1
|
Liu M, Wang W, Zhang H, Bi J, Zhang B, Shi T, Su G, Zheng Y, Fan S, Huang X, Chen B, Song Y, Zhao Z, Shi J, Li P, Lu W, Zhang L. Three-Dimensional Gene Regulation Network in Glioblastoma Ferroptosis. Int J Mol Sci 2023; 24:14945. [PMID: 37834393 PMCID: PMC10574000 DOI: 10.3390/ijms241914945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is reported to be associated with glioma progression and drug sensitivity. Targeting ferroptosis is a potential therapeutic approach for glioma. However, the molecular mechanism of glioma cell ferroptosis is not clear. In this study, we profile the change of 3D chromatin structure in glioblastoma ferroptosis by using HiChIP and study the 3D gene regulation network in glioblastoma ferroptosis. A combination of an analysis of HiChIP and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulates gene expressions in glioblastoma ferroptosis. Genes that are regulated by 3D chromatin structures include genes that were reported to function in ferroptosis, like HDM2 and TXNRD1. We propose a new regulatory mechanism governing glioblastoma cell ferroptosis by 3D chromatin structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.L.); (W.W.); (H.Z.); (J.B.); (B.Z.); (T.S.); (G.S.); (Y.Z.); (S.F.); (X.H.); (B.C.); (Y.S.); (Z.Z.); (J.S.); (P.L.)
| |
Collapse
|
2
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China.
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Morova T, Ding Y, Huang CCF, Sar F, Schwarz T, Giambartolomei C, Baca S, Grishin D, Hach F, Gusev A, Freedman M, Pasaniuc B, Lack N. Optimized high-throughput screening of non-coding variants identified from genome-wide association studies. Nucleic Acids Res 2022; 51:e18. [PMID: 36546757 PMCID: PMC9943666 DOI: 10.1093/nar/gkac1198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
Collapse
Affiliation(s)
- Tunc Morova
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Funda Sar
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dennis Grishin
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada,Department of Urologic Science, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Alexander Gusev
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan A Lack
- To whom correspondence should be addressed. Tel: +1 604 875 4411;
| |
Collapse
|
4
|
Bi J, Wang W, Zhang M, Zhang B, Liu M, Su G, Chen F, Chen B, Shi T, Zheng Y, Zhao X, Zhao Z, Shi J, Li P, Zhang L, Lu W. KLF4 inhibits early neural differentiation of ESCs by coordinating specific 3D chromatin structure. Nucleic Acids Res 2022; 50:12235-12250. [PMID: 36477888 PMCID: PMC9757050 DOI: 10.1093/nar/gkac1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neural differentiation of embryonic stem cells (ESCs) requires precisely orchestrated gene regulation, a process governed in part by changes in 3D chromatin structure. How these changes regulate gene expression in this context remains unclear. In this study, we observed enrichment of the transcription factor KLF4 at some poised or closed enhancers at TSS-linked regions of genes associated with neural differentiation. Combination analysis of ChIP, HiChIP and RNA-seq data indicated that KLF4 loss in ESCs induced changes in 3D chromatin structure, including increased chromatin interaction loops between neural differentiation-associated genes and active enhancers, leading to upregulated expression of neural differentiation-associated genes and therefore early neural differentiation. This study suggests KLF4 inhibits early neural differentiation by regulation of 3D chromatin structure, which is a new mechanism of early neural differentiation.
