1
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Wang P, Chiang FK, Chai J, Dugulan AI, Dong J, Chen W, Broos RJP, Feng B, Song Y, Lv Y, Lin Q, Wang R, Filot IAW, Men Z, Hensen EJM. Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe 5C 2. Nature 2024:10.1038/s41586-024-08078-5. [PMID: 39415021 DOI: 10.1038/s41586-024-08078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Oil has long been the dominant feedstock for producing fuels and chemicals, but coal, natural gas and biomass are increasingly explored alternatives1-3. Their conversion first generates syngas, a mixture of CO and H2, which is then processed further using Fischer-Tropsch (FT) chemistry. However, although commercial FT technology for fuel production is established, using it to access valuable chemicals remains challenging. A case in point is linear α-olefins (LAOs), which are important chemical intermediates obtained by ethylene oligomerization at present4-8. The commercial high-temperature FT process and the FT-to-olefin process under development at present both convert syngas directly to LAOs, but also generate much CO2 waste that leads to a low carbon utilization efficiency9-14. The efficiency is further compromised by substantially fewer of the converted carbon atoms ending up as valuable C5-C10 LAOs than are found in the C2-C4 olefins that dominate the product mixtures9-14. Here we show that the use of the original phase-pure χ-iron carbide can minimize these syngas conversion problems: tailored and optimized for the process of FT to LAOs, this catalyst exhibits an activity at 290 °C that is 1-2 orders higher than dedicated FT-to-olefin catalysts can achieve above 320 °C (refs. 12-15), is stable for 200 h, and produces desired C2-C10 LAOs and unwanted CO2 with carbon-based selectivities of 51% and 9% under industrially relevant conditions. This higher catalytic performance, persisting over a wide temperature range (250-320 °C), demonstrates the potential of the system for developing a practically relevant technology.
Collapse
Affiliation(s)
- Peng Wang
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China.
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Fu-Kuo Chiang
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Jiachun Chai
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Delft, The Netherlands
| | - Juan Dong
- Data Technology Group, China Energy Investment Group Archives, CHN Energy, Beijing, People's Republic of China
| | - Wei Chen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robin J P Broos
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bo Feng
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Yuanjun Song
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Yijun Lv
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Quan Lin
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ivo A W Filot
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Zhuowu Men
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China.
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Xu Y, Zhang Z, Wu K, Wang J, Hou B, Shan R, Li L, Ding M. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer-Tropsch synthesis. Nat Commun 2024; 15:7099. [PMID: 39154082 PMCID: PMC11330503 DOI: 10.1038/s41467-024-51472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Iron-based Fischer-Tropsch synthesis (FTS) catalyst is widely used for syngas conversion, but its iron carbide active phase is easily oxidized into Fe3O4 by the water produced during reaction, leading to the deterioration of catalytic performance. Here, we show an efficient strategy for protecting the iron carbide active phase of FTS catalyst by surface hydrophobization. The hydrophobic surface can reduce the water concentration in the core vicinity of catalyst during syngas conversion, and thus inhibit the oxidation of iron species by water, which enhances the C - C coupling ability of catalyst and promotes the formation of long-chain olefins. More significantly, it is unraveled that appropriate shell thickness plays a crucial role in stabilizing the iron carbide active phase without Fe3O4 formation and achieving good catalytic performance.
Collapse
Affiliation(s)
- Yanfei Xu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, 215125, China.
| | - Zhenxuan Zhang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Ke Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Jungang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Bo Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Ruoting Shan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Ling Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Wu W, Luo J, Zhao J, Wang M, Luo L, Hu S, He B, Ma C, Li H, Zeng J. Facet sensitivity of iron carbides in Fischer-Tropsch synthesis. Nat Commun 2024; 15:6108. [PMID: 39030277 PMCID: PMC11271519 DOI: 10.1038/s41467-024-50544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Fischer-Tropsch synthesis (FTS) is a structure-sensitive reaction of which performance is strongly related to the active phase, particle size, and exposed facets. Compared with the full-pledged investigation on the active phase and particle size, the facet effect has been limited to theoretical studies or single-crystal surfaces, lacking experimental reports of practical catalysts, especially for Fe-based catalysts. Herein, we demonstrate the facet sensitivity of iron carbides in FTS. As the prerequisite, {202} and {112} facets of χ-Fe5C2 are fabricated as the outer shell through the conformal reconstruction of Fe3O4 nanocubes and octahedra, as the inner cores, respectively. During FTS, the activity and stability are highly sensitive to the exposed facet of iron carbides, whereas the facet sensitivity is not prominent for the chain growth. According to mechanistic studies, {202} χ-Fe5C2 surfaces follow hydrogen-assisted CO dissociation which lowers the activation energy compared with the direct CO dissociation over {112} surfaces, affording the high FTS activity.
