinkles under photochemical boundaries and represent a new effective toolkit for fabricating intricate and captivating patterns in single-layer films.
Collapse
Affiliation(s)
- Wenqiang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinlu Deng
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaxin Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiming Hu
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenming Zhang
- School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Xin YH, Hu KM, Yin HZ, Deng XL, Dong ZQ, Yan SZ, Jiang XS, Meng G, Zhang WM. Dynamic Optical Encryption Fueled via Tunable Mechanical Composite Micrograting Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312650. [PMID: 38339884 DOI: 10.1002/adma.202312650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Optical grating devices based on micro/nanostructured functional surfaces are widely employed to precisely manipulate light propagation, which is significant for information technologies, optical data storage, and light sensors. However, the parameters of rigid periodic structures are difficult to tune after manufacturing, which seriously limits their capacity for in situ light manipulation. Here, a novel anti-eavesdropping, anti-damage, and anti-tamper dynamic optical encryption strategy are reported via tunable mechanical composite wrinkle micrograting encryption systems (MCWGES). By mechanically composing multiple in-situ tunable ordered wrinkle gratings, the dynamic keys with large space capacity are generated to obtain encrypted diffraction patterns, which can provide a higher level of security for the encrypted systems. Furthermore, a multiple grating cone diffraction model is proposed to reveal the dynamic optical encryption principle of MCWGES. Optical encryption communication using dynamic keys has the effect of preventing eavesdropping, damage, and tampering. This dynamic encryption method based on optical manipulation of wrinkle grating demonstrates the potential applications of micro/nanostructured functional surfaces in the field of information security.
Collapse
Affiliation(s)
- Yi-Hang Xin
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Ming Hu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao-Zhe Yin
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Lu Deng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi-Qi Dong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Zhen Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Song Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Ming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
You Z, Zhao M, Lu H, Chen H, Wang Y. Eye-Readable and Wearable Colorimetric Sensor Arrays for In Situ Monitoring of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19359-19368. [PMID: 38568140 DOI: 10.1021/acsami.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.
Collapse
Affiliation(s)
- Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huizi Lu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
9
|
Inaba Y, Yanagisawa T. Droplet dynamics affecting the shape of patterns formed spontaneously by transforming UV-curable emulsions. Sci Rep 2024; 14:7102. [PMID: 38531979 DOI: 10.1038/s41598-024-57851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Forming large pitch and depth patterns spontaneously based on a bottom-up approach is a challenging task but with great industrial value. It is possible to spontaneously form an uneven (concave-convex) patterns with submillimeter-to-millimeter-scale pitches and depths by the direct pattern exposure of a UV-curable oil-in-water (O/W) emulsion liquid film. UV irradiation generates a latent pattern of a cured particle aggregation in the liquid film, and an uneven structure is spontaneously formed during the subsequent drying process. This process does not require any printing and embossing plates or development process. In this report, we presented an example of unevenness formation with a maximum pattern depth of approximately 0.4 mm and a maximum pitch width of 5 mm. The patterns formed by this method have raised edges in the exposed areas and fogging in unexposed areas. The pattern shapes become conspicuous under overexposure conditions, but the formation mechanism has not yet been understood in detail and needs to be investigated. In this study, we focused on the exposure process and clarified the mechanism of pattern formation by analyzing the dynamics of emulsion droplets in the medium by an in situ microscopy observation method. As a result, we found that the fogging was mainly caused by light leakage from the exposed area, and the raised pattern edges were caused by droplets transported from the unexposed area to the exposed area. Furthermore, the convection caused by the heat generated from polymerization is a determining factor affecting all these phenomena. By controlling the pattern shape related to convection utilizing direct projection exposure, we showed an example of eliminating raised pattern edges with a height difference of approximately 0.1 mm. By devising and selecting exposure methods, we can expand the range of design applications such as interior decorative patterns.
Collapse
Affiliation(s)
- Yoshimi Inaba
- Toppan Technical Research Institute, TOPPAN Holdings Inc., Sugito, Saitama, 345-8508, Japan.
| | - Takayuki Yanagisawa
- Toppan Technical Research Institute, TOPPAN Holdings Inc., Sugito, Saitama, 345-8508, Japan
| |
Collapse
|
10
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
11
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
12
|
Zhou Z, Fang Y, Liu R, Hu R, Zhou J, Hu B. Reconfigurable mechano-responsive soft film for adaptive visible and infrared dual-band camouflage. OPTICS LETTERS 2023; 48:2756-2759. [PMID: 37186758 DOI: 10.1364/ol.487282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Learning from nature in terms of the camouflage used by species has enabled the continuous development of camouflage technologies for the visible to mid-infrared bands to prevent objects from being detected by sophisticated multispectral detectors, thereby avoiding potential threats. However, achieving visible and infrared dual-band camouflage without destructive interference while also realizing rapidly responsive adaptivity to the varying background remains challenging for high-demand camouflage systems. Here, we report a reconfigurable mechano-responsive soft film for dual-band camouflage. Its modulation ranges for visible transmittance and longwave infrared emittance can be up to 66.3% and 21%, respectively. Rigorous optical simulations are performed to elucidate the modulation mechanism of dual-band camouflage and identify the optimal wrinkles required to achieve the goal. The broadband modulation capability (figure of merit) of the camouflage film can be as high as 2.91. Other advantages, such as simple fabrication and a fast response, make this film a potential candidate for dual-band camouflage that can adapt to diverse environments.