Collapse
Affiliation(s)
| | | | - Meng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Baoying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Bohan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yaoqiang Zheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Peng Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Lei Zhang
- Correspondence may also be addressed to Lei Zhang. Tel: +86 22 23503617; Fax: +86 22 23503617;
| | - Wange Lu
- To whom correspondence should be addressed. Tel: +86 22 23503617; Fax: +86 22 23503617;
| |
Collapse
|
5
|
Shrestha D, Bag A, Wu R, Zhang Y, Tang X, Qi Q, Xing J, Cheng Y. Genomics and epigenetics guided identification of tissue-specific genomic safe harbors. Genome Biol 2022; 23:199. [PMID: 36131352 PMCID: PMC9490961 DOI: 10.1186/s13059-022-02770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Genomic safe harbors are regions of the genome that can maintain transgene expression without disrupting the function of host cells. Genomic safe harbors play an increasingly important role in improving the efficiency and safety of genome engineering. However, limited safe harbors have been identified. RESULTS Here, we develop a framework to facilitate searches for genomic safe harbors by integrating information from polymorphic mobile element insertions that naturally occur in human populations, epigenomic signatures, and 3D chromatin organization. By applying our framework to polymorphic mobile element insertions identified in the 1000 Genomes project and the Genotype-Tissue Expression (GTEx) project, we identify 19 candidate safe harbors in blood cells and 5 in brain cells. For three candidate sites in blood, we demonstrate the stable expression of transgene without disrupting nearby genes in host erythroid cells. We also develop a computer program, Genomics and Epigenetic Guided Safe Harbor mapper (GEG-SH mapper), for knowledge-based tissue-specific genomic safe harbor selection. CONCLUSIONS Our study provides a new knowledge-based framework to identify tissue-specific genomic safe harbors. In combination with the fast-growing genome engineering technologies, our approach has the potential to improve the overall safety and efficiency of gene and cell-based therapy in the near future.
Collapse
Affiliation(s)
- Dewan Shrestha
- Department of Genetics, Genomics, and Informatics, College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN USA
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Aishee Bag
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Yeting Zhang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Xing Tang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
6
|
Yao Q, Zhang X, Chen D. The emerging potentials of lncRNA DRAIC in human cancers. Front Oncol 2022; 12:867670. [PMID: 35992823 PMCID: PMC9386314 DOI: 10.3389/fonc.2022.867670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more than 200 nucleotides. Numerous studies have confirmed that lncRNA is relevant during multiple biological processes through the regulation of various genes, thus affecting disease progression. The lncRNA DRAIC, a newly discovered lncRNA, has been found to be abnormally expressed in a variety of diseases, particularly cancer. Indeed, the dysregulation of DRAIC expression is closely related to clinicopathological features. It was also reported that DRAIC is key to biological functions such as cell proliferation, autophagy, migration, and invasion. Furthermore, DRAIC is of great clinical significance in human disease. In this review, we discuss the expression signature, clinical characteristics, biological functions, relevant mechanisms, and potential clinical applications of DRAIC in several human diseases.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
7
|
Zhang Z, Wang H, Lei X, Mehdi Ommati M, Tang Z, Yuan J. Bisphenol a exposure decreases learning ability through the suppression of mitochondrial oxidative phosphorylation in the hippocampus of male mice. Food Chem Toxicol 2022; 165:113167. [DOI: 10.1016/j.fct.2022.113167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
|
8
|
Liu N, Sadlon T, Wong YY, Pederson S, Breen J, Barry SC. 3DFAACTS-SNP: using regulatory T cell-specific epigenomics data to uncover candidate mechanisms of type 1 diabetes (T1D) risk. Epigenetics Chromatin 2022; 15:24. [PMID: 35773720 PMCID: PMC9244893 DOI: 10.1186/s13072-022-00456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have enabled the discovery of single nucleotide polymorphisms (SNPs) that are significantly associated with many autoimmune diseases including type 1 diabetes (T1D). However, many of the identified variants lie in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune disease progression. To address this problem, we developed a variant filtering workflow called 3DFAACTS-SNP to link genetic variants to target genes in a cell-specific manner. Here, we use 3DFAACTS-SNP to identify candidate SNPs and target genes associated with the loss of immune tolerance in regulatory T cells (Treg) in T1D. Results Using 3DFAACTS-SNP, we identified from a list of 1228 previously fine-mapped variants, 36 SNPs with plausible Treg-specific mechanisms of action. The integration of cell type-specific chromosome conformation capture data in 3DFAACTS-SNP identified 266 regulatory regions and 47 candidate target genes that interact with these variant-containing regions in Treg cells. We further demonstrated the utility of the workflow by applying it to three other SNP autoimmune datasets, identifying 16 Treg-centric candidate variants and 60 interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional annotation of all known common (> 10% allele frequency) variants from the Genome Aggregation Database (gnomAD). We identified 9376 candidate variants and 4968 candidate target genes, generating a list of potential sites for future T1D or other autoimmune disease research. Conclusions We demonstrate that it is possible to further prioritise variants that contribute to T1D based on regulatory function, and illustrate the power of using cell type-specific multi-omics datasets to determine disease mechanisms. Our workflow can be customised to any cell type for which the individual datasets for functional annotation have been generated, giving broad applicability and utility. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00456-5.
