1
|
Kefayati A, Nikolić BK. Origins of Electromagnetic Radiation from Spintronic Terahertz Emitters: A Time-Dependent Density Functional Theory plus Jefimenko Equations Approach. PHYSICAL REVIEW LETTERS 2024; 133:136704. [PMID: 39392943 DOI: 10.1103/physrevlett.133.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 10/13/2024]
Abstract
Microscopic origins of charge currents and electromagnetic (EM) radiation generated by them in spintronic THz emitters-such as, femtosecond laser pulse-driven single magnetic layer or its heterostructures with a nonmagnetic layer hosting strong spin-orbit coupling (SOC)-remain poorly understood despite nearly three decades since the discovery of ultrafast demagnetization. We introduce a first-principles method to compute these quantities, where the dynamics of charge and current densities is obtained from real-time time-dependent density functional theory, which are then fed into the Jefimenko equations for properly retarded electric and magnetic field solutions of the Maxwell equations. By Fourier transforming different time-dependent terms in the Jefimenko equations, we unravel that in the 0.1-30 THz range the electric field of far-field EM radiation by the Ni layer, chosen as an example, is dominated by charge current pumped by demagnetization, while often invoked magnetic dipole radiation from the time-dependent magnetization of a single magnetic layer is a negligible effect. Such an effect of charge current pumping by a time-dependent quantum system, whose magnetization is shrinking while its vector does not rotate, does not require any spin-to-charge conversion via SOC effects. In the Ni/Pt bilayer, EM radiation remains dominated by the charge current within the Ni layer, whose magnitude is larger than in the case of a single Ni layer due to faster demagnetization, while often invoked spin-to-charge conversion within the Pt layer provides an additional but smaller contribution. By using the Poynting vector and its flux, we also quantify the efficiency of conversion of light into emitted EM radiation, and its angular distribution.
Collapse
|
2
|
Li S, Wang R, Frauenheim T, He J. Optical-Helicity-Dependent Orbital and Spin Dynamics in Two-Dimensional Ferromagnets. J Phys Chem Lett 2024; 15:5939-5946. [PMID: 38810216 PMCID: PMC11163468 DOI: 10.1021/acs.jpclett.4c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Disentangling orbital (OAM) and spin (SAM) angular momenta in the ultrafast spin dynamics of two-dimensional (2D) ferromagnets on subfemtoseconds is a challenge in the field of ultrafast magnetism. Herein, we employed a non-collinear spin version of real-time time-dependent density functional theory to investigate the orbital and spin dynamics of the 2D ferromagnets Fe3GeTe2 (FGT) induced by circularly polarized light. Our results show that the demagnetization of the Fe sublattice in FGT is accompanied by helicity-dependent precession of the OAM and SAM excited by circularly polarized lasers. We further identify that precession of the OAM and SAM in FGT is faster than demagnetization within a few femtoseconds. Remarkably, circularly polarized lasers can significantly induce a periodic transverse linear response of the OAM and SAM on very ultrafast time scales of ∼600 attoseconds. Our finding suggests a powerful new route for attosecond regimes of the angular momentum manipulation to coherently control helicity-dependent orbital and spin dynamics in 2D ferromagnets.
Collapse
Affiliation(s)
- Shuo Li
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ran Wang
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Thomas Frauenheim
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
- School
of Science, Constructor University, Bremen 28759, Germany
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| |
Collapse
|
3
|
Wu N, Zhang S, Chen D, Wang Y, Meng S. Three-stage ultrafast demagnetization dynamics in a monolayer ferromagnet. Nat Commun 2024; 15:2804. [PMID: 38555344 PMCID: PMC10981666 DOI: 10.1038/s41467-024-47128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
Intense laser pulses can be used to demagnetize a magnetic material on an extremely short timescale. While this ultrafast demagnetization offers the potential for new magneto-optical devices, it poses challenges in capturing coupled spin-electron and spin-lattice dynamics. In this article, we study the photoinduced ultrafast demagnetization of a prototype monolayer ferromagnet Fe3GeTe2 and resolve the three-stage demagnetization process characterized by an ultrafast and substantial demagnetization on a timescale of 100 fs, followed by light-induced coherent A1g phonon dynamics which is strongly coupled to the spin dynamics in the next 200-800 fs. In the third stage, chiral lattice vibrations driven by nonlinear phonon couplings, both in-plane and out-of-plane are produced, resulting in significant spin precession. Nonadiabatic effects are found to introduce considerable phonon hardening and suppress the spin-lattice couplings during demagnetization. Our results advance our understanding of dynamic charge-spin-lattice couplings in the ultrafast demagnetization and evidence angular momentum transfer between the phonon and spin degrees of freedom.