Collapse
Grants
- 22221003, 22250007, 22361162655 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), Fundamental Research Funds for the Central Universities, Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450000), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), and International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC). J.Z. acknowledges support from the Tencent Foundation through the XPLORER PRIZE.
- National Key Research and Development Program of China (2023YFA1508003), Joint Funds from the Hefei National Synchrotron Radiation Laboratory (KY9990000202), USTC Research Funds of the Double First-Class Initiative (YD9990002014)
Collapse
Affiliation(s)
- Wenlong Wu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiahua Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Menglin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bingxuan He
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
5
|
Qian F, Bai J, Cai Y, Yang H, Cao XM, Liu X, Liu XW, Yang Y, Li YW, Ma D, Wen XD. Stabilized ε-Fe 2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis. Nat Commun 2024; 15:5128. [PMID: 38879628 PMCID: PMC11180106 DOI: 10.1038/s41467-024-49472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.
Collapse
Affiliation(s)
- Fei Qian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Jiawei Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Yi Cai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Hui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Xue-Min Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xing-Wu Liu
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China.
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
6
|
Luo D, Liu X, Chang T, Bai J, Guo W, Zheng W, Wen X. Towards understanding the lower CH 4 selectivity of HCP-Co than FCC-Co in Fischer-Tropsch synthesis. Phys Chem Chem Phys 2024; 26:5704-5712. [PMID: 38289691 DOI: 10.1039/d3cp06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In Fischer-Tropsch synthesis (FTS), the cobalt catalyst has higher C5+ and lower CH4 selectivity in the hcp phase than in the fcc phase. However, a detailed explanation of the intrinsic mechanism is still missing. The underlying reason was explored combining density functional theory, Wulff construction, and a particle-level descriptor based on the slab model of surfaces that are prevalent in the Wulff shape to provide single-particle level understanding. Using a particle-level indicator of the reaction rates, we have shown that it is more difficult to form CH4 on hcp-Co than on fcc-Co, due to the larger effective barrier difference of CH4 formation and C-C coupling on hcp-Co particles, which leads to the lower CH4 selectivity of hcp-Co in FTS. Among the exposed facets of fcc-Co, the (311) surface plays a pivotal role in promoting CH4 formation. The reduction of CH4 selectivity in cobalt-based FTS is achievable through phase engineering of Co from fcc to hcp or by tuning the temperature and size of the particles.
Collapse
Affiliation(s)
- Dan Luo
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tong Chang
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Jiawei Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Wentao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| |
Collapse
|
7
|
Lyu JM, Yu S, Liu Z, Du HY, Sun MH, Guo CM, Wang YL, Li Y, Chen LH, Su BL. Synergistic effect of K and Zn on Fe-based catalysts for efficient CO 2 hydrogenation. Dalton Trans 2024; 53:2526-2533. [PMID: 38226637 DOI: 10.1039/d3dt03913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Excessive emission of CO2 into the atmosphere has severely impacted the global ecological environment. Converting CO2 into valuable chemicals and fuels is of great significance for sustainable development. However, low activity and undesirable selectivity often result from the inherent inertness of CO2. Herein, K- or/and Zn-modified Fe-based catalysts were prepared by an incipient-wetness impregnation method for CO2 hydrogenation via a cascade reaction. The results indicate that K species exist as K2O while Zn species exist as ZnFe2O4. In the CO2 hydrogenation pathway, K2O facilitates the adsorption of CO2 and restrains the adsorption of H2, accelerating the transformation of CO2 into C2-C4 olefins rather than paraffins while Zn species promote the dispersion of Fe species, leading to improved activity. Synergistically, a K- and Zn-modified Fe-based catalyst (2Zn-10K-Fe/Al) shows excellent catalytic CO2 hydrogenation activity, achieving a CO2 conversion of 77% which is 1.8 times that (42%) of the unmodified Fe-based catalyst (Fe/Al). Our catalyst also shows a significantly promoted selectivity to C2-C4 olefins of 17% in comparison with the Fe/Al catalyst (0%). It is envisioned that such a binary effect of elements might contribute to the low-cost and industrial production of Fe-based catalysts for selective CO2 conversion.