Collapse
Affiliation(s)
- Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Ying Y Wong
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Adelaide, Australia. .,Bioinformatics Hub, School of Biological Sciences, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia. .,Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia. .,John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.,Women's and Children's Health Network, Women's and Children's Hospital, Adelaide, Australia
| |
Collapse
|
9
|
Pereira B, Labrot E, Durand E, Korn JM, Kauffmann A, Campbell CD. Contribution and clinical relevance of germline variation to the cancer transcriptome. BMC Cancer 2022; 22:675. [PMID: 35725412 PMCID: PMC9208227 DOI: 10.1186/s12885-022-09757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background Somatic alterations in the cancer genome, some of which are associated with changes in gene expression, have been characterized in multiple studies across diverse cancer types. However, less is known about germline variants that influence tumor biology by shaping the cancer transcriptome. Methods We performed expression quantitative trait loci (eQTL) analyses using multi-dimensional data from The Cancer Genome Atlas to explore the role of germline variation in mediating the cancer transcriptome. After accounting for associations between somatic alterations and gene expression, we determined the contribution of inherited variants to the cancer transcriptome relative to that of somatic variants. Finally, we performed an interaction analysis using estimates of tumor cellularity to identify cell type-restricted eQTLs. Results The proportion of genes with at least one eQTL varied between cancer types, ranging between 0.8% in melanoma to 28.5% in thyroid cancer and was correlated more strongly with intratumor heterogeneity than with somatic alteration rates. Although contributions to variance in gene expression was low for most genes, some eQTLs accounted for more than 30% of expression of proximal genes. We identified cell type-restricted eQTLs in genes known to be cancer drivers including LPP and EZH2 that were associated with disease-specific mortality in TCGA but not associated with disease risk in published GWAS. Together, our results highlight the need to consider germline variation in interpreting cancer biology beyond risk prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09757-0.
Collapse
Affiliation(s)
- Bernard Pereira
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Emma Labrot
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Eric Durand
- Novartis Institutes for Biomedical Research, Novartis Campus, Fabrikstrasse 2, CH-4056, Basel, Switzerland
| | - Joshua M Korn
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Audrey Kauffmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Fabrikstrasse 2, CH-4056, Basel, Switzerland
| | - Catarina D Campbell
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Osman N, Shawky AEM, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure. BMC Genom Data 2022; 23:13. [PMID: 35176995 PMCID: PMC8851830 DOI: 10.1186/s12863-021-01021-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. Results In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Conclusions Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01021-x.
Collapse
Affiliation(s)
- Noha Osman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Cell Biology, National Research Centre, Giza, 12622, Egypt.,Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Abd-El-Monsif Shawky
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
11
|
Tian P, Zhong M, Wei GH. Mechanistic insights into genetic susceptibility to prostate cancer. Cancer Lett 2021; 522:155-163. [PMID: 34560228 DOI: 10.1016/j.canlet.2021.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most common cancer in men and is a highly heritable disease that affects millions of individuals worldwide. Genome-wide association studies have to date discovered nearly 270 genetic loci harboring hundreds of single nucleotide polymorphisms (SNPs) that are associated with PCa susceptibility. In contrast, the functional characterization of the mechanisms underlying PCa risk association is still growing. Given that PCa risk-associated SNPs are highly enriched in noncoding cis-regulatory genomic regions, accumulating evidence suggests a widespread modulation of transcription factor chromatin binding and allelic enhancer activity by these noncoding SNPs, thereby dysregulating gene expression. Emerging studies have shown that a proportion of noncoding variants can modulate the formation of transcription factor complexes at enhancers and CTCF-mediated 3D genome architecture. Interestingly, DNA methylation-regulated CTCF binding could orchestrate a long-range chromatin interaction between PCa risk enhancer and causative genes. Additionally, one-causal-variant-two-risk genes or multiple-risk-variant-multiple-genes are prevalent in some PCa risk-associated loci. In this review, we will discuss the current understanding of the general principles of SNP-mediated gene regulation, experimental advances, and functional evidence supporting the mechanistic roles of several PCa genetic loci with potential clinical impact on disease prevention and treatment.