Collapse
|
13
|
Zhang J, Shen S, Lin R, Huang J, Pu C, Chen P, Duan Q, You X, Xu C, Yan B, Gao X, Shen Z, Cai L, Qiu X, Hou H. Highly Stretchable and Biocompatible Wrinkled Nanoclay-Composite Hydrogel With Enhanced Sensing Capability for Precise Detection of Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209497. [PMID: 36527726 DOI: 10.1002/adma.202209497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
It is challenging to balance high biocompability with good mechanical-electrical sensing performance, especially when triggering inflammatory stress response after in vivo implantation. Herein, a bioinspired wrinkle-reinforced adaptive nanoclay-interlocked soft strain-sensor based on a highly stretchable and elastic ionic-conductive hydrogel is reported. This novel nanoclay-composite hydrogel exhibits excellent tensile properties and high sensing capacity with steady and reliable sensing performance due to the structural-mechanical-electrical integrity of the nanoclay crosslinked and nano-reinforced interpenetrating network. The incorporation of amphiphilic ions provides the hydrogel with significant protein resistance, reducing its non-specific adsorption to proteins upon implantation, improving its biosafety as an implanted device, and maintaining the authenticity of the sensing results. Based on the revealed sensing enhanced mechanism based on hierarchical ordered structures as a proof-of-concept application, this hydrogel sensor is demonstrated to be able to accurately localize the region where myocardial infarction occurs and may become a novel strategy for real-time monitoring of pathological changes in heart disease.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Pinger Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chengzhong Xu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xinrui Gao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ziqi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
14
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
15
|
Sarabia-Vallejos MA, Cerda-Iglesias FE, Pérez-Monje DA, Acuña-Ruiz NF, Terraza-Inostroza CA, Rodríguez-Hernández J, González-Henríquez CM. Smart Polymer Surfaces with Complex Wrinkled Patterns: Reversible, Non-Planar, Gradient, and Hierarchical Structures. Polymers (Basel) 2023; 15:polym15030612. [PMID: 36771913 PMCID: PMC9920088 DOI: 10.3390/polym15030612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This review summarizes the relevant developments in preparing wrinkled structures with variable characteristics. These include the formation of smart interfaces with reversible wrinkle formation, the construction of wrinkles in non-planar supports, or, more interestingly, the development of complex hierarchically structured wrinkled patterns. Smart wrinkled surfaces obtained using light-responsive, pH-responsive, temperature-responsive, and electromagnetic-responsive polymers are thoroughly described. These systems control the formation of wrinkles in particular surface positions and the reversible construction of planar-wrinkled surfaces. This know-how of non-planar substrates has been recently extended to other structures, thus forming wrinkled patterns on solid, hollow spheres, cylinders, and cylindrical tubes. Finally, this bibliographic analysis also presents some illustrative examples of the potential of wrinkle formation to create more complex patterns, including gradient structures and hierarchically multiscale-ordered wrinkles. The orientation and the wrinkle characteristics (amplitude and period) can also be modulated according to the requested application.
Collapse
Affiliation(s)
- Mauricio A. Sarabia-Vallejos
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Sede Santiago, Santiago 8420524, Chile
| | - Felipe E. Cerda-Iglesias
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Dan A. Pérez-Monje
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Nicolas F. Acuña-Ruiz
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Claudio A. Terraza-Inostroza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
- Correspondence:
| |
Collapse
|
16
|
Chen B, Feng Q, Liu W, Liu Y, Yang L, Ge D. Review on Mechanoresponsive Smart Windows: Structures and Driving Modes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:779. [PMID: 36676516 PMCID: PMC9860937 DOI: 10.3390/ma16020779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The growing awareness about the global energy crisis and extreme weather from global warming drives the development of smart windows market. Compared to conventional electrochromic, photochromic, or thermochromic smart windows, mechanoresponsive smart windows present advantages of simple construction, low cost, and excellent stability. In this review, we summarize recent developments in mechanoresponsive smart windows with a focus on the structures and properties. We outline the categories and discuss the advantages and disadvantages. Especially, we also summarize six unconventional driving modes to generate mechanical strain, including pneumatic, optical, thermal, electric, magnetic, and humidity modes. Lastly, we provide practical recommendations in prospects for future development. This review aims to provide a useful reference for the design of novel mechanoresponsive smart windows and accelerate their practical applications.
Collapse
Affiliation(s)
- Bo Chen
- China Construction Advanced Technology Research Institute, China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430075, China
| | - Qi Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weiwei Liu
- China Construction Advanced Technology Research Institute, China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430075, China
| | - Yang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lili Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dengteng Ge
- Institute of Functional Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Yan S, Hu K, Chen S, Li T, Zhang W, Yin J, Jiang X. Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling. Nat Commun 2022; 13:7434. [PMID: 36460720 PMCID: PMC9718802 DOI: 10.1038/s41467-022-35271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Stress relaxation in reconfigurable supramolecular polymer networks is strongly related to intermolecular behavior. However, the relationship between molecular motion and macroscopic mechanics is usually vague, and the visualization of internal stress reflecting precise regulation of molecules remains challenging. Here, we present a strategy for visualizing photo-driven stress relaxation induced by infinitesimal perturbations in the intermolecular exchange reaction via reprogrammable wrinkle patterns. The supramolecular films exhibit visible changes in microscopic wrinkle topography through ultraviolet (UV)-induced dynamic disulfide exchange reaction. In accordance with the trans-scale theoretical models, which quantitatively evaluate the chemical-dependent mechanical stresses in the supramolecular network, the unexposed disordered wrinkles evolved into highly oriented patterns and underwent subsequent mutations after thermal treatment. The stress-sensitive wrinkle macro-patterns can be repetitively written/erased through network topology rearrangement using different stimuli. This strategy provides an approach for visualizing and understanding the molecular behavior from dynamic chemistry to mechanical changes, and directly programming wrinkle patterns with regulated structures.
