1
|
Tan Y, Tan T, Zhang S, Li B, Chen B, Zhou X, Wang Y, Yang X, Zhai B, Huang Q, Zhang L, Wang S. Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2426-2443. [PMID: 39048717 DOI: 10.1007/s11427-024-2671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
Collapse
Affiliation(s)
- Yingjin Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Taicong Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Shuxian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Beiyi Chen
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
| |
Collapse
|
2
|
Voelkel-Meiman K, Liddle JC, Balsbaugh JL, MacQueen AJ. Proximity labeling reveals new functional relationships between meiotic recombination proteins in S. cerevisiae. PLoS Genet 2024; 20:e1011432. [PMID: 39405359 PMCID: PMC11508090 DOI: 10.1371/journal.pgen.1011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the "ZZS" complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation - the organized assembly of Zip1 with other structural proteins between aligned chromosome axes. We used proximity labeling to investigate spatial relationships between meiotic recombination and SC proteins in S. cerevisiae. We find that recombination initiation and SC factors are dispensable for proximity labeling of Zip3 by ZZS components, but proteins associated with early steps in recombination are required for Zip3 proximity labeling by MutSγ, suggesting that MutSγ joins Zip3 only after a recombination intermediate has been generated. We also find that zip1 separation-of-function mutants that are crossover deficient but still assemble SC fail to generate protein ensembles where Zip3 can engage ZZS and/or MutSγ. The SC structural protein Ecm11 is proximity labeled by ZZS proteins in a Zip4-dependent and Zip1-independent manner, but labeling of Ecm11 by Zip3 and MutSγ requires, at least in part, Zip1. Finally, mass spectrometry analysis of biotinylated proteins in eleven proximity labeling strains uncovered shared proximity targets of SC and crossover-associated proteins, some of which have not previously been implicated in meiotic recombination or SC formation, highlighting the potential of proximity labeling as a discovery tool.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Jennifer C. Liddle
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
3
|
Schou KB, Mandacaru S, Tahir M, Tom N, Nilsson AS, Andersen JS, Tiberti M, Papaleo E, Bartek J. Exploring the structural landscape of DNA maintenance proteins. Nat Commun 2024; 15:7748. [PMID: 39237506 PMCID: PMC11377751 DOI: 10.1038/s41467-024-49983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.
Collapse
Affiliation(s)
- Kenneth Bødkter Schou
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| | - Samuel Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute (DCI), DK-2100, Copenhagen, Denmark
| | - Ann-Sofie Nilsson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jiri Bartek
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
4
|
Hu G, Do DN, Manafiazar G, Kelvin AA, Sargolzaei M, Plastow G, Wang Z, Davoudi P, Miar Y. Identifying selection signatures for immune response and resilience to Aleutian disease in mink using genotype data. Front Genet 2024; 15:1370891. [PMID: 39071778 PMCID: PMC11272623 DOI: 10.3389/fgene.2024.1370891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures. This study aimed to identify selection signatures for immune response (IRE) and resilience to AD. A total of 1,411 mink from an AD-positive facility were used. For IRE, 264 animals were categorized according to the combined results of enzyme-linked immunosorbent assay (ELISA) and counterimmunoelectrophoresis (CIEP). For resilience, two grouping methods were used: 1) general resilience performance (GRP, n = 30) was evaluated based on the feed conversion ratio, Kleiber ratio, and pelt quality; and 2) female reproductive performance (FRP, n = 36) was measured based on the number of kits alive 24 h after birth. Detection methods were the pairwise fixation index, nucleotide diversity, and cross-population extended haplotype homozygosity. A total of 619, 569, and 526 SNPs were identified as candidates for IRE, GRP, and FRP, respectively. The annotated genes were involved in immune system process, growth, reproduction, and pigmentation. Two olfactory-related Gene Ontology (GO) terms were significant (q < 0.05) for all traits, suggesting the impact of AD on the sense of smell of infected mink. Differences in detected genes and GO terms among different color types for IRE indicated variations in immune response to AD among color types. The mitogen-activated protein kinase (MAPK) signaling pathway was significant (q < 0.05) for FRP, suggesting that AD may disrupt MAPK signaling and affect FRP. The findings of this research contribute to our knowledge of the genomic architecture and biological mechanisms underlying AD resilience in mink.
Collapse
Affiliation(s)
- Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Canada
- Select Sires Inc., Plain City, OH, United States
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| |
Collapse
|
5
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Lampitto M, Barchi M. Recent advances in mechanisms ensuring the pairing, synapsis and segregation of XY chromosomes in mice and humans. Cell Mol Life Sci 2024; 81:194. [PMID: 38653846 PMCID: PMC11039559 DOI: 10.1007/s00018-024-05216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.
