1
|
Cuesta-Aguirre DR, Amor-Jimenez C, Malgosa A, Santos C. A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA. Mol Ecol Resour 2025:e14061. [PMID: 39776197 DOI: 10.1111/1755-0998.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.
Collapse
Affiliation(s)
- Daniel R Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Amor-Jimenez
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre de Recerca Ecològica i d'Aplicacions Forestals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Bozzi D, Neuenschwander S, Cruz Dávalos DI, Sousa da Mota B, Schroeder H, Moreno-Mayar JV, Allentoft ME, Malaspinas AS. Towards predicting the geographical origin of ancient samples with metagenomic data. Sci Rep 2024; 14:21794. [PMID: 39294129 PMCID: PMC11411106 DOI: 10.1038/s41598-023-40246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2024] Open
Abstract
Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Diana Ivette Cruz Dávalos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
4
|
Reis ALM, Rapadas M, Hammond JM, Gamaarachchi H, Stevanovski I, Ayuputeri Kumaheri M, Chintalaphani SR, Dissanayake DSB, Siggs OM, Hewitt AW, Llamas B, Brown A, Baynam G, Mann GJ, McMorran BJ, Easteal S, Hermes A, Jenkins MR, Patel HR, Deveson IW. The landscape of genomic structural variation in Indigenous Australians. Nature 2023; 624:602-610. [PMID: 38093003 PMCID: PMC10733147 DOI: 10.1038/s41586-023-06842-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.
Collapse
Affiliation(s)
- Andre L M Reis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa Rapadas
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Hasindu Gamaarachchi
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Meutia Ayuputeri Kumaheri
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Sanjog R Chintalaphani
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Duminda S B Dissanayake
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Owen M Siggs
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Bastien Llamas
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| | - Alex Brown
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| | - Gareth Baynam
- Telethon Kids Institute and Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Genetic Services of Western Australia, Western Australian Department of Health, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, Western Australian Department of Health, Perth, Western Australia, Australia
| | - Graham J Mann
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Brendan J McMorran
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Simon Easteal
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Azure Hermes
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Ávila-Arcos MC, Raghavan M, Schlebusch C. Going local with ancient DNA: A review of human histories from regional perspectives. Science 2023; 382:53-58. [PMID: 37797024 DOI: 10.1126/science.adh8140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Ancient DNA (aDNA) has added a wealth of information about our species' history, including insights on genetic origins, migrations and gene flow, genetic admixture, and health and disease. Much early work has focused on continental-level questions, leaving many regional questions, especially those relevant to the Global South, comparatively underexplored. A few success stories of aDNA studies from smaller laboratories involve more local aspects of human histories and health in the Americas, Africa, Asia, and Oceania. In this Review, we cover some of these contributions by synthesizing finer-scale questions of importance to the archaeogenetics field, as well as to Indigenous and Descendant communities. We further highlight the potential of aDNA to uncover past histories in regions where colonialism has neglected the oral histories of oppressed peoples.
Collapse
Affiliation(s)
- María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- SciLifeLab, Uppsala, Sweden
| |
Collapse
|
6
|
Yagasaki K, Nishida N, Mabuchi A, Tokunaga K, Fujimoto A. Development of a novel microarray data analysis tool without normalization for genotyping degraded forensic DNA. Forensic Sci Int Genet 2023; 65:102885. [PMID: 37137205 DOI: 10.1016/j.fsigen.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Since the arrest of the Golden State Killer in the US in April 2018, forensic geneticists have been increasingly interested in the investigative genetic genealogy (IGG) method. While this method has already been in practical use as a powerful tool for criminal investigation, we have yet to know well the limitations and potential risks. In this current study, we performed an evaluation study focusing on degraded DNA using the Affymetrix Genome-Wide Human SNP Array 6.0 platform (Thermo Fisher Scientific). We revealed one of the potential problems that occur during SNP genotype determination using a microarray-based platform. Our analysis results indicated that the SNP profiles derived from degraded DNA contained many false heterozygous SNPs. In addition, it was confirmed that the total amount of probe signal intensity on microarray chips derived from degraded DNA decreased significantly. Because the conventional analysis algorithm performs normalization during genotype determination, we concluded that noise signals could be genotype-called. To address this issue, we proposed a novel microarray data analysis method without normalization (nMAP). Although the nMAP algorithm resulted in a low call rate, it substantially improved genotyping accuracy. Finally, we confirmed the usefulness of the nMAP algorithm for kinship inferences. These findings and the nMAP algorithm will make a contribution to the advance of the IGG method.