Collapse
Affiliation(s)
- Shuzhen Yan
- grid.16821.3c0000 0004 0368 8293School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Kaiming Hu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Shuai Chen
- grid.16821.3c0000 0004 0368 8293School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Tiantian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Wenming Zhang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Jie Yin
- grid.16821.3c0000 0004 0368 8293School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| | - Xuesong Jiang
- grid.16821.3c0000 0004 0368 8293School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240 PR China
| |
Collapse
|
18
|
Li TT, Li S, Sun F, Shiu BC, Ren HT, Lou CW, Lin JH. pH-responsive nonwoven fabric with reversibly wettability for controllable oil-water separation and heavy metal removal. ENVIRONMENTAL RESEARCH 2022; 215:114355. [PMID: 36154855 DOI: 10.1016/j.envres.2022.114355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Removal of organic solvents and heavy metals in effluents is of great significance to environmental pollution control and ecological civilization construction. pH-responsive materials have unique advantages in treating complicated oily wastewater. In this work, an intelligent pH-responsive nonwoven fabric with excellent reversible wettability was prepared. The pH-sensitive polymer was synthesized by free radical polymerization (FRP) technique, then dipped with SiO2 on PP fabric. The particular molecular structure of poly (dimethylaminoethyl methacrylate) (PDMAEMA) enabled the fabric surface to switch wettability rapidly between hydrophilic/underwater oleophobic and oleophobic/hydrophobic under pH stimulus and exhibit controllable selective separation of various oil/water mixtures. Furthermore, the fabric removed Pb2+ efficiently under a wide pH range. The experimetal results showed that the separation flux reached 19,229 ± 1656.43 L-h-1-m-2 for water and 19,342 ± 1796.77 L-m-2-h-1 for n-hexane. Besides, the obtained fabric effectively realized the separation and collection process of complex ternary mixtures. The fabric removed Pb2+ in solutions with efficiency up to 90.83%. After immersing in acid and alkali solutions for 24 h, no significant damage to the surface wettability. This economical and intelligent fabric is able to meet the different separation purposes of industrial wastewaters with complex compositions.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, 300387, China
| | - Shuxia Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Fei Sun
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, 300387, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Ocean College, Minjiang University, Fuzhou, 350108, China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
19
|
Malik US, Duan Q, Niazi MBK, Jahan Z, Liaqat U, Sher F, Gan Y, Hou H. Vanillin cross-linked hydrogel membranes interfacial reinforced by carbon nitride nanosheets for enhanced antibacterial activity and mechanical properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Chen S, Hu K, Yan S, Ma T, Deng X, Zhang W, Yin J, Jiang X. Dynamic metal patterns of wrinkles based on photosensitive layers. Sci Bull (Beijing) 2022; 67:2186-2195. [DOI: 10.1016/j.scib.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
21
|
Smart surface-based cell sheet engineering for regenerative medicine. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Photodimerization induced hierarchical and asymmetric iontronic micropatterns. Nat Commun 2022; 13:6487. [PMID: 36310180 PMCID: PMC9618565 DOI: 10.1038/s41467-022-34285-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
Micropatterning various ion-based modality materials offers compelling advantages for functionality enhancement in iontronic pressure sensing, piezoionic mechanoreception, and skin-interfaced electrode adhesion. However, most existing patterning techniques for iontronic materials suffer from low flexibility and limited modulation capability. Herein, we propose a facile and robust method to fabricate hierarchical and asymmetrical iontronic micropatterns (denoted as HAIMs) through programmed regulation of the internal stress distribution and the local ionic migration among an iontronic host. The resultant HAIMs with arbitrarily regulated morphologies and region-dependent ionic electrical performance can be readily made via localized photodimerization of an anthracene-functionalized ionic liquid copolymer (denoted as An-PIL) and subsequent vapor oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT). Based on the piezoionic effect within the resultant distinct doped PEDOT, HAIMs can serve as a scalable iontronic potential generator. Successful syntheses of these fascinating micropatterns may accelerate the development of patterned iontronic materials in a flexible, programmable, and functionally adaptive form.
Collapse
|
23
|
Bioinspired Strategies for Stretchable Conductors. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Wang E, Chen Z, Shi R, Xiong Z, Xin Z, Wang B, Guo J, Peng R, Wu Y, Li C, Ren H, Li X, Liu K. Humidity-Controlled Dynamic Engineering of Buckling Dimensionality in MoS 2 Thin Films. ACS NANO 2022; 16:14157-14167. [PMID: 36053054 DOI: 10.1021/acsnano.2c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic engineering of buckling deformation is of vital importance as it provides multiphase modulation of thin film devices. In particular, dynamic switch of buckles between one-dimensional (1D) and two-dimensional (2D) configurations in a single film system on rigid substrates is intriguing but very challenging. The current approach to changing buckling configuration is mainly achieved by varying the built-in stress at the film-substrate interface, but it is difficult to realize dynamic engineering on rigid substrates. Herein, we report a dynamic engineering of buckling deformation in MoS2 thin films by humidity-tuned interfacial adhesion. With the change of humidity, the MoS2 thin films deform from 1D telephone-cord buckles to 2D web-like buckles due to the hydrophilic nature of both MoS2 and substrate. Such 1D-to-2D evolution of buckles is attributed to the weakened interfacial adhesion of mixed deformation modes induced by humidity, which is verified by finite-element modeling. These buckled films further find potential applications as patterned templates for liquid condensation and sensing units for tactile sensors. Our work not only demonstrates the humidity-controlled dimensionality engineering of buckles in MoS2 thin films but also sheds light on the functional applications of buckled films based on their profile features.