Collapse
Affiliation(s)
- Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - He-You Du
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Chun-Mu Guo
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
8
|
Liu QY, Chen D, Shang C, Liu ZP. An optimal Fe-C coordination ensemble for hydrocarbon chain growth: a full Fischer-Tropsch synthesis mechanism from machine learning. Chem Sci 2023; 14:9461-9475. [PMID: 37712046 PMCID: PMC10498498 DOI: 10.1039/d3sc02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) because of its great significance in industry has attracted huge attention since its discovery. For Fe-based catalysts, after decades of efforts, even the product distribution remains poorly understood due to the lack of information on the active site and the chain growth mechanism. Herein powered by a newly developed machine-learning-based transition state (ML-TS) exploration method to treat properly reaction-induced surface reconstruction, we are able to resolve where and how long-chain hydrocarbons grow on complex in situ-formed Fe-carbide (FeCx) surfaces from thousands of pathway candidates. Microkinetics simulations based on first-principles kinetics data further determine the rate-determining and the selectivity-controlling steps, and reveal the fine details of the product distribution in obeying and deviating from the Anderson-Schulz-Flory law. By showing that all FeCx phases can grow coherently upon each other, we demonstrate that the FTS active site, namely the A-P5 site present on reconstructed Fe3C(031), Fe5C2(510), Fe5C2(021), and Fe7C3(071) terrace surfaces, is not necessarily connected to any particular FeCx phase, rationalizing long-standing structure-activity puzzles. The optimal Fe-C coordination ensemble of the A-P5 site exhibits both Fe-carbide (Fe4C square) and metal Fe (Fe3 trimer) features.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Dongxiao Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| |
Collapse
|
9
|
Xu Y, Liang H, Li R, Zhang Z, Qin C, Xu D, Fan H, Hou B, Wang J, Gu XK, Ding M. Insights into the Diffusion Behaviors of Water over Hydrophilic/Hydrophobic Catalysts During the Conversion of Syngas to High-Quality Gasoline. Angew Chem Int Ed Engl 2023; 62:e202306786. [PMID: 37470313 DOI: 10.1002/anie.202306786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Although considerable efforts towards directly converting syngas to liquid fuels through Fischer-Tropsch synthesis have been made, developing catalysts with low CO2 selectivity for the synthesis of high-quality gasoline remains a big challenge. Herein, we designed a bifunctional catalyst composed of hydrophobic FeNa@Si-c and HZSM-5 zeolite, which exhibited a low CO2 selectivity of 14.3 % at 49.8 % CO conversion, with a high selectivity of 62.5 % for gasoline in total products. Molecular dynamic simulations and model experiments revealed that the diffusion of water molecules through hydrophilic catalyst was bidirectional, while the diffusion through hydrophobic catalyst was unidirectional, which were crucial to tune the water-gas shift reaction and control CO2 formation. This work provides a new fundamental understanding about the function of hydrophobic modification of catalysts in syngas conversion.
Collapse
Affiliation(s)
- Yanfei Xu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Heng Liang
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Rui Li
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhenxuan Zhang
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Chuan Qin
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Di Xu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Haifeng Fan
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Bo Hou
- State Key Laboratory for High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Jungang Wang
- State Key Laboratory for High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, 430072, Wuhan, China
- Shenzhen Research Institute of Wuhan University, 518108, Shenzhen, China
| |
Collapse
|
10
|
A Specific Defect Type of Cu Active Site to Suppress Water-Gas-Shift Reaction in Syngas Conversion to Methanol over Cu Catalysts. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Cao Y, Peng Y, Cheng D, Chen L, Wang M, Shang C, Zheng L, Ma D, Liu ZP, He L. Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yao Peng
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Danyang Cheng
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Lin Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Maolin Wang
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Revisiting the Syngas Conversion to Olefins over Fe-Mn Bimetallic Catalysts: Insights from the Proximity Effects. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
14
|
Influence of carbon deposits on Fe-carbide for the Fischer-Tropsch reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Bai J, Qin C, Xu Y, Xu D, Ding M. Preparation of Nitrogen Doped Biochar-Based Iron Catalyst for Enhancing Gasoline-Range Hydrocarbons Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45516-45525. [PMID: 36173040 DOI: 10.1021/acsami.2c14675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing catalysts to obtain high space time yield (STY) of gasoline-range hydrocarbons via Fischer-Tropsch synthesis (FTS) is a huge challenge due to the restriction of Anderson-Schulz-Flory distribution. Herein, a nitrogen doped biochar-based iron catalyst was synthesized by a one-step method using sugar cane bagasse as carbon precursor, which exhibited an excellent gasoline STY of 8.65 gC5-12 gFe-1 h-1, exceeding most reported catalysts. A strong positive relationship between the amount of pyrrolic N and long-chain hydrocarbons selectivity was displayed. The characterization results indicated that pyrrolic N configuration on anchor sites tuned effectively the dispersion of iron species and metal-support interaction as well as CO adsorption, improving the FTS performance.