Collapse
Affiliation(s)
- Matteo Lampitto
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marco Barchi
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Section of Anatomy, Department of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
7
|
Zhou X, Fang K, Liu Y, Li W, Tan Y, Zhang J, Yu X, Wang G, Zhang Y, Shang Y, Zhang L, Chen CD, Wang S. ZFP541 and KCTD19 regulate chromatin organization and transcription programs for male meiotic progression. Cell Prolif 2024; 57:e13567. [PMID: 37921559 PMCID: PMC10984108 DOI: 10.1111/cpr.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The successful progression of meiosis prophase I requires integrating information from the structural and molecular levels. In this study, we show that ZFP541 and KCTD19 work in the same genetic pathway to regulate the progression of male meiosis and thus fertility. The Zfp541 and/or Kctd19 knockout male mice show various structural and recombination defects including detached chromosome ends, aberrant localization of chromosome axis components and recombination proteins, and globally altered histone modifications. Further analyses on RNA-seq, ChIP-seq, and ATAC-seq data provide molecular evidence for the above defects and reveal that ZFP541/KCTD19 activates the expression of many genes by repressing several major transcription repressors. More importantly, we reveal an unexpected role of ZFP541/KCTD19 in directly modulating chromatin organization. These results suggest that ZFP541/KCTD19 simultaneously regulates the transcription cascade and chromatin organization to ensure the coordinated progression of multiple events at chromosome structural and biochemical levels during meiosis prophase I.
Collapse
Affiliation(s)
- Xu Zhou
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Kailun Fang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesShanghaiChina
| | - Yanlei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Weidong Li
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Yingjin Tan
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Jiaming Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Xiaoxia Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Guoqiang Wang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Yanan Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
| | - Yongliang Shang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
| | - Liangran Zhang
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesShanghaiChina
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive MedicineShandong UniversityJinanShandongChina
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive HealthShandong Technology Innovation Center for Reproductive HealthJinanShandongChina
| |
Collapse
|
8
|
Ni Q, Wu X, Su T, Jiang C, Dong D, Wang D, Chen W, Cui Y, Peng Y. The regulatory subunits of CK2 complex mediate DNA damage response and virulence in Candida Glabrata. BMC Microbiol 2023; 23:317. [PMID: 37891489 PMCID: PMC10612253 DOI: 10.1186/s12866-023-03069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Candida glabrata which belongs to normal microbiota, has caused significant concern worldwide due to its high prevalence and drug resistance in recent years. C. glabrata has developed many strategies to evade the clearance of the host immune system, thereby causing persistent infection. Although coping with the induced DNA damage is widely acknowledged to be important, the underlying mechanisms remain unclear. RESULTS The present study provides hitherto undocumented evidence of the importance of the regulatory subunits of CgCK2 (CgCkb1 and CgCkb2) in response to DNA damage. Deletion of CgCKB1 or CgCKB2 enhanced cellular apoptosis and DNA breaks and led to cell cycle delay. In addition, deficiencies in survival upon phagocytosis were observed in Δckb1 and Δckb2 strains. Consistently, disruption of CgCKB1 and CgCKB2 attenuated the virulence of C. glabrata in mouse models of invasive candidiasis. Furthermore, global transcriptional profiling analysis revealed that CgCkb1 and CgCkb2 participate in cell cycle resumption and genomic stability. CONCLUSIONS Overall, our findings suggest that the response to DNA damage stress is crucial for C. glabrata to survive in macrophages, leading to full virulence in vivo. The significance of this work lies in providing a better understanding of pathogenicity in C. glabrata-related candidiasis and expanding ideas for clinical therapies.
Collapse
Affiliation(s)
- Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Xianwei Wu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725 South Wanping Road, Shanghai, 200032, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Qi Y, Wang Y, Li W, Zhuang S, Li S, Xu K, Qin Y, Guo T. Pathogenic bi-allelic variants of meiotic ZMM complex gene SPO16 in premature ovarian insufficiency. Clin Genet 2023; 104:486-490. [PMID: 37270785 DOI: 10.1111/cge.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Premature ovarian insufficiency (POI) is a heterogeneous disease affecting the physical and mental health of millions of women worldwide. The contribution of genetic factors in the pathogenesis of POI has increased, with quite a few of causative genes involved in meiosis. ZMM proteins are a group of conserved proteins participating in meiotic synapsis and crossover maturation. Here, by screening the variations of ZMM genes in our in-house WES database of 1030 idiopathic POI patients, one novel homozygous variation in SPO16 (c.160 + 8A > G) was firstly identified in one patient. The variation was verified to disturb mRNA splicing by minigene assay, produced a non-functional SPO16 protein, and was classified as pathogenetic according to American College of Medical Genetics guideline. During meiotic prophase I, SHOC1 binds to branched DNA and recruits SPO16 and other ZMM proteins to facilitate crossover formation. Together with our recent identified bi-allelic variations of SHOC1 in a published work, this study highlighted the essential roles of ZMM genes in the maintenance of ovarian function and expanded the POI gene spectrum.