Collapse
Affiliation(s)
- Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zekun Chen
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zixin Xiong
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing & Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Liu E, Zhang X, Ji H, Li Q, Li L, Wang J, Han X, Yu S, Xu F, Cao Y, Lu C. Polarization‐Dependent Ultrasensitive Dynamic Wrinkling on Floating Films Induced by Photo‐Orientation of Azopolymer. Angew Chem Int Ed Engl 2022; 61:e202203715. [DOI: 10.1002/anie.202203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Enping Liu
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Xiaoliang Zhang
- Department of Aeronautics and Astronautics Fudan University Shanghai 200433 P. R. China
| | - Haipeng Ji
- China Aerospace Science and Industry Corporation Sixth Academy No. 46 Institute Hohhot 010010 P. R. China
| | - Qifeng Li
- School of Precision Instruments and Optoelectronics Engineering Tianjin University Tianjin 300072 P. R. China
| | - Lele Li
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Juanjuan Wang
- School of Materials Science and Engineering Tianjin Key Laboratory of Building Green Functional Materials Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Xue Han
- School of Materials Science and Engineering Tianjin Key Laboratory of Building Green Functional Materials Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Shixiong Yu
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
| | - Fan Xu
- Department of Aeronautics and Astronautics Fudan University Shanghai 200433 P. R. China
| | - Yanping Cao
- Department of Engineering Mechanics Tsinghua University Beijing 100084 P. R. China
| | - Conghua Lu
- School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
- School of Materials Science and Engineering Tianjin Key Laboratory of Building Green Functional Materials Tianjin Chengjian University Tianjin 300384 P. R. China
| |
Collapse
|
26
|
Ma T, Chen S, Li J, Yin J, Jiang X. Strain-ultrasensitive surface wrinkles for visual optical sensors. MATERIALS HORIZONS 2022; 9:2233-2242. [PMID: 35766349 DOI: 10.1039/d2mh00603k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable tactile sensors have found widespread applications in human health monitoring, motion monitoring, human-machine interactions, and artificial prostheses. Herein, we demonstrate a new and feasible strategy for wearable optical sensors based on surface wrinkles that are ultrasensitive to strain using a bilayer wrinkling system, in which the relevance between strain and the optical signal can be founded on surface wrinkles. The strain (S⃑(ε, θS)), the wrinkled topography (W⃑(A, θW)), and the reflected optical signal (O⃑(δ, θO)) are correlated with each other, allowing simultaneous measurement of the strain magnitude and direction due to the vector property of optical signals. In addition, interactively visualized detection of slight strain has been achieved by a conspicuous structural color change, successfully amplifying the strain signal owing to the ultra-sensitivity of wrinkles and the nonlinearity of the optical signal. The sensor also exhibits electrical safety and immunity to electromagnetic interference and thus may find potential applications in detecting various complex slight strains, such as subtle human motion or object deformation.
Collapse
Affiliation(s)
- Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shuai Chen
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
27
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
|
29
|
Liu E, Zhang X, Ji H, Li Q, Li L, Wang J, Han X, Yu S, Xu F, Cao Y, Lu C. Polarization‐Dependent Ultrasensitive Dynamic Wrinkling on Floating Films Induced by Photo‐Orientation of Azopolymer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Enping Liu
- Tianjin University School of Materials Science and Engineering 300072 Tianjin CHINA
| | - Xiaoliang Zhang
- Fudan University Department of Aeronautics and Astronautics CHINA
| | - Haipeng Ji
- China Aerospace Science and Industry Corp Sixth Academy No. 46 Institute 010010 Hohhot CHINA
| | - Qifeng Li
- Tianjin University School of Precision Instruments and Optoelectronics Engineering 300072 Tianjin CHINA
| | - Lele Li
- Tianjin University School of Materials Science and Engineering CHINA
| | - Juanjuan Wang
- Tianjin Chengjian University School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials 300384 Tianjin CHINA
| | - Xue Han
- Tianjin Chengjian University School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials 300384 Tianjin CHINA
| | - Shixiong Yu
- Tianjin University School of Materials Science and Engineering 300072 Tianjin CHINA
| | - Fan Xu
- Fudan University Department of Aeronautics and Astronautics 200433 Shanghai CHINA
| | - Yanping Cao
- Tsinghua University Department of Engineering Mechanics 100084 Beijing CHINA
| | - Conghua Lu
- Tianjin University Nankai District, Weijin Road No.92 300384 Tianjin CHINA
| |
Collapse
|
30
|
Abstract
Here we report a simple micro/nano patterning strategy based on light-induced surface wrinkling. Namely, we fabricated a film/substrate system composed of polydimethylsiloxane (PDMS) as a soft substrate and non-photosensitive polymer polystyrene (PS) mixed with azo-polymer (polydisperse orange 3, PDO3) as a stiff film. Taking advantage of the photo-thermal effect and photo-softening effect of PDO3, we fabricated various microstructured wrinkling morphologies by a simple light illumination. We investigated the influence of two exposure modes (i.e., static selective exposure and dynamic moving exposure), the illumination conditions, the composition of the blended film, and the film thickness on the resulting wrinkling patterns. It is highly expected that this azo-based photosensitive wrinkling system will be extended to functional systems for the realization of light-induced surface micro/nanopatterning.
Collapse
|
31
|
Bai J, Hu K, Zhang L, Shi Z, Zhang W, Yin J, Jiang X. The Evolution of Self-Wrinkles in a Single-Layer Gradient Polymer Film Based on Viscoelasticity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Kaiming Hu
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Luzhi Zhang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
32
|
Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T. Tip-Induced In-Plane Ferroelectric Superstructure in Zigzag-Wrinkled BaTiO 3 Thin Films. NANO LETTERS 2022; 22:2859-2866. [PMID: 35312334 DOI: 10.1021/acs.nanolett.1c05028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The complex micro-/nanoscale wrinkle morphology primarily fabricated by elastic polymers is usually designed to realize unique functionalities in physiological, biochemical, bioelectric, and optoelectronic systems. In this work, we fabricated inorganic freestanding BaTiO3 ferroelectric thin films with zigzag wrinkle morphology and successfully modulated the ferroelectric domains to form an in-plane (IP) superstructure with periodic surface charge distribution. Our piezoresponse force microscopy (PFM) measurements and phase-field simulation demonstrate that the self-organized strain/stress field in the zigzag-wrinkled BaTiO3 film generates a corresponding pristine domain structure. These domains can be switched by tip-induced strain gradient (flexoelectricity) and naturally form a robust and unique "braided" in-plane domain pattern, which enables us to offer an effective and convenient way to create a microscopic ferroelectric superstructure. The corresponding periodic surface potential distribution provides an extra degree of freedom in addition to the morphology that could regulate cells or polar molecules in physiological and bioelectric applications.