Collapse
Affiliation(s)
- Jingyang Bai
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Chuan Qin
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfei Xu
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Di Xu
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518108, China
| |
Collapse
|
16
|
Wen R, Thiessen J, Jess A. Catalytic Behavior and In Situ X‐Ray Diffraction of Promoted Iron Catalysts for Fischer‐Tropsch Synthesis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruoxi Wen
- University of Bayreuth Department of Chemical Engineering, Center of Energy Technology Universitätsstraße 30 95447 Bayreuth Germany
| | - Johannes Thiessen
- University of Bayreuth Department of Chemical Engineering, Center of Energy Technology Universitätsstraße 30 95447 Bayreuth Germany
| | - Andreas Jess
- University of Bayreuth Department of Chemical Engineering, Center of Energy Technology Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
17
|
Single-Phase θ-Fe3C Derived from Prussian Blue and Its Catalytic Application in Fischer-Tropsch Synthesis. Catalysts 2022. [DOI: 10.3390/catal12101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elucidation of the intrinsic catalytic principle of iron carbides remains a substantial challenge in iron-catalyzed Fischer-Tropsch synthesis (FTS), due to possible interference from other Fe-containing species. Here, we propose a facile approach to synthesize single-phase θ-Fe3C via the pyrolysis of a molecularly defined Fe-C complex (Fe4[Fe(CN)6]3), thus affording close examination of its catalytic behavior during FTS. The crystal structure of prepared θ-Fe3C is unambiguously verified by combined XRD and MES measurement, demonstrating its single-phase nature. Strikingly, single-phase θ-Fe3C exhibited excellent selectivity to light olefins (77.8%) in the C2-C4 hydrocarbons with less than 10% CO2 formation in typical FTS conditions. This strategy further succeeds with promotion of Mn, evident for its wide-ranging compatibility for the promising industrial development of catalysts. This work offers a facile approach for oriented preparation of single-phase θ-Fe3C and provides an in-depth understanding of its intrinsic catalytic performance in FTS.
Collapse
|
18
|
Lin T, An Y, Yu F, Gong K, Yu H, Wang C, Sun Y, Zhong L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
19
|
Selective CO2 reduction to methane catalyzed by mesoporous Ru-Fe3O4/CeOx-SiO2 in a fixed bed flow reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Abstract
The conversion of gases into building blocks for synthesizing plastics is enhanced.
Collapse
Affiliation(s)
- Mingyue Ding
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfei Xu
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Wang C, Fang W, Liu Z, Wang L, Liao Z, Yang Y, Li H, Liu L, Zhou H, Qin X, Xu S, Chu X, Wang Y, Zheng A, Xiao FS. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. NATURE NANOTECHNOLOGY 2022; 17:714-720. [PMID: 35817859 DOI: 10.1038/s41565-022-01154-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Catalytic reactions are severely restricted by the strong adsorption of product molecules on the catalyst surface, where promoting desorption of the product and hindering its re-adsorption benefit the formation of free sites on the catalyst surface for continuous substrate conversion1,2. A solution to this issue is constructing a robust nanochannel for the rapid escape of products. We demonstrate here that MFI zeolite crystals with a short b-axis of 90-110 nm and a finely controllable microporous environment can effectively boost the Fischer-Tropsch synthesis to olefins by shipping the olefin molecules. The ferric carbide catalyst (Na-FeCx) physically mixed with a zeolite promoter exhibited a CO conversion of 82.5% with an olefin selectivity of 72.0% at the low temperature of 260 °C. By contrast, Na-FeCx alone without the zeolite promoter is poorly active under equivalent conditions, and shows the significantly improved olefin productivity achieved through the zeolite promoter. These results show that the well-designed zeolite, as a promising promoter, significantly boosts Fischer-Tropsch synthesis to olefins by accelerating escape of the product from the catalyst surface.