Collapse
Affiliation(s)
- Kayoko Yagasaki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Forensic Science Laboratory, Tokyo Metropolitan Police Department, 3-35-21, Shakujiidai, Nerima Ward, Tokyo 177-0045, Japan.
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku word, Tokyo 162-8655, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Abstract
The ethics of the scientific study of Ancestors has long been debated by archaeologists, bioanthropologists, and, more recently, ancient DNA (aDNA) researchers. This article responds to the article "Ethics of DNA research on human remains: five globally applicable guidelines" published in 2021 in Nature by a large group of aDNA researchers and collaborators. We argue that these guidelines do not sufficiently consider the interests of community stakeholders, including descendant communities and communities with potential, but yet unestablished, ties to Ancestors. We focus on three main areas of concern with the guidelines. First is the false separation of "scientific" and "community" concerns and the consistent privileging of researcher perspectives over those of community members. Second, the commitment of the guidelines' authors to open data ignores the principles and practice of Indigenous Data Sovereignty. Further, the authors argue that involving community members in decisions about publication and data sharing is unethical. We argue that excluding community perspectives on "ethical" grounds is convenient for researchers, but it is not, in fact, ethical. Third, we stress the risks of not consulting communities that have established or potential ties to Ancestors, using two recent examples from the literature. Ancient DNA researchers cannot focus on the lowest common denominator of research practice, the bare minimum that is legally necessary. Instead, they should be leading multidisciplinary efforts to create processes to ensure communities from all regions of the globe are identified and engaged in research that affects them. This will often present challenges, but we see these challenges as part of the research, rather than a distraction from the scientific endeavor. If a research team does not have the capacity to meaningfully engage communities, questions must be asked about the value and benefit of their research.
Collapse
|
8
|
Taufik L, Teixeira JC, Llamas B, Sudoyo H, Tobler R, Purnomo GA. Human Genetic Research in Wallacea and Sahul: Recent Findings and Future Prospects. Genes (Basel) 2022; 13:genes13122373. [PMID: 36553640 PMCID: PMC9778601 DOI: 10.3390/genes13122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants. In this review, we collate and discuss key findings from the past decade of population genetic and phylogeographic literature focussed on the hominin history in Wallacea and Sahul. Specifically, we examine the evidence for the timing and direction of the ancient AMH migratory movements and subsequent hominin mixing events, emphasising several novel but consistent results that have important implications for addressing these questions. Finally, we suggest potentially lucrative directions for future genetic research in this key region of human evolution.
Collapse
Affiliation(s)
- Leonard Taufik
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
- Correspondence: (L.T.); (G.A.P.)
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5001, Australia
| | - Herawati Sudoyo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
| | - Gludhug A. Purnomo
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (L.T.); (G.A.P.)
| |
Collapse
|
9
|
Fleskes RE, Bader AC, Tsosie KS, Wagner JK, Claw KG, Garrison NA. Ethical Guidance in Human Paleogenomics: New and Ongoing Perspectives. Annu Rev Genomics Hum Genet 2022; 23:627-652. [PMID: 35537469 PMCID: PMC11657320 DOI: 10.1146/annurev-genom-120621-090239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past two decades, the study of ancient genomes from Ancestral humans, or human paleogenomic research, has expanded rapidly in both scale and scope. Ethical discourse has subsequently emerged to address issues of social responsibility and scientific robusticity in conducting research. Here, we highlight and contextualize the primary sources of professional ethical guidance aimed at paleogenomic researchers. We describe the tension among existing guidelines, while addressing core issues such as consent, destructive research methods, and data access and management. Currently, there is a dissonance between guidelines that focus on scientific outcomes and those that hold scientists accountable to stakeholder communities,such as descendants. Thus, we provide additional tools to navigate the complexities of ancient DNA research while centering engagement with stakeholder communities in the scientific process.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Connecticut, Storrs, Connecticut, USA;