Collapse
Affiliation(s)
- Yuqing Zhou
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Changqing Guo
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guohua Dong
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haixia Liu
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyao Zhou
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ben Niu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory for Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Di Wu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory for Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Houbing Huang
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ming Liu
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tai Min
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
33
|
Ma T, Zhou L, Hua J, Li J, Ma X, Qiao W, Yin J, Jiang X. Dynamic Surface Wrinkles for In Situ Light-Driven Dynamic Gratings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16949-16957. [PMID: 35363461 DOI: 10.1021/acsami.2c03235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic diffraction gratings (DDGs) are considered as one of the most promising technologies for application in smart optical devices because of their in situ dynamic regulation of light propagation on demand; however, it is still a challenge to fabricate dynamic periodic micro/nanostructures due to limited materials and processes. Here, a facile and feasible strategy to construct a near-infrared (NIR) radiation-driven DDG is developed based on a double-sided surface pattern, which is fabricated by dynamic wrinkles and/or soft-imprinted static wrinkles. Poly(dimethylsiloxane) (PDMS) containing carbon nanotubes (CNTs) serves as the substrate, and wrinkles are formed on both sides. The resulting double-sided wrinkle pattern can be used as a DDG to generate various adjustable two-dimensional (2D) diffraction patterns driven by NIR light. Furthermore, with various combinations of wrinkles, we demonstrated a single-sided responsive DDG and a double-sided responsive DDG to realize the evolution of diffraction patterns from 2D to one-dimensional (1D) and 2D to zero-dimensional (0D), respectively. The results provide an alternative for DDGs that will have wide applications in smart display, sensing, and imaging systems.
Collapse
Affiliation(s)
- Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liangwei Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianyu Hua
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wen Qiao
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Li W, Liu J, Chen L, Wei W, Qian K, Liu Y, Leng J. Application and Development of Shape Memory Micro/Nano Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105958. [PMID: 35362270 DOI: 10.1002/smll.202105958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Shape memory polymers (SMPs) are a class of smart materials that change shape when stimulated by environmental stimuli. Different from the shape memory effect at the macro level, the introduction of micro-patterning technology into SMPs strengthens the exploration of the shape memory effect at the micro/nano level. The emergence of shape memory micro/nano patterns provides a new direction for the future development of smart polymers, and their applications in the fields of biomedicine/textile/micro-optics/adhesives show huge potential. In this review, the authors introduce the types of shape memory micro/nano patterns, summarize the preparation methods, then explore the imminent and potential applications in various fields. In the end, their shortcomings and future development direction are also proposed.
Collapse
Affiliation(s)
- Wenbing Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Junhao Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lei Chen
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wanting Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kun Qian
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
35
|
Zeng X, Zhu BB, Qiu W, Li WL, Zheng XH, Xu B. A review of the preparation and applications of wrinkled graphene oxide. NEW CARBON MATERIALS 2022; 37:290-302. [DOI: 10.1016/s1872-5805(22)60594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Liu Z, Ma Y, Xiang Y, Shen X, Shi Z, Gao J. Integrating Boronic Esters and Anthracene into Covalent Adaptable Networks toward Stimuli-Responsive Elastomers. Polymers (Basel) 2022; 14:1104. [PMID: 35335435 PMCID: PMC8954286 DOI: 10.3390/polym14061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Stimuli-responsive polymer materials have a promising potential application in many areas. However, integrating multi-stimuli into one elastomer is still a challenge. Here, we utilized boronic esters and anthracene to prepare a cross-linked poly(styrene-butadiene-styrene) (SBS) which was endowed with responsiveness to three stimuli (light, heat, and alcohols). SBS was first functionalized with a certain amount of dihydroxyl groups via a thiol-ene "click" reaction between unsaturated double bonds in PB block and thioglycerol. Then, 9-anthraceneboronic acid was applied to form a cross-linked SBS network upon heat and ultraviolet radiation (λ = 365 nm). The prepared elastomer was demonstrated to be stimuli-responsive based on the dynamic nature of boronic esters and the reversible dimerization of anthracene. In addition, the mechanical properties of the elastomer could be regulated continuously owing to the stimulus responsiveness to ultraviolet or heat.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Z.L.); (Y.X.); (X.S.)
| | - Youwei Ma
- State Key Laboratory for Metal Matrix Composite Materials and Shanghai Key Laboratory of Electrical Insulation & Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yixin Xiang
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Z.L.); (Y.X.); (X.S.)
| | - Xianrong Shen
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Z.L.); (Y.X.); (X.S.)
| | - Zixing Shi
- State Key Laboratory for Metal Matrix Composite Materials and Shanghai Key Laboratory of Electrical Insulation & Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jiangang Gao
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Z.L.); (Y.X.); (X.S.)
| |
Collapse
|
37
|
Ju J, Sekimoto K, Cipelletti L, Creton C, Narita T. Heterogeneous nucleation of creases in swelling polymer gels. Phys Rev E 2022; 105:034504. [PMID: 35428111 DOI: 10.1103/physreve.105.034504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Surface creasing is a common occurrence in gels under strong enough compression. The transition from smooth to creased surface has been well studied in equilibrium conditions and applied to achieve stimuli-responsive properties. Classical predictions of the creased state, assuming the gel is at equilibrium and homogeneous, are generally satisfactory, while the transient behavior in swelling gels is often far from equilibrium and is commonly heterogeneous. The short-time response is essential for materials in dynamic environments, but it remains unreported and largely unknown due to the limited temporal resolution of the techniques used so far. Here, we use spatially resolved multispeckle diffusing wave spectroscopy (MSDWS) with submicrosecond time resolution to measure the spatially dependent swelling and creasing of a constrained poly (vinyl alcohol) chemical gel in borax solutions of varying concentrations. Our high-speed imaging by MSDWS shows that the swelling behavior and mechanical response at the microscopic level can be highly heterogeneous in time and space, and is detectable hundreds of seconds before the corresponding macroscopic creasing transition. This unprecedented visualization of the heterogeneous and time-dependent behavior beyond equilibrium morphological changes unveils the full complexity of the transient material response after exposure to external stimuli and sheds light on the formation mechanism of metastable states in transient processes.