Collapse
Affiliation(s)
- Chengtao Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Wei Fang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhiqiang Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Zuwei Liao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yongrong Yang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Hangjie Li
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lu Liu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuedi Qin
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Xuefeng Chu
- Key Laboratory of Architectural Cold Climate Energy Management, Jilin Jianzhu University, Changchun, China
| | - Yeqing Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Xu M, Liu X, Song G, Cai Y, Shi B, Liu Y, Ding X, Yang Z, Tian P, Cao C, Xu J. Regulating iron species compositions by Fe-Al interaction in CO2 hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Zeng Z, Li Z, Kang L, Han X, Qi Z, Guo S, Wang J, Rykov A, Lv J, Wang Y, Ma X. A Monodisperse ε′-(Co xFe 1–x) 2.2C Bimetallic Carbide Catalyst for Direct Conversion of Syngas to Higher Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Zeng
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhuoshi Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Li Kang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoxue Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zouxuan Qi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shaoxia Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Junhu Wang
- The Center for Advanced Mössbauer Spectroscopy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Alexandre Rykov
- The Center for Advanced Mössbauer Spectroscopy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
24
|
Bai Y, Liu J, Wang T, Song YF, Yang Y, Li YW, Wen X. Theoretical study about adsorbed oxygen reduction over χ-Fe5C2: formation of H2O and CO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Liu QY, Shang C, Liu ZP. In Situ Active Site for Fe-Catalyzed Fischer-Tropsch Synthesis: Recent Progress and Future Challenges. J Phys Chem Lett 2022; 13:3342-3352. [PMID: 35394796 DOI: 10.1021/acs.jpclett.2c00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fischer-Tropsch synthesis (FTS) that converts syngas into long-chain hydrocarbons is a key technology in the chemical industry. As one of the best catalysts for FTS, the Fe-based composite develops rich solid phases (metal, oxides, and carbides) in the catalytic reaction, which triggered the quest for the true active site in catalysis in the past century. Recent years have seen great advances in probing the active-site structure using modern experimental and theoretical tools. This Perspective serves to highlight these latest achievements, focusing on the geometrical structure and thermodynamic stability of Fe carbide bulk phases, the exposed surfaces, and their relationship to FTS activity. The current reaction mechanisms on CO activation and carbon chain growth are also discussed, in the context of theoretical models and experimental evidence. We also present the outlook regarding the current challenges in Fe-based FTS.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
26
|
Li R, Li Y, Li Z, Wei W, Hao Q, Shi Y, Ouyang S, Yuan H, Zhang T. Electronically Activated Fe 5C 2 via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruizhe Li
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan Li
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiqin Wei
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Quanguo Hao
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yiqiu Shi
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuxin Ouyang
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hong Yuan
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Li H, Li W, Zhuang Z, Liu F, Li L, Lv Y, Men Z, Liu Z, Yan Z. Effect of reaction temperature and H2/CO ratio on deactivation behavior of precipitated iron Fischer-Tropsch synthesis catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63802-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Chai J, Pestman R, Chen W, Donkervoet N, Dugulan AI, Men Z, Wang P, Hensen EJM. Isotopic Exchange Study on the Kinetics of Fe Carburization and the Mechanism of the Fischer–Tropsch Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiachun Chai
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Robert Pestman
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Wei Chen
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Noortje Donkervoet
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - A. Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, 2629 JB Delft, Netherlands
| | - Zhuowu Men
- National Institute of Clean-and-Low-Carbon Energy, Future Science and Technology City, Changping District, Beijing 102211, People’s Republic of China
| | - Peng Wang
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- National Institute of Clean-and-Low-Carbon Energy, Future Science and Technology City, Changping District, Beijing 102211, People’s Republic of China
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
30
|
Zhu J, Wang P, Zhang X, Zhang G, Li R, Li W, Senftle TP, Liu W, Wang J, Wang Y, Zhang A, Fu Q, Song C, Guo X. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO 2 hydrogenation. SCIENCE ADVANCES 2022; 8:eabm3629. [PMID: 35119927 PMCID: PMC8816344 DOI: 10.1126/sciadv.abm3629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Identifying the dynamic structure of heterogeneous catalysts is crucial for the rational design of new ones. In this contribution, the structural evolution of Fe(0) catalysts during CO2 hydrogenation to hydrocarbons has been investigated by using several (quasi) in situ techniques. Upon initial reduction, Fe species are carburized to Fe3C and then to Fe5C2. The by-product of CO2 hydrogenation, H2O, oxidizes the iron carbide to Fe3O4. The formation of Fe3O4@(Fe5C2+Fe3O4) core-shell structure was observed at steady state, and the surface composition depends on the balance of oxidation and carburization, where water plays a key role in the oxidation. The performance of CO2 hydrogenation was also correlated with the dynamic surface structure. Theoretical calculations and controll experiments reveal the interdependence between the phase transition and reactive environment. We also suggest a practical way to tune the competitive reactions to maintain an Fe5C2-rich surface for a desired C2+ productivity.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhui Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Thomas P. Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianyang Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanli Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiang Fu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Wang S, Zhang L, Wang P, Liu X, Chen Y, Qin Z, Dong M, Wang J, He L, Olsbye U, Fan W. Highly effective conversion of CO2 into light olefins abundant in ethene. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Modulating C5+selectivity for Fischer-Tropsch synthesis by tuning pyrolysis temperature of MOFs derived Fe-based catalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Yasuda S, Kunitake Y, Osuga R, Nakamura K, Matsumoto T, Sago K, Kondo JN, Yabushita M, Muramatsu A, Yokoi T. Supported Nickel Zeolite Catalyst for Oxidative Conversion of Methane: Effect of Heteroatoms in the Zeolite Framework on Its Physicochemical and Catalytic Properties. CHEM LETT 2022. [DOI: 10.1246/cl.210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhei Yasuda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yusuke Kunitake
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ryota Osuga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Matsumoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keita Sago
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Junko N. Kondo
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Atsushi Muramatsu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
34
|
Tang L, Zhou BC, Liu X, Xu S, Wang J, Xu W, Liu X, Chen L, Lu AH. Selective synthesis of core-shell structured catalyst χ-Fe5C2 surrounded by nanosized Fe3O4 for conversion of syngas to liquid fuels. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing liquid hydrocarbons selectivity and simultaneously suppressing CO2 formation are highly desirable yet challenges in iron-based Fischer-Tropsch synthesis. Herein, we report an in-situ oxidation method for the fabrication of a...