Collapse
Affiliation(s)
- Yu Qi
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yiyang Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Weilin Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shuning Zhuang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Keyan Xu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhang Q, Fan J, Xu W, Cao H, Qiu C, Xiong Y, Zhao H, Wang Y, Huang J, Yu C. The FLIP-FIGNL1 complex regulates the dissociation of RAD51/DMC1 in homologous recombination and replication fork restart. Nucleic Acids Res 2023; 51:8606-8622. [PMID: 37439366 PMCID: PMC10484675 DOI: 10.1093/nar/gkad596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
Recruitment of RAD51 and/or DMC1 recombinases to single-strand DNA is indispensable for homology search and strand invasion in homologous recombination (HR) and for protection of nascent DNA strands at stalled replication forks. Thereafter RAD51/DMC1 dissociate, actively or passively, from these joint molecules upon DNA repair or releasing from replication stress. However, the mechanism that regulates RAD51/DMC1 dissociation and its physiological importance remain elusive. Here, we show that a FLIP-FIGNL1 complex regulates RAD51 and DMC1 dissociation to promote meiotic recombination and replication fork restart in mammals. Mice lacking FLIP are embryonic lethal, while germline-specific deletion of FLIP leads to infertility in both males and females. FLIP-null meiocytes are arrested at a zygotene-like stage with massive RAD51 and DMC1 foci, which frequently co-localize with SHOC1 and TEX11. Furthermore, FLIP interacts with FIGNL1. Depletion of FLIP or FIGNL1 in cell lines destabilizes each other and impairs RAD51 dissociation. Thus, the active dissociation of RAD51/DMC1 by the FLIP-FIGNL1 complex is a crucial step required for HR and replication fork restart, and represents a conserved mechanism in somatic cells and germ cells.
Collapse
Affiliation(s)
- Qianting Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jiayi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huiwen Cao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Qiu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Huacun Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Yu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang, China
| |
Collapse
|
11
|
Fan S, Wang Y, Jiang H, Jiang X, Zhou J, Jiao Y, Ye J, Xu Z, Wang Y, Xie X, Zhang H, Li Y, Liu W, Zhang X, Ma H, Shi B, Zhang Y, Zubair M, Shah W, Xu Z, Xu B, Shi Q. A novel recombination protein C12ORF40/REDIC1 is required for meiotic crossover formation. Cell Discov 2023; 9:88. [PMID: 37612290 PMCID: PMC10447524 DOI: 10.1038/s41421-023-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
During meiosis, at least one crossover must occur per homologous chromosome pair to ensure normal progression of meiotic division and accurate chromosome segregation. However, the mechanism of crossover formation is not fully understood. Here, we report a novel recombination protein, C12ORF40/REDIC1, essential for meiotic crossover formation in mammals. A homozygous frameshift mutation in C12orf40 (c.232_233insTT, p.Met78Ilefs*2) was identified in two infertile men with meiotic arrest. Spread mouse spermatocyte fluorescence immunostaining showed that REDIC1 forms discrete foci between the paired regions of homologous chromosomes depending on strand invasion and colocalizes with MSH4 and later with MLH1 at the crossover sites. Redic1 knock-in (KI) mice homozygous for mutation c.232_233insTT are infertile in both sexes due to insufficient crossovers and consequent meiotic arrest, which is also observed in our patients. The foci of MSH4 and TEX11, markers of recombination intermediates, are significantly reduced numerically in the spermatocytes of Redic1 KI mice. More importantly, our biochemical results show that the N-terminus of REDIC1 binds branched DNAs present in recombination intermediates, while the identified mutation impairs this interaction. Thus, our findings reveal a crucial role for C12ORF40/REDIC1 in meiotic crossover formation by stabilizing the recombination intermediates, providing prospective molecular targets for the clinical diagnosis and therapy of infertility.