Collapse
Affiliation(s)
- Jianzhu Ju
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, PSL Université, 75231 Paris, France
| | - Ken Sekimoto
- Gulliver, CNRS-UMR7083, ESPCI, 75231 Paris, France
- Matières et Systèmes Complexes, CNRS-UMR7057, Université Paris-Diderot, 75205 Paris, France
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France
- Institut Universitaire de France, 75231 Paris, France
| | - Costantino Creton
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, PSL Université, 75231 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuharu Narita
- Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, ESPCI Paris, PSL Université, 75231 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
38
|
Mohanan VV, Mak HYL, Gurung N, Xu Q. Multiscale Soft Surface Instabilities for Adhesion Enhancement. MATERIALS 2022; 15:ma15030852. [PMID: 35160799 PMCID: PMC8836914 DOI: 10.3390/ma15030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Soft polymeric gels are susceptible to buckling-induced instabilities due to their great compliance to surface deformations. The instability patterns at soft interfaces have great potential in engineering functional materials with unique surface properties. In this work, we systematically investigated how swelling-induced instability patterns effectively improved the adhesive properties of soft polydimethylsiloxane (PDMS) gels. We directly imaged the formations of the surface instability features during the relaxation process of a swollen gel substrate. The features were found to greatly increase the adhesion energy of soft gels across multiple length scales, and the adhesion enhancement was associated with the variations of contact lines both inside the contact region and along the contact periphery. We expect that these studies of instability patterns due to swelling will further benefit the design of functional interfaces in various engineering applications.
Collapse
Affiliation(s)
- Vaisakh Vilavinalthundil Mohanan
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
| | - Ho Yi Lydia Mak
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
- Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Nishan Gurung
- Department of Mathematics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Qin Xu
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
- Correspondence:
| |
Collapse
|
39
|
Ma T, Bai J, Li T, Chen S, Ma X, Yin J, Jiang X. Light-driven dynamic surface wrinkles for adaptive visible camouflage. Proc Natl Acad Sci U S A 2021; 118:e2114345118. [PMID: 34810249 PMCID: PMC8640843 DOI: 10.1073/pnas.2114345118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Camouflage is widespread in nature, engineering, and the military. Dynamic surface wrinkles enable a material the on-demand control of the reflected optical signal and may provide an alternative to achieve adaptive camouflage. Here, we demonstrate a feasible strategy for adaptive visible camouflage based on light-driven dynamic surface wrinkles using a bilayer system comprising an anthracene-containing copolymer (PAN) and pigment-containing poly (dimethylsiloxane) (pigment-PDMS). In this system, the photothermal effect-induced thermal expansion of pigment-PDMS could eliminate the wrinkles. The multiwavelength light-driven dynamic surface wrinkles could tune the scattering of light and the visibility of the PAN film interference color. Consequently, the color captured by the observer could switch between the exposure state that is distinguished from the background and the camouflage state that is similar to the surroundings. The bilayer wrinkling system toward adaptive visible camouflage is simple to configure, easy to operate, versatile, and exhibits in situ dynamic characteristics without any external sensors and extra stimuli.
Collapse
Affiliation(s)
- Tianjiao Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Chang B, Zhao D, Sun H. Quasi-Random Gratings Enabled by Wrinkled Photoresist Surfaces on a Rigid Substrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49535-49541. [PMID: 34617732 DOI: 10.1021/acsami.1c15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro- and nanoscale surface wrinkling has been widely studied in artificial systems, mostly in soft substrates like polydimethylsiloxane or polystyrene, where the wrinkling dynamics are triggered by thermal stresses or tensile prestrains. Here, we introduce a new wrinkling regime based on photoresist layers on top of a rigid substrate. By introducing a bending deformation, combined with fluorine-based plasma treatment, wrinkles with a characteristic wavelength less than 1 μm can be created. By adding micropatterns on photoresists with standard UV exposure, ordered wrinkles can also be realized. This technique is demonstrated to be applicable in several commercially available photoresists, and the wrinkled patterns can be employed conveniently to create high-aspect-ratio silicon gratings and large-area silicon dioxide membranes. This unique strategy broadens the spectrum of available materials to create wrinkled surfaces in a controllable manner and provides a platform for the easier fabrication of wrinkle-based devices.
Collapse
Affiliation(s)
- Bingdong Chang
- DTU Nanolab, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kgs. Lyngby, Denmark
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hongyu Sun
- DENSsolutions B. V., Informaticalaan 12, Informaticalaan 12, 2628 ZD Delft, Holland, The Netherlands
| |
Collapse
|
41
|
Liu Y, Sun A, Sridhar S, Li Z, Qin Z, Liu J, Chen X, Lu H, Tang BZ, Xu BB. Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36361-36369. [PMID: 34291634 DOI: 10.1021/acsami.1c10431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous shape transformation is key in developing high-performance soft robotics technology; the search for pronounced actuation mechanisms is an ongoing mission. Here, we present the programmable shape morphing of a three-dimensional (3D) curved gel structure by harnessing multimode mechanical instabilities during free swelling. First of all, the coupling of buckling and creasing occurs at the dedicated region of the gel structure, which is attributed to the edge and surface instabilities resulted from structure-defined spatial nonuniformity of swelling. The subsequent developments of post-buckling morphologies and crease patterns collaboratively drive the structural transformation of the gel part from the "open" state to the "closed" state, thus realizing the function of gripping. By utilizing the multi-stimuli-responsive nature of the hydrogel, we recover the swollen gel structure to its initial state, enabling reproducible and cyclic shape evolution. The described soft gel structure capable of shape transformation brings a variety of advantages, such as easy to fabricate, large strain transformation, efficient actuation, and high strength-to-weight ratio, and is anticipated to provide guidance for future applications in soft robotics, flexible electronics, offshore engineering, and healthcare products.
Collapse
Affiliation(s)
- Yingzhi Liu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ansu Sun
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Sreepathy Sridhar
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Zhenghong Li
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Zhuofan Qin
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Chen
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Haibao Lu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Bin Xu
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
42
|
Xu W, Chen S, Yao M, Jiang X, Lu Q. A Near-Infrared-Triggered Dynamic Wrinkling Biointerface for Noninvasive Harvesting of Practical Cell Sheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32790-32798. [PMID: 34232024 DOI: 10.1021/acsami.1c07962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell sheet engineering represents a new era of precise and efficient regenerative medicine, but its efficacy is limited by the elaborative preparation and the weak mechanics. Herein, a near-infrared (NIR)-triggered dynamic wrinkling biointerface was designed for rapid acquisition of practical cell sheets. The biocompatible NIR can initiate the photothermal-mechanical linkage cascade to efficiently dissolve the collagen supporting layer and release the high-quality cell sheets. The interfacial shear force generates with the dynamic wrinkling, playing an active role in accelerating the cell sheet release. High-quality and self-supporting cell sheets can be harvested within a few minutes, demonstrating a new paradigm of photothermal-mechanical manipulation. The transplantable cell sheets with outstanding physiological and mechanical performances were proven to promote wound healing in skin regeneration. This method may open a completely new front in thermal and mechanical responsive cascade to harvest cell sheets, facilitating their wide applications in regenerative medicine.