Collapse
Affiliation(s)
- Na Wu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shengjie Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaxian Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
4
|
Xu J, Ping Y. Ab Initio Predictions of Spin Relaxation, Dephasing, and Diffusion in Solids. J Chem Theory Comput 2024; 20:492-512. [PMID: 38157422 DOI: 10.1021/acs.jctc.3c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Spin relaxation, dephasing, and diffusion are at the heart of spin-based information technology. Accurate theoretical approaches to simulate spin lifetimes (τs), determining how fast the spin polarization and phase information will be lost, are important to the understanding of the underlying mechanism of these spin processes, and invaluable in searching for promising candidates of spintronic materials. Recently, we develop a first-principles real-time density-matrix (FPDM) approach to simulate spin dynamics for general solid-state systems. Through the complete first-principles descriptions of light-matter interaction and scattering processes including electron-phonon, electron-impurity, and electron-electron scatterings with self-consistent spin-orbit coupling, as well as ab initio Landé g-factor, our method can predict τs at various conditions as a function of carrier density and temperature, under electric and magnetic fields. By employing this method, we successfully reproduce experimental results of disparate materials and identify the key factors affecting spin relaxation, dephasing, and diffusion in different materials. Specifically, we predict that germanene has long τs (∼100 ns at 50 K), a giant spin lifetime anisotropy, and spin-valley locking effect under electric fields, making it advantageous for spin-valleytronic applications. Based on our theoretical derivations and ab initio simulations, we propose a new useful electronic quantity, named spin-flip angle θ↑↓, for the understanding of spin relaxation through intervalley spin-flip scattering processes. Our method can be further applied to other emerging materials and extended to simulate exciton spin dynamics and steady-state photocurrents due to photogalvanic effect.
Collapse
Affiliation(s)
- Junqing Xu
- Department of Physics, Hefei University of Technology, Hefei 230031, Anhui China
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Yuan Ping
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
5
|
Chen Z, Luo JW, Wang LW. Light-induced ultrafast spin transport in multilayer metallic films originates from sp- d spin exchange coupling. SCIENCE ADVANCES 2023; 9:eadi1618. [PMID: 38100591 PMCID: PMC10848703 DOI: 10.1126/sciadv.adi1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the sp-d spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.
Collapse
Affiliation(s)
- Zhanghui Chen
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Jun-Wei Luo
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lin-Wang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Liu X, Legut D, Zhang Q. Photoinduced Ultrafast Phase Transition in Bilayer CrI 3. J Phys Chem Lett 2023; 14:7744-7750. [PMID: 37607348 DOI: 10.1021/acs.jpclett.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In two-dimensional magnets, the ultrafast photoexcited method represents a low-power and high-speed method of switching magnetic states. Bilayer CrI3 (BLC) is an ideal platform for studying ultrafast photoinduced magnetic phase transitions due to its stacking-dependent magnetic properties. Here, by using time-dependent density functional theory, we explore the photoexcitation phase transition in BLC from the R- to M-stacked phase. This process is found to be induced by electron-phonon interactions. The activated Ag and Bg phonon modes in the xy direction drive the horizontal relative displacements between the layers. The activated Ag mode in the z direction leads to a transition potential reduction. Furthermore, this phase transition can invert the sign of the interlayer spin interaction, indicating a photoinduced transition from ferromagnet to antiferromagnet. This investigation has profound implications for magnetic phase engineering strategies.