| | - Alyssa C Bader
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA;
- Sealaska Heritage Institute, Juneau, Alaska, USA
| | - Krystal S Tsosie
- Native BioData Consortium, Eagle Butte, South Dakota, USA;
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer K Wagner
- School of Engineering Design, Technology, and Professional Programs; Institute for Computational and Data Sciences; Department of Biomedical Engineering; and Rock Ethics Institute, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Katrina G Claw
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Nanibaa' A Garrison
- Institute for Society and Genetics, Institute for Precision Health, and Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, California, USA;
| |
Collapse
|
10
|
Gorden EM, Greytak EM, Sturk-Andreaggi K, Cady J, McMahon TP, Armentrout S, Marshall C. Extended kinship analysis of historical remains using SNP capture. Forensic Sci Int Genet 2021; 57:102636. [PMID: 34896972 DOI: 10.1016/j.fsigen.2021.102636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022]
Abstract
DNA-assisted identification of historical remains requires the genetic analysis of highly degraded DNA, along with a comparison to DNA from known relatives. This can be achieved by targeting single nucleotide polymorphisms (SNPs) using a hybridization capture and next-generation sequencing approach suitable for degraded skeletal samples. In the present study, two SNP capture panels were designed to target ~ 25,000 (25 K) and ~ 95,000 (95 K) nuclear SNPs, respectively, to enable distant kinship estimation (up to 4th degree relatives). Low-coverage SNP data were successfully recovered from 14 skeletal elements 75 years postmortem using an Illumina MiSeq benchtop sequencer. All samples contained degraded DNA but were of varying quality with mean fragment lengths ranging from 32 bp to 170 bp across the 14 samples. SNP comparison with DNA from known family references was performed in the Parabon Fx Forensic Analysis Platform, which utilizes a likelihood approach for kinship prediction that was optimized for low-coverage sequencing data with cytosine deamination. The 25 K panel produced 15,000 SNPs on average, which allowed for accurate kinship prediction with strong statistical support in 16 of the 21 pairwise comparisons. The 95 K panel increased the average SNPs to 42,000 and resulted in an additional accurate kinship prediction with strong statistical support (17 of 21 pairwise comparisons). This study demonstrates that SNP capture combined with massively parallel sequencing on a benchtop platform can yield sufficient SNP recovery from compromised samples, enabling accurate, extended kinship predictions.
Collapse
Affiliation(s)
- Erin M Gorden
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE, USA; SNA International LLC, Alexandria, VA, USA
| | | | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE, USA; SNA International LLC, Alexandria, VA, USA; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Timothy P McMahon
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE, USA
| | | | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE, USA; SNA International LLC, Alexandria, VA, USA; Forensic Science Program, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
11
|
Carroll MA, Boynes S, Jerome-Majewska LA, Topp KS. The imperative for scientific societies to change the face of academia: Recommendations for immediate action. Anat Rec (Hoboken) 2021; 305:1019-1031. [PMID: 34418322 DOI: 10.1002/ar.24735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
As organizations that facilitate collaboration and communication, scientific societies have an opportunity, and a responsibility, to drive inclusion, diversity, equity, and accessibility in science in academia. The American Association for Anatomy (AAA), with its expressed and practiced culture of engagement, can serve as a model of best practice for other professional associations working to become more inclusive of individuals from historically underrepresented groups. In this publication, we acknowledge anatomy's exclusionary past, describe the present face of science in academia, and provide recommendations for societies, including the AAA, to accelerate change in academia. We are advocating for scientific societies to investigate inequities and revise practices for inclusivity; develop and empower underrepresented minority leadership; and commit resources in a sustained manner as an investment in underrepresented scientists who bring diverse perspectives and lived experiences to science in academia.