Collapse
Affiliation(s)
- Wei Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengting Yao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
43
|
Wang Z, Wang Y, Wang Z, He Q, Li C, Cai S. 3D Printing of Electrically Responsive PVC Gel Actuators. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24164-24172. [PMID: 33973764 DOI: 10.1021/acsami.1c05082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Additive manufacturing of electrically responsive soft actuators is of great importance in designing and constructing novel soft robots and soft machines. However, there are very limited options for 3D-printable and electrically responsive soft materials. Herein, we report a strategy of 3D printing polyvinyl chloride (PVC) gel actuators that are electrically controllable. We print a jellyfish-like actuator from PVC ink, which can achieve 130° bending in less than 5 s. With the multi-material 3D printing technique, we have further printed a soft actuator with a stiffness gradient that can generate undulatory motion. As a proof-of-concept demonstration, we show that a 3D-printed PVC gel-based smart window can change its transparency upon the application of voltage. The 3D printing strategy developed in this article may expand the potential applications of electrically responsive soft materials in diverse engineering fields.
Collapse
Affiliation(s)
- Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yang Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Qiguang He
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
44
|
Xue C, Zhang Y, Li L, Hu Y, Chen C, Song Y, You H, Li R, Li J, Wu D, Chu J. 3D Multiscale Micro-/Nanofolds by Femtosecond Laser Intermittent Ablation and Constrained Heating on a Shape Memory Polymer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23210-23219. [PMID: 33960197 DOI: 10.1021/acsami.1c04049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spontaneous wrinkling of films with a thickness gradient offers a new opportunity for constructing various 3D hierarchical surface morphologies. Unfortunately, accurately and facilely controlling the gradient film thickness to yield multiscale and 3D hierarchical micro-/nanostructures is still difficult. Here, a rapid, facile, and highly controllable fabricating strategy for realizing 3D multiscale hierarchical micro-/nanofolds on a shape memory polymer (SMP) surface is reported. First, the nanoparticle film with gradient thickness is rapidly (100 ms to 4 s) and facilely obtained by laser intermittent ablation on the SMP, termed as laser ablation-induced gradient thickness film. Following one-time constrained heating, the 3D micropillars grow out of the substrate based on the "self-growing effect," and the nanoparticle gradient film on its top shrinks into multiscale micro-/nanofolds simultaneously. Significantly, the evolution process and the underlying mechanism of the 3D micro-/nanofolds are systematically investigated. Fundamental basis enables us to accurately regulate the gradient thickness of nanoparticle films and feature size of folds by varying laser scanning times and scanning path. Finally, desirable patterns on micro-/nanofolds can be readily realized by programmable laser cleaning technology, and the tunable adhesion of the water droplet on the multiscale structured surface is demonstrated, which is promising for microdroplet manipulation.
Collapse
Affiliation(s)
- Cheng Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Longfu Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuegan Song
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongshu You
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
45
|
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Infrared (IR) adaptation phenomena are ubiquitous in nature and biological systems. Taking inspiration from natural creatures, researchers have devoted extensive efforts for developing advanced IR adaptive materials and exploring their applications in areas of smart camouflage, thermal energy management, biomedical science, and many other IR-related technological fields. Herein, an up-to-date review is provided on the recent advancements of bioinspired IR adaptive materials and their promising applications. First an overview of IR adaptation in nature and advanced artificial IR technologies is presented. Recent endeavors are then introduced toward developing bioinspired adaptive materials for IR camouflage and IR radiative cooling. According to the Stefan-Boltzmann law, IR camouflage can be realized by either emissivity engineering or thermal cloaks. IR radiative cooling can maximize the thermal radiation of an object through an IR atmospheric transparency window, and thus holds great potential for use in energy-efficient green buildings and smart personal thermal management systems. Recent advances in bioinspired adaptive materials for emerging near-IR (NIR) applications are also discussed, including NIR-triggered biological technologies, NIR light-fueled soft robotics, and NIR light-driven supramolecular nanosystems. This review concludes with a perspective on the challenges and opportunities for the future development of bioinspired IR adaptive materials.
Collapse
Affiliation(s)
- Jiajia Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinfang Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
46
|
Shou H, Ma T, Li T, Chen S, Ma X, Yin J, Jiang X. Photo-Oxidation-Controlled Surface Pattern with Responsive Wrinkled Topography and Fluorescence. Chemistry 2021; 27:5810-5816. [PMID: 33501668 DOI: 10.1002/chem.202100189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/09/2022]
Abstract
Wrinkles and photo-oxidation reactions are widely found in soft materials, which are intimately associated with the failure of materials and structures. It is expected that the photo-oxidation process could also have a positive effect on the material and its surface. Here, we report the photo-oxidation of 2-(4-dietheylaminophenyl)-4,5-bis(4-methoxyphenyl) imidazole (DEA-TAI) into a wrinkled bilayer system to control surface wrinkle and fluorescent patterns, in which a supramolecular polymer network composed of carboxylic acid-containing copolymer (PS-BA-AA; PS=poly(styrene), BA=butyl acrylate; AA=acrylic acid) and DEA-TAI were used as the skin layer. Ultraviolet (UV) irradiation can induce photo-oxidation of the imidazole ring of DEA-TAI to weaken the intermolecular hydrogen bonding between PS-BA-AA and DEA-TAI, resulting in the release of stress in the bilayer system. The wrinkled morphology and fluorescence of the surface can be simultaneously regulated by photo-oxidation of DEA-TAI under UV light, and the resulting wrinkles are extremely sensitive to the pH value, which can be quickly and reversibly erased by NH3 gas. Smart surfaces with specific hierarchical wrinkles and fluorescence can be achieved by selective irradiation with photomasks, which may find potential applications in smart displays and multi-code information storage.