Collapse
Affiliation(s)
- Xiaopeng Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-70800 Ostrava-Poruba, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
7
|
Rajpurohit S, Simoni J, Tan LZ. Photo-induced phase-transitions in complex solids. NANOSCALE ADVANCES 2022; 4:4997-5008. [PMID: 36504738 PMCID: PMC9680828 DOI: 10.1039/d2na00481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Photo-induced phase-transitions (PIPTs) driven by highly cooperative interactions are of fundamental interest as they offer a way to tune and control material properties on ultrafast timescales. Due to strong correlations and interactions, complex quantum materials host several fascinating PIPTs such as light-induced charge density waves and ferroelectricity and have become a desirable setting for studying these PIPTs. A central issue in this field is the proper understanding of the underlying mechanisms driving the PIPTs. As these PIPTs are highly nonlinear processes and often involve multiple time and length scales, different theoretical approaches are often needed to understand the underlying mechanisms. In this review, we present a brief overview of PIPTs realized in complex materials, followed by a discussion of the available theoretical methods with selected examples of recent progress in understanding of the nonequilibrium pathways of PIPTs.
Collapse
Affiliation(s)
| | - Jacopo Simoni
- Molecular Foundry, Lawrence Berkeley National Laboratory USA
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory USA
| |
Collapse
|
8
|
Abstract
Photoinduced phase transition (PIPT) is always treated as a coherent process, but ultrafast disordering in PIPT is observed in recent experiments. Utilizing the real-time time-dependent density functional theory method, here we track the motion of individual vanadium (V) ions during PIPT in VO2 and uncover that their coherent or disordered dynamics can be manipulated by tuning the laser fluence. We find that the photoexcited holes generate a force on each V-V dimer to drive their collective coherent motion, in competing with the thermal-induced vibrations. If the laser fluence is so weak that the photoexcited hole density is too low to drive the phase transition alone, the PIPT is a disordered process due to the interference of thermal phonons. We also reveal that the photoexcited holes populated by the V-V dimerized bonding states will become saturated if the laser fluence is too strong, limiting the timescale of photoinduced phase transition.
Collapse
|
9
|
Liu W, Wang Z, Chen Z, Luo J, Li S, Wang L. Algorithm advances and applications of time‐dependent first‐principles simulations for ultrafast dynamics. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen‐Hao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
| | - Zhang‐Hui Chen
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Jun‐Wei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Shu‐Shen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Lin‐Wang Wang
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
10
|
Tauchert SR, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U, Baum P. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 2022; 602:73-77. [PMID: 35110761 DOI: 10.1038/s41586-021-04306-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022]
Abstract
Magnetic phenomena are ubiquitous in nature and indispensable for modern science and technology, but it is notoriously difficult to change the magnetic order of a material in a rapid way. However, if a thin nickel film is subjected to ultrashort laser pulses, it loses its magnetic order almost completely within femtosecond timescales1. This phenomenon is widespread2-7 and offers opportunities for rapid information processing8-11 or ultrafast spintronics at frequencies approaching those of light8,9,12. Consequently, the physics of ultrafast demagnetization is central to modern materials research1-7,13-28, but a crucial question has remained elusive: if a material loses its magnetization within mere femtoseconds, where is the missing angular momentum in such a short time? Here we use ultrafast electron diffraction to reveal in nickel an almost instantaneous, long-lasting, non-equilibrium population of anisotropic high-frequency phonons that appear within 150-750 fs. The anisotropy plane is perpendicular to the direction of the initial magnetization and the atomic oscillation amplitude is 2 pm. We explain these observations by means of circularly polarized phonons that quickly absorb the angular momentum of the spin system before macroscopic sample rotation. The time that is needed for demagnetization is related to the time it takes to accelerate the atoms. These results provide an atomistic picture of the Einstein-de Haas effect and signify the general importance of polarized phonons for non-equilibrium dynamics and phase transitions.