Collapse
|
35
|
Mine S, Toyao T, Hinuma Y, Shimizu KI. Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00014h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic computational efforts aimed at calculating surface anion vacancy formation energies as important descriptors of catalytic performance are summarized.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda 563-8577, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, 1-5, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Nishigyo, Kyoto 615-8520, Japan
| |
Collapse
|
36
|
Zhang J, Abbas M, Zhao W, Chen J. Enhanced stability of a fused iron catalyst under realistic Fischer–Tropsch synthesis conditions: insights into the role of iron phases (χ-Fe 5C 2, θ-Fe 3C and α-Fe). Catal Sci Technol 2022. [DOI: 10.1039/d2cy00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance and stability of fused-Fe catalyst in FTS reaction are enhanced through the control synthesis of iron phases (χ-Fe5C2, θ-Fe3C and α-Fe).
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed Abbas
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Ceramics Department, National Research Center, 12622 El Behouth Str., Cairo, Egypt
| | - Wentao Zhao
- Sanju Environmental Protection New Material Co., Ltd, China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
37
|
Zhang W, Wang S, Guo S, Qin Z, Dong M, Wang J, Fan W. Effective conversion of CO 2 into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO x oxide and acidic zeolite. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00210h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Addition of proper amount of La produces more oxygen vacancies on ZnZrOx(nLa), hence promoting the formation of methanol. Upon coupling with H-SAPO-34, ZnZrOx(0.3La)/H-SAPO-34 catalyst shows a C2=–C4= selectivity in hydrocarbons as high as 83.2%.
Collapse
Affiliation(s)
- Wenyu Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Shujia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
38
|
Sun Y, Wang Y, He J, Yusuf A, Wang Y, Yang G, Xiao X. Comprehensive kinetic model for acetylene pretreated mesoporous silica supported bimetallic Co-Ni catalyst during Fischer-Trospch synthesis. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118773] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Chen S, Li M, Zhang M, Wang C, Luo R, Yan X, Zhang H, Qi J, Sun X, Li J. Metal organic framework derived one-dimensional porous Fe/N-doped carbon nanofibers with enhanced catalytic performance. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126101. [PMID: 34492907 DOI: 10.1016/j.jhazmat.2021.126101] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The aggregation of metal nanoparticles and collapse of precursor metal organic frameworks (MOFs) structure during the carbonization process largely hamper the catalytic performance of MOFs-derived carbon catalysts. Here, we report hollow and porous one-dimensional Fe/N-doped carbon nanofibers (Fe/NCNFs) for activating peroxymonosulfate (PMS), which was obtained by immobilizing Fe-MIL-101 on polyacrylonitrile (PAN) nanofibers via electrospinning technique followed by pyrolysis. The presence of one-dimensional PAN channel suppresses the agglomeration tendency of metal particles during the carbonisation process of Fe-MIL-101, resulting in a uniform dispersion of nanoparticles and an increase of catalytic active sites. The resultant Fe/NCNFs-9 possesses unique hierarchical architecture, large active surface area, well-dispersed Fe species, and abundant Fe-N active sites. These superiorities contributed to the better catalytic performance of Fe/NCNFs-9 compared with PAN derived carbon (PAN-C-9) and Fe-MIL-101 derived carbon (Fe-C-9). Through a series of inhibitor experiments and electrochemical tests, the radical pathway is dominant on BPA removal with the participation of the non-radical pathway in the multi-sites Fe/NCNFs-9/PMS/BPA system. Surprisingly, this strategy could successfully disperse Fe species and effectively reduce the Fe leaching. This work supplies a novel method to design efficient MOFs-derived carbon catalysts toward micropollutants removal.