Collapse
Affiliation(s)
- Huizhu Shou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuai Chen
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
47
|
Xu L, Yang L, Yang S, Xu Z, Lin G, Shi J, Zhang R, Yu J, Ge D, Guo Y. Earthworm-Inspired Ultradurable Superhydrophobic Fabrics from Adaptive Wrinkled Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6758-6766. [PMID: 33527836 DOI: 10.1021/acsami.0c18528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wrapped by periodically wrinkled skin, soft earthworm shows excellent robustness against sticky soil. Mimicking this deformation adaptability, here, we report an ultradurable superhydrophobic fabric by exploiting the formation of adaptive, soft wrinkled poly(dimethylsiloxane) (PDMS) skins. Uniform wrinkles are created on woven fabric fibers due to the surface instability of PDMS coating with a cross-linking gradient induced by Ar plasma treatment. Both the surface topography of wrinkles and the viscoelasticity of the underlying compliant layer to release stress endow the treated superhydrophobic fabrics with extraordinary durability, withstanding 800 standard laundries or 1000 rubbing cycles under 44.8 kPa. Additionally, superhydrophobic fabrics are self-healable after heating or plasma treatment. This insight of engineering soft skins with periodic submicron surface topography and gradient modulus provides a pathway for the design of ultradurable, multifunctional wearables.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Applied Physics, Member of Magnetic Confinement Fusion Research Center, Ministry of Education, College of Science, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lili Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Gaojian Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianjun Shi
- Department of Applied Physics, Member of Magnetic Confinement Fusion Research Center, Ministry of Education, College of Science, Donghua University, Shanghai 201620, China
| | - Ruiyun Zhang
- Innovation Center for Textile Science and Technology, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dengteng Ge
- Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Ying Guo
- Department of Applied Physics, Member of Magnetic Confinement Fusion Research Center, Ministry of Education, College of Science, Donghua University, Shanghai 201620, China
| |
Collapse
|
48
|
Shen Y, Zou Q, Wan B, She X, You R, Luo Y, Jin C. High-Contrast Dynamic Reflecting System Based on Pneumatic Micro/Nanoscale Surface Morphing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1988-1999. [PMID: 33378615 DOI: 10.1021/acsami.0c19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cephalopods offer a fascinating dynamic reflecting system to create desired colors and patterns through contracting and releasing their soft skins in response to environmental stimuli. Inspired by this natural display strategy, we designed a novel dynamic reflecting system based on pneumatic micro/nanoscale surface morphing. This system consists of a thin metal skin/elastomer bilayer modulated by a microfluidic-based gas injector. Benefited from the "wrinkled-specular" transition of the metal's surface under a small pneumatic actuation (4 kPa), an unprecedented reflectance contrast of 93 for broad-band (500-750 nm) modulation is achieved. This remarkable response also has excellent cycle stability (>2500 times) and fast response time (∼0.2 s). These advantages enable a robust and ultrasensitive optical gas pressure sensor with a sensitivity of 178 kPa-1, which is 3-4 orders of magnitude higher than those of conventional optical gas pressure sensors based on either a Fabry-Pérot interferometer or a Mach-Zehnder interferometer. Moreover, as proof-of-concept applications, we also experimentally demonstrated a curvature-variable convex mirror and noniridescent dynamic display, suggesting that our pneumatically dynamic reflecting system will potentially broaden the applications in adaptive optical devices, sensors, and displays.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiushun Zou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Wan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyi She
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Runzhi You
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongjun Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
49
|
Li J, Li T, Ma X, Su Z, Yin J, Jiang X. Light-Induced Programmable 2D Ordered Patterns Based on a Hyperbranched Poly(ether amine) (hPEA)-Functionalized Graphene Film. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1704-1713. [PMID: 33347761 DOI: 10.1021/acsami.0c15099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic complex surface topography with ordered and tunable morphologies, which can provide on-demand control of surface properties to realize smart surfaces, is gaining much attention yet remains challenging in terms of fabrication. Here, a facile, robust, and controllable method is demonstrated to fabricate programmable two-dimensional (2D) ordered patterns with multiresponsive 2D ultrathin materials, comprised of anthracene-capped hyperbranched poly(ether amine) (hPEA-AN)-functionalized graphene (hPEA-AN@G). By combining the stimuli-responsiveness and UV sensitivity of hPEA-AN and excellent out-of-plane deformation and NIR-to-thermal conversion of graphene, the process of "writing/uploading" initial information is conducted through the initial exposure to 365 nm UV light to generate the 2D ordered pattern first; second, inducing swelling strain via moisture to create the hierarchical topographic pattern (orderly oriented pattern) is the process of "modification and erasable rewriting"; third, alternating NIR or 254 nm UV light blanket exposure are the two ways of erasing the information. Consequently, taking advantage of the multiresponsive dynamic wrinkling/ordered patterning, we can program globally 2D ordered surface patterns with diverse morphologies on demand and manipulate the resulted surface properties as desired.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Su
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Rhee D, Deng S, Odom TW. Soft skin layers for reconfigurable and programmable nanowrinkles. NANOSCALE 2020; 12:23920-23928. [PMID: 33242039 DOI: 10.1039/d0nr07054h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wrinkling skin layers on pre-strained polymer sheets has drawn significant interest as a method to create reconfigurable surface patterns. Compared to widely studied metal or silica films, softer polymer skins are more tolerant to crack formation when the surface topography is tuned under applied strain. This Mini-review discusses recent progress in mechano-responsive wrinkles based on polymer skin materials. Control over the skin thickness with nanometer accuracy allows for tuning of the wrinkle wavelength and orientation over length scales from nanometer to micrometer regimes. Furthermore, soft skin layers enable texturing of two-dimensional electronic materials with programmable feature sizes and structural hierarchy because of the conformal adhesion to the substrates. Soft skin systems open prospects to tailor a range of surface properties via external stimuli important for applications such as smart windows, microfluidics, and nanoelectronics.
Collapse
Affiliation(s)
- Dongjoon Rhee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|