Collapse
Affiliation(s)
- Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuewen Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuying Jiao
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zishuo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangjun Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhipeng Xu
- Institute of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Li Y, Wu Y, Khan I, Zhou J, Lu Y, Ye J, Liu J, Xie X, Hu C, Jiang H, Fan S, Zhang H, Zhang Y, Jiang X, Xu B, Ma H, Shi Q. M1AP interacts with the mammalian ZZS complex and promotes male meiotic recombination. EMBO Rep 2023; 24:e55778. [PMID: 36440627 PMCID: PMC9900333 DOI: 10.15252/embr.202255778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Following meiotic recombination, each pair of homologous chromosomes acquires at least one crossover, which ensures accurate chromosome segregation and allows reciprocal exchange of genetic information. Recombination failure often leads to meiotic arrest, impairing fertility, but the molecular basis of recombination remains elusive. Here, we report a homozygous M1AP splicing mutation (c.1074 + 2T > C) in patients with severe oligozoospermia owing to meiotic metaphase I arrest. The mutation abolishes M1AP foci on the chromosome axes, resulting in decreased recombination intermediates and crossovers in male mouse models. M1AP interacts with the mammalian ZZS (an acronym for yeast proteins Zip2-Zip4-Spo16) complex components, SHOC1, TEX11, and SPO16. M1AP localizes to chromosomal axes in a SPO16-dependent manner and colocalizes with TEX11. Ablation of M1AP does not alter SHOC1 localization but reduces the recruitment of TEX11 to recombination intermediates. M1AP shows cytoplasmic localization in fetal oocytes and is dispensable for fertility and crossover formation in female mice. Our study provides the first evidence that M1AP acts as a copartner of the ZZS complex to promote crossover formation and meiotic progression in males.
Collapse
Affiliation(s)
- Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yufan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Ihsan Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yue Lu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Junyan Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Congyuan Hu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
13
|
Ito M, Shinohara A. Chromosome architecture and homologous recombination in meiosis. Front Cell Dev Biol 2023; 10:1097446. [PMID: 36684419 PMCID: PMC9853400 DOI: 10.3389/fcell.2022.1097446] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiocytes organize higher-order chromosome structures comprising arrays of chromatin loops organized at their bases by linear axes. As meiotic prophase progresses, the axes of homologous chromosomes align and synapse along their lengths to form ladder-like structures called synaptonemal complexes (SCs). The entire process of meiotic recombination, from initiation via programmed DNA double-strand breaks (DSBs) to completion of DSB repair with crossover or non-crossover outcomes, occurs in the context of chromosome axes and SCs. These meiosis-specific chromosome structures provide specialized environments for the regulation of DSB formation and crossing over. In this review, we summarize insights into the importance of chromosome architecture in the regulation of meiotic recombination, focusing on cohesin-mediated axis formation, DSB regulation via tethered loop-axis complexes, inter-homolog template bias facilitated by axial proteins, and crossover regulation in the context of the SCs. We also discuss emerging evidence that the SUMO and the ubiquitin-proteasome system function in the organization of chromosome structure and regulation of meiotic recombination.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
14
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells. Nat Commun 2022; 13:3588. [PMID: 35739118 PMCID: PMC9226075 DOI: 10.1038/s41467-022-31364-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the underlying molecular mechanism that controls alternative mRNA expression during germ cell development remains elusive. Herein, we show that hnRNPH1 is highly expressed in the reproductive system and recruits the PTBP2 and SRSF3 to modulate the alternative splicing in germ cells. Conditional knockout Hnrnph1 in spermatogenic cells causes many abnormal splicing events, thus affecting the genes related to meiosis and communication between germ cells and Sertoli cells. This is characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, which ultimately leads to male sterility. Markedly, Hnrnph1 germline-specific mutant female mice are also infertile, and Hnrnph1-deficient oocytes exhibit a similar defective synapsis and cell-cell junction as seen in Hnrnph1-deficient male germ cells. Collectively, our data support a molecular model wherein hnRNPH1 governs a network of alternative splicing events in germ cells via recruitment of PTBP2 and SRSF3. Coordinated regulation of alternative splicing is essential for germ cell development. Here, the authors report that hnRNPH1 interacts with alternative splicing factors PTBP2 and SRSF3 in the germline to regulate pre-mRNA alternative splicing.