Collapse
Affiliation(s)
- Melissa A Carroll
- Department of Anatomy & Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shawn Boynes
- American Association for Anatomy, Rockville, Maryland, USA
| | - Loydie A Jerome-Majewska
- Departments of Pediatrics, Human Genetics, and Anatomy and Cell Biology, McGill University Health Centre Glen Site, McGill University, Montreal, Quebec, Canada
| | - Kimberly S Topp
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Abstract
The study of ancient genomes has burgeoned at an incredible rate in the last decade. The result is a shift in archaeological narratives, bringing with it a fierce debate on the place of genetics in anthropological research. Archaeogenomics has challenged and scrutinized fundamental themes of anthropological research, including human origins, movement of ancient and modern populations, the role of social organization in shaping material culture, and the relationship between culture, language, and ancestry. Moreover, the discussion has inevitably invoked new debates on indigenous rights, ownership of ancient materials, inclusion in the scientific process, and even the meaning of what it is to be a human. We argue that the broad and seemingly daunting ethical, methodological, and theoretical challenges posed by archaeogenomics, in fact, represent the very cutting edge of social science research. Here, we provide a general review of the field by introducing the contemporary discussion points and summarizing methodological and ethical concerns, while highlighting the exciting possibilities of ancient genome studies in archaeology from an anthropological perspective.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14221, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
13
|
Lodewijk GA, Fernandes DP, Vretzakis I, Savage JE, Jacobs FMJ. Evolution of Human Brain Size-Associated NOTCH2NL Genes Proceeds toward Reduced Protein Levels. Mol Biol Evol 2020; 37:2531-2548. [PMID: 32330268 PMCID: PMC7475042 DOI: 10.1093/molbev/msaa104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana P Fernandes
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Iraklis Vretzakis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| | - Frank M J Jacobs
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics
| |
Collapse
|
14
|
Wagner JK, Colwell C, Claw KG, Stone AC, Bolnick DA, Hawks J, Brothers KB, Garrison NA. Fostering Responsible Research on Ancient DNA. Am J Hum Genet 2020; 107:183-195. [PMID: 32763189 PMCID: PMC7413888 DOI: 10.1016/j.ajhg.2020.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anticipating and addressing the social implications of scientific work is a fundamental responsibility of all scientists. However, expectations for ethically sound practices can evolve over time as the implications of science come to be better understood. Contemporary researchers who work with ancient human remains, including those who conduct ancient DNA research, face precisely this challenge as it becomes clear that practices such as community engagement are needed to address the important social implications of this work. To foster and promote ethical engagement between researchers and communities, we offer five practical recommendations for ancient DNA researchers: (1) formally consult with communities; (2) address cultural and ethical considerations; (3) engage communities and support capacity building; (4) develop plans to report results and manage data; and (5) develop plans for long-term responsibility and stewardship. Ultimately, every member of a research team has an important role in fostering ethical research on ancient DNA.
Collapse
Affiliation(s)
- Jennifer K Wagner
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Center for Translational Bioethics and Health Care Policy, Geisinger, Danville, PA 17822, USA.
| | - Chip Colwell
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, Denver Museum of Nature and Science, Denver, CO 80205, USA
| | - Katrina G Claw
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anne C Stone
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Deborah A Bolnick
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - John Hawks
- Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Anthropology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle B Brothers
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Nanibaa' A Garrison
- Professional Practice and Social Implications Committee (formerly the Social Issues Committee), American Society of Human Genetics, Bethesda, MD 20814, USA; Responsible Ancient DNA Research Working Group, American Society of Human Genetics, Bethesda, MD 20814, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Wasef S, Wright JL, Adams S, Westaway MC, Flinders C, Willerslev E, Lambert D. Insights Into Aboriginal Australian Mortuary Practices: Perspectives From Ancient DNA. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
16
|
Tsosie KS, Begay RL, Fox K, Garrison NA. Generations of genomes: advances in paleogenomics technology and engagement for Indigenous people of the Americas. Curr Opin Genet Dev 2020; 62:91-96. [PMID: 32721847 PMCID: PMC7484015 DOI: 10.1016/j.gde.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
For decades, scientists have collected genomic information from Indigenous peoples and their ancestors with the goal of elucidating human migration events, understanding ancestral origins, and identifying ancestral variants contributing to disease. However, such studies may not have offered much benefit to the Indigenous groups who contributed DNA, and many have instead perpetuated stereotypes and other harms. With recent advances in genomic technology facilitating the study of both ancient and present-day DNA, researchers and Indigenous communities have new opportunities to begin collaboratively addressing important questions about human health and history. Yet, while there are increased efforts to ethically engage Indigenous communities, more work is still needed as the discipline struggles to absolve itself of the racialized science and extractive biocolonialism that defined its past.