Collapse
Affiliation(s)
- Saisai Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Miaoqing Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Rui Luo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| |
Collapse
|
41
|
Chai J, Pestman R, Chen W, Dugulan AI, Feng B, Men Z, Wang P, Hensen EJ. The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
|
43
|
Liu QY, Shang C, Liu ZP. In Situ Active Site for CO Activation in Fe-Catalyzed Fischer-Tropsch Synthesis from Machine Learning. J Am Chem Soc 2021; 143:11109-11120. [PMID: 34278799 DOI: 10.1021/jacs.1c04624] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In situ-formed iron carbides (FeCx) are the key components responsible for Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) on Fe-based catalysts in industry. The true active site is, however, highly controversial despite more than a century of study, which is largely due to the combined complexity in both FeCx structures and mechanism of CO hydrogenation. Herein powered by machine learning simulation, millions of structure candidates for FeCx bulk and surfaces are explored under FTS conditions, which leads to resolving the active site for CO activation. This is achieved without a priori input from experiment by first constructing the thermodynamics convex hull of bulk phases, followed by identifying the low surface energy surfaces and evaluating the adsorption ability of CO and H, and finally determining the lowest energy reaction pathway of CO activation. Rich information on FeCx structures and CO hydrogenation pathways is gleaned: (i) Fe5C2, Fe7C3, and Fe2C are the three stable bulk phases under FTS in producing olefins, where Fe7C3 and Fe2C have multiple energetically nearly degenerate bulk crystal phases; (ii) only three low surface energy surfaces of these bulk phases, namely, χ-Fe5C2(510), χ-Fe5C2(111), and η-Fe2C(111), expose the Fe sites that can adsorb H atoms exothermically, where the surface Fe:C ratio is 2, 1.75, and 2, respectively; (iii) CO activation via direct dissociation can occur at the surface C vacancies (e.g., with a barrier of 1.1 eV) that are created dynamically via hydrogenation. These atomic-level understandings facilitate the building of the structure-activity correlation and designing better FT catalysts.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Bai J, Qin C, Xu Y, Du Y, Ma G, Ding M. Biosugarcane-based carbon support for high-performance iron-based Fischer-Tropsch synthesis. iScience 2021; 24:102715. [PMID: 34258552 PMCID: PMC8253968 DOI: 10.1016/j.isci.2021.102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Exploiting new carbon supports with adjustable metal-support interaction and low price is of prime importance to realize the maximum active iron efficiency and industrial-scale application of Fe-based catalysts for Fischer-Tropsch synthesis (FTS). Herein, a simple, tunable, and scalable biochar support derived from the sugarcane bagasse was successfully prepared and was first used for FTS. The metal-support interaction was precisely controlled by functional groups of biosugarcane-based carbon material and different iron species sizes. All catalysts synthesized displayed high activities, and the iron-time-yield of Fe4/Cbio even reached 1,198.9 μmol gFe−1 s−1. This performance was due to the unique structure and characteristics of the biosugarcane-based carbon support, which possessed abundant C−O, C=O (η1(O) and η2(C, O)) functional groups, thus endowing the moderate metal-support interaction, high dispersion of active iron species, more active ε-Fe2C phase, and, most importantly, a high proportion of FexC/Fesurf, facilitating the maximum iron efficiency and intrinsic activity of the catalyst. A kind of carbon support, derived from the sugarcane bagasse, is prepared This biochar catalyst reaches an excellent FTY value in Fischer-Tropsch synthesis Functional groups and Fe species sizes regulate metal-support interactions Superior performance is due to abundant functional groups and ε-Fe2C
Collapse
Affiliation(s)
- Jingyang Bai
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Chuan Qin
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfei Xu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yixiong Du
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Guangyuan Ma
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.,Shenzhen Research Institute of Wuhan University, Shenzhen 518108, China
| |
Collapse
|
45
|
Jeske K, Kizilkaya AC, López-Luque I, Pfänder N, Bartsch M, Concepción P, Prieto G. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. ACS Catal 2021; 11:4784-4798. [PMID: 33889436 PMCID: PMC8056389 DOI: 10.1021/acscatal.0c05027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Indexed: 11/30/2022]
Abstract