Collapse
Affiliation(s)
- S R Tauchert
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany.,Ludwig-Maximilians-Universität München, Garching, Germany
| | - M Volkov
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany.,Ludwig-Maximilians-Universität München, Garching, Germany
| | - D Ehberger
- Ludwig-Maximilians-Universität München, Garching, Germany
| | - D Kazenwadel
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany
| | - M Evers
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany
| | - H Lange
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany
| | - A Donges
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany
| | - A Book
- Technische Universität München, Physik-Department E21, Garching, Germany
| | - W Kreuzpaintner
- Technische Universität München, Physik-Department E21, Garching, Germany.,Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,Spallation Neutron Source Science Center, Dongguan, China
| | - U Nowak
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany
| | - P Baum
- Universität Konstanz, Fachbereich Physik, Konstanz, Germany. .,Ludwig-Maximilians-Universität München, Garching, Germany.
| |
Collapse
|
11
|
Lloyd-Hughes J, Oppeneer PM, Pereira Dos Santos T, Schleife A, Meng S, Sentef MA, Ruggenthaler M, Rubio A, Radu I, Murnane M, Shi X, Kapteyn H, Stadtmüller B, Dani KM, da Jornada FH, Prinz E, Aeschlimann M, Milot RL, Burdanova M, Boland J, Cocker T, Hegmann F. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:353001. [PMID: 33951618 DOI: 10.1088/1361-648x/abfe21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
Collapse
Affiliation(s)
- J Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - P M Oppeneer
- Department of Physics and Astronomy, Uppsala University, PO Box 516, S-75120 Uppsala, Sweden
| | - T Pereira Dos Santos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - A Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - S Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - M A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - M Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - A Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU 20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, United States of America
| | - I Radu
- Department of Physics, Freie Universität Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - M Murnane
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - X Shi
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - H Kapteyn
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - K M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - F H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States of America
| | - E Prinz
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - M Burdanova
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - J Boland
- Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom
| | - T Cocker
- Michigan State University, United States of America
| | | |
Collapse
|
12
|
Wang C, Liu Y. Ultrafast optical manipulation of magnetic order in ferromagnetic materials. NANO CONVERGENCE 2020; 7:35. [PMID: 33170368 PMCID: PMC7655883 DOI: 10.1186/s40580-020-00246-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 05/08/2023]
Abstract
The interaction between ultrafast lasers and magnetic materials is an appealing topic. It not only involves interesting fundamental questions that remain inconclusive and hence need further investigation, but also has the potential to revolutionize data storage technologies because such an opto-magnetic interaction provides an ultrafast and energy-efficient means to control magnetization. Fruitful progress has been made in this area over the past quarter century. In this paper, we review the state-of-the-art experimental and theoretical studies on magnetization dynamics and switching in ferromagnetic materials that are induced by ultrafast lasers. We start by describing the physical mechanisms of ultrafast demagnetization based on different experimental observations and theoretical methods. Both the spin-flip scattering theory and the superdiffusive spin transport model will be discussed in detail. Then, we will discuss laser-induced torques and resultant magnetization dynamics in ferromagnetic materials. Recent developments of all-optical switching (AOS) of ferromagnetic materials towards ultrafast magnetic storage and memory will also be reviewed, followed by the perspectives on the challenges and future directions in this emerging area.
Collapse
Affiliation(s)
- Chuangtang Wang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Yongmin Liu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Acharya SR, Turkowski V, Zhang GP, Rahman TS. Ultrafast Electron Correlations and Memory Effects at Work: Femtosecond Demagnetization in Ni. PHYSICAL REVIEW LETTERS 2020; 125:017202. [PMID: 32678622 DOI: 10.1103/physrevlett.125.017202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Experimental observations of the ultrafast (less than 50 fs) demagnetization of Ni have so far defied theoretical explanations particularly since its spin-flipping time is much less than that resulting from spin-orbit and electron-lattice interactions. Through the application of an approach that benefits from spin-flip time-dependent density-functional theory and dynamical mean-field theory, we show that proper inclusion of electron correlations and memory (time dependence of electron-electron interaction) effects leads to demagnetization at the femtosecond scale, in good agreement with experimental observations. Furthermore, our calculations reveal that this ultrafast demagnetization results mainly from spin-flip transitions from occupied to unoccupied orbitals implying a dynamical reduction of exchange splitting. These conclusions are found to be valid for a wide range of laser pulse amplitudes. They also pave the way for ab initio investigations of ultrafast charge and spin dynamics in a variety of quantum materials in which electron correlations may play a definitive role.
Collapse
Affiliation(s)
- Shree Ram Acharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Volodymyr Turkowski
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - G P Zhang
- Department of Physics, Indiana State University, Terre Haute, Indiana 47809, USA
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|