Collapse
Affiliation(s)
- Krystal S Tsosie
- Vanderbilt University, Nashville, TN 37325, USA; Native BioData Consortium, Eagle Butte, SD 57625, USA
| | - Rene L Begay
- Centers for American Indian and Alaska Native Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keolu Fox
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Global Health, University of California, San Diego, La Jolla, CA 92093, USA; Indigenous Futures Lab, University of California, San Diego, La Jolla, CA 92093, USA; Native BioData Consortium, Eagle Butte, SD 57625, USA
| | - Nanibaa' A Garrison
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
KULATILAKE SAMANTI. The Sarasins’ Collection of Historical Sri Lankan Crania. ANTHROPOL SCI 2020. [DOI: 10.1537/ase.200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- SAMANTI KULATILAKE
- Department of Sociology and Anthropology, Mount Royal University, Calgary
| |
Collapse
|
18
|
Kealy S, Donnellan SC, Mitchell KJ, Herrera M, Aplin K, O'Connor S, Louys J. Phylogenetic relationships of the cuscuses (Diprotodontia : Phalangeridae) of island Southeast Asia and Melanesia based on the mitochondrial ND2 gene. AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am18050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The species-level systematics of the marsupial family Phalangeridae, particularly Phalanger, are poorly understood, due partly to the family’s wide distribution across Australia, New Guinea, eastern Indonesia, and surrounding islands. In order to refine the species-level systematics of Phalangeridae, and improve our understanding of their evolution, we generated 36 mitochondrial ND2 DNA sequences from multiple species and sample localities. We combined our new data with available sequences and produced the most comprehensive molecular phylogeny for Phalangeridae to date. Our analyses (1) strongly support the monophyly of the three phalangerid subfamilies (Trichosurinae, Ailuropinae, Phalangerinae); (2) reveal the need to re-examine all specimens currently identified as ‘Phalanger orientalis’; and (3) suggest the elevation of the Solomon Island P. orientalis subspecies to species level (P. breviceps Thomas, 1888). In addition, samples of P. orientalis from Timor formed a clade, consistent with an introduction by humans from a single source population. However, further research on east Indonesian P. orientalis populations will be required to test this hypothesis, resolve inconsistencies in divergence time estimates, and locate the source population and taxonomic status of the Timor P. orientalis.
Collapse
|
19
|
|
20
|
Wang XS, Chen D, Wang H, Liu L, Huang JF, Duan XM, Yan XX, Luo XG. Mawangdui-Type Ancient Human Cadavers in China and Strategies for Their Long-Term Preservation. Biopreserv Biobank 2019; 17:113-118. [PMID: 30888198 DOI: 10.1089/bio.2019.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ancient human remains may exist as intact cadavers in various forms, including mummies as well as humid or soft corpses. These valuable human depositories have been increasingly investigated with modern molecular biological approaches, delivering breakthrough discoveries in the field of paleoanthropology. Many ancient remains are also preserved in museums for public education of the history of human civilization. The Mawangdui tomb No. 1 cadaver was unearthed in 1972 in Changsha, China, and is a well-preserved humid-type corpse of a deceased woman who lived in the Western Han Dynasty (206BC-24AD). During the past few decades, a number of other similar cadavers have been discovered in China. The Mawangdui cadaver thus appears to represent an archetype of the humid corpses that are commonly unearthed from buried coffins, but show a great extent of anatomical and histological integrity at the time of excavation. Long-term protection of these cadavers is important with regard to scientific investigation and heritage conservation, while challenges exist to develop effective preservation protocols. In this perspective article, we describe the overall features of the humid cadavers found in China, and discuss the factors that potentially contributed to their preservation before excavation. We also introduce the efforts taken for, and experience learned from, postexcavation preservation of the Mawangdui cadaver during the past four decades. Finally, we propose that research into the mechanism governing the breakdown of macromolecules may provide potential solutions for extended protection of these valuable ancient human remains.
Collapse
Affiliation(s)
- Xiao-Sheng Wang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Dan Chen
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Liang Liu
- 3 Hunan Museum, Changsha, Hunan, China
| | - Ju-Fang Huang
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | | | - Xiao-Xin Yan
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Xue-Gang Luo
- 1 Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,2 Center for Preservation of Mawangdui Han Tomb Cadaver, Morphological Science Building, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
21
|
Abstract
Editorial summaries of selected papers relevant to Quaternary science published in high-impact multidisciplinary journals between December 2018 and February 2019 [...]
Collapse
|
22
|
Callaway E. Ancient genomes help to pinpoint origins of Aboriginal remains. Nature 2018. [DOI: 10.1038/d41586-018-07854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|