Collapse
|
16
|
Wang W, Meng L, He J, Su L, Li Y, Tan C, Xu X, Nie H, Zhang H, Du J, Lu G, Luo M, Lin G, Tu C, Tan YQ. Bi-allelic variants in SHOC1 cause non-obstructive azoospermia with meiosis arrest in humans and mice. Mol Hum Reprod 2022; 28:6575911. [PMID: 35485979 DOI: 10.1093/molehr/gaac015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Meiosis is pivotal to gametogenesis and fertility. Meiotic recombination is a mandatory process that ensures faithful chromosome segregation and generates genetic diversity in gametes. Non-obstructive azoospermia (NOA) caused by meiotic arrest is a common cause of male infertility and has many genetic origins, including chromosome abnormalities, Y chromosome microdeletion and monogenic mutations. However, the genetic causes of the majority of NOA cases remain to be elucidated. Here, we report our findings of three Shortage in chiasmata 1 (SHOC1) bi-allelic variants in three NOA patients, of which two are homozygous for the same loss-of-function variant (c.231_232del: p. L78Sfs*9), and one is heterozygous for two different missense variants (c.1978G>A: p.A660T; c.4274G>A: p.R1425H). Testicular biopsy of one patient revealed impairment of spermatocyte maturation. Both germ-cell-specific and general Shoc1-knockout mice exhibited similar male infertility phenotypes. Subsequent analysis revealed comprehensive defects in homologous pairing and synapsis along with abnormal expression of DMC1, RAD51 and RPA2 in Shoc1-defective spermatocyte spreads. These findings imply that SHOC1 may have a presynaptic function during meiotic recombination apart from its previously identified role in crossover formation. Overall, our results provide strong evidence for the clinical relevance of SHOC1 mutations in patients with NOA and contribute to a deeper mechanistic understanding of the role of SHOC1 during meiotic recombination.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Jiaxin He
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lilan Su
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xilin Xu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| |
Collapse
|
17
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
18
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
He W, Verhees GF, Bhagwat N, Yang Y, Kulkarni DS, Lombardo Z, Lahiri S, Roy P, Zhuo J, Dang B, Snyder A, Shastry S, Moezpoor M, Alocozy L, Lee KG, Painter D, Mukerji I, Hunter N. SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over. Dev Cell 2021; 56:2073-2088.e3. [PMID: 34214491 DOI: 10.1016/j.devcel.2021.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.
Collapse
Affiliation(s)
- Wei He
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Gerrik F Verhees
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ye Yang
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Sudipta Lahiri
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Pritha Roy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Jiaming Zhuo
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Brian Dang
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Andriana Snyder
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Shashank Shastry
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Michael Moezpoor
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Lilly Alocozy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Kathy Gyehyun Lee
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Daniel Painter
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Zhang J, Wang C, Higgins JD, Kim YJ, Moon S, Jung KH, Qu S, Liang W. A Multiprotein Complex Regulates Interference-Sensitive Crossover Formation in Rice. PLANT PHYSIOLOGY 2019; 181:221-235. [PMID: 31266799 PMCID: PMC6716249 DOI: 10.1104/pp.19.00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 05/08/2023]
Abstract
In most eukaryotes, a set of conserved proteins that are collectively termed ZMM proteins (named for molecular zipper 1 [ZIP1], ZIP2, ZIP3, and ZIP4, MutS homologue 4 [MSH4] and MSH5, meiotic recombination 3, and sporulation 16 [SPO16] in yeast [Saccharomyces cerevisiae]) are essential for the formation of the majority of meiotic crossovers (COs). Recent reports indicated that ZIP2 acts together with SPO16 and ZIP4 to control CO formation through recognizing and stabilizing early recombination intermediates in budding yeast. However, whether this mechanism is conserved in plants is not clear. Here, we characterized the functions of SHORTAGE OF CHIASMATA 1 (OsSHOC1; ZIP2 ortholog) and PARTING DANCERS (OsPTD; SPO16 ortholog) and their interactions with other ZMM proteins in rice (Oryza sativa). We demonstrated that disruption of OsSHOC1 caused a reduction of CO numbers to ∼83% of wild-type CO numbers, whereas synapsis and early meiotic recombination steps were not affected. Furthermore, OsSHOC1 interacts with OsPTD, which is responsible for the same set of CO formations as OsSHOC1. In addition, OsSHOC1 and OsPTD are required for the normal loading of other ZMM proteins, and conversely, the localizations of OsSHOC1 and OsPTD were also affected by the absence of OsZIP4 and human enhancer of invasion 10 in rice (OsHEI10). OsSHOC1 interacts with OsZIP4 and OsMSH5, and OsPTD interacts with OsHEI10. Furthermore, bimolecular fluorescence complementation and yeast-three hybrid assays demonstrated that OsSHOC1, OsPTD, OsHEI10, and OsZIP4 were able to form various combinations of heterotrimers. Moreover, statistical and genetic analysis indicated that OsSHOC1 and OsPTD are epistatic to OsHEI10 and OsZIP4 in meiotic CO formation. Taken together, we propose that OsSHOC1, OsPTD, OsHEI10, and OsZIP4 form multiple protein complexes that have conserved functions in promoting class I CO formation.
Collapse
Affiliation(s)
- Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
23
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|