Adjusting hydrocarbon product distributions in the Fischer-Tropsch (FT) synthesis is of notable significance in the context of so-called X-to-liquids (XTL) technologies. While cobalt catalysts are selective to long-chain paraffin precursors for synthetic jet- and diesel-fuels, lighter (C10-) alkane condensates are less valuable for fuel production. Alternatively, iron carbide-based catalysts are suitable for the coproduction of paraffinic waxes alongside liquid (and gaseous) olefin chemicals; however, their activity for the water-gas-shift reaction (WGSR) is notoriously detrimental when hydrogen-rich syngas feeds, for example, derived from (unconventional) natural gas, are to be converted. Herein the roles of pore architecture and oxide promoters of Lewis basic character on CoRu/Al2O3 FT catalysts are systematically addressed, targeting the development of catalysts with unusually high selectivity to liquid olefins. Both alkali and lanthanide oxides lead to a decrease in turnover frequency. The latter, particularly PrO x , prove effective to boost the selectivity to liquid (C5-10) olefins without undesired WGSR activity. In situ CO-FTIR spectroscopy suggests a dual promotion via both electronic modification of surface Co sites and the inhibition of Lewis acidity on the support, which has direct implications for double-bond isomerization reactivity and thus the regioisomery of liquid olefin products. Density functional theory calculations ascribe oxide promotion to an enhanced competitive adsorption of molecular CO versus hydrogen and olefins on oxide-decorated cobalt surfaces, dampening (secondary) olefin hydrogenation, and suggest an exacerbated metal surface carbophilicity to underlie the undesired induction of WGSR activity by strongly electron-donating alkali oxide promoters. Enhanced pore molecular transport within a multimodal meso-macroporous architecture in combination with PrO x as promoter, at an optimal surface loading of 1 Prat nm-2, results in an unconventional product distribution, reconciling benefits intrinsic to Co- and Fe-based FT catalysts, respectively. A chain-growth probability of 0.75, and thus >70 C% selectivity to C5+ products, is achieved alongside lighter hydrocarbon (C5-10) condensates that are significantly enriched in added-value chemicals (67 C%), predominantly α-olefins but also linear alcohols, remarkably with essentially no CO2 side-production (<1%). Such unusual product distributions, integrating precursors for synthetic fuels and liquid platform chemicals, might be desired to diversify the scope and improve the economics of small-scale gas- and biomass-to-liquid processes.
Collapse
Affiliation(s)
- Kai Jeske
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ali Can Kizilkaya
- Department of Chemical Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, 35430 Izmir, Turkey
| | - Iván López-Luque
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Norbert Pfänder
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße, 45470 Mülheim an der Ruhr, Germany
| | - Mathias Bartsch
- Faculty of Physics and CENIDE, Universität Duisburg-Essen, 47048 Duisburg, Germany
| | - Patricia Concepción
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- ITQ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
46
|
Affiliation(s)
- Jingxiu Xie
- Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen Nijenborgh 4, 9747 AG Groningen, Netherlands.
| |
Collapse
|
47
|
Xu Y, Li X, Gao J, Wang J, Ma G, Wen X, Yang Y, Li Y, Ding M. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 2021; 371:610-613. [DOI: 10.1126/science.abb3649] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/18/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Yanfei Xu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | | | - Junhu Gao
- Synfuels China Co., Ltd., Beijing 101407, China
| | - Jie Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Guangyuan Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaodong Wen
- Synfuels China Co., Ltd., Beijing 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yong Yang
- Synfuels China Co., Ltd., Beijing 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yongwang Li
- Synfuels China Co., Ltd., Beijing 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
48
|
Liu X, Liu J, Yang Y, Li YW, Wen X. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| |
Collapse
|
49
|
Hinuma Y, Mine S, Toyao T, Maeno Z, Shimizu KI. Surface activation by electron scavenger metal nanorod adsorption on TiH 2, TiC, TiN, and Ti 2O 3. Phys Chem Chem Phys 2021; 23:16577-16593. [PMID: 34320045 DOI: 10.1039/d1cp02068d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal/oxide support perimeter sites are known to provide unique properties because the nearby metal changes the local environment on the support surface. In particular, the electron scavenger effect reduces the energy necessary for surface anion desorption, and thereby contributes to activation of the (reverse) Mars-van Krevelen mechanism. This study investigated the possibility of such activation in hydrides, carbides, nitrides, and sulfides. The work functions (WFs) of known hydrides, carbides, nitrides, oxides, and sulfides with group 3, 4, or 5 cations (Sc, Y, La, Ti, Zr, Hf, V, Nb, and Ta) were calculated. The WFs of most hydrides, carbides, and nitrides are smaller than the WF of Ag, implying that the electron scavenger effect may occur when late transition metal nanoparticles are adsorbed on the surface. The WF of oxides and sulfides decreases when reduced. The surface anion vacancy formation energy correlates well with the bulk formation energy in carbides and nitrides, while almost no correlation is found in hydrides because of the small range of surface hydrogen vacancy formation energy values. The electron scavenger effect is explicitly observed in nanorods adsorbed on TiH2 and Ti2O3; the surface vacancy formation energy decreases at anion sites near the nanorod, and charge transfer to the nanorod happens when an anion is removed at such sites. Activation of hydrides, carbides, and nitrides by nanorod adsorption and screening support materials through WF calculation are expected to open up a new category of supported catalysts.
Collapse
Affiliation(s)
- Yoyo Hinuma
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | | | | | | | | |
Collapse
|
50
|
|