Collapse
Affiliation(s)
- Pan Tian
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Mengjie Zhong
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Su G, Wang W, Zhao X, Chen J, Zheng J, Liu M, Bi J, Guo D, Chen B, Zhao Z, Shi J, Zhang L, Lu W. Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Res 2021; 49:11575-11595. [PMID: 34723340 PMCID: PMC8599802 DOI: 10.1093/nar/gkab1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1–Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wenbin Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Xueyuan Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jun Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jian Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Man Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jinfang Bi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Dianhao Guo
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Bohan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jiandang Shi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Lei Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wange Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| |
Collapse
|
13
|
Ren N, Li Y, Xiong Y, Li P, Ren Y, Huang Q. Functional Screenings Identify Regulatory Variants Associated with Breast Cancer Susceptibility. Curr Issues Mol Biol 2021; 43:1756-1777. [PMID: 34889888 PMCID: PMC8928974 DOI: 10.3390/cimb43030124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 2000 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility, most of which are located in the non-coding region. However, the causal SNPs functioning as gene regulatory elements still remain largely undisclosed. Here, we applied a Dinucleotide Parallel Reporter sequencing (DiR-seq) assay to evaluate 288 breast cancer risk SNPs in nine different breast cancer cell lines. Further multi-omics analysis with the ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing), DNase-seq (DNase I hypersensitive sites sequencing) and histone modification ChIP-seq (Chromatin Immunoprecipitation sequencing) nominated seven functional SNPs in breast cancer cells. Functional investigations show that rs4808611 affects breast cancer progression by altering the gene expression of NR2F6. For the other site, rs2236007, the alteration promotes the binding of the suppressive transcription factor EGR1 and results in the downregulation of PAX9 expression. The downregulated expression of PAX9 causes cancer malignancies and is associated with the poor prognosis of breast cancer patients. Our findings contribute to defining the functional risk SNPs and the related genes for breast cancer risk prediction.
Collapse
|
14
|
Chen B, He A, Bi J, Sun S, Ma Y, Wang W, Guo D, Chen J, Qian Y, Shi T, Nie G, Zhao Z, Shi J, Yang H, Zhang L, Lu W. Long-range gene regulation network of the MGMT enhancer modulates glioma cell sensitivity to temozolomide. J Genet Genomics 2021; 48:946-949. [PMID: 34417124 DOI: 10.1016/j.jgg.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Bohan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Anshun He
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shupeng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, School of Medicine, Nankai University, 6 Jizhao Road, Tianjin 300350, China
| | - Yiping Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuyang Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Guohui Nie
- Department of Otolaryngology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongzhen Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
15
|
Chen B, Ma Y, Bi J, Wang W, He A, Su G, Zhao Z, Shi J, Zhang L. Regulation Network of Colorectal-Cancer-Specific Enhancers in the Progression of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22158337. [PMID: 34361106 PMCID: PMC8348541 DOI: 10.3390/ijms22158337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer-promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zhang
- Correspondence: ; Tel./Fax: +86-(22)-23503617
| |
Collapse
|
16
|
Relevance of Interleukins 6 and 8 Single Nucleotide Polymorphisms in Prostate Cancer: A Multicenter Study. Prostate Cancer 2021; 2021:3825525. [PMID: 34327025 PMCID: PMC8277491 DOI: 10.1155/2021/3825525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The diverse roles of cytokines as IL-6 and IL-8 have been studied in terms of their SNPs in many diseases but their role in prostate cancer (PCa) is still uncertain. Aim. To determine the relevance of IL-6 rs1800795 SNP and/or IL-8 rs2227306 SNP with prostate cancer's risk. Subjects and Methods. 40 PCa patients, 40 benign prostate hyperplasia (BPH) patients, and 40-age-matched-control group were enrolled in the study. Genotyping of IL-6 rs1800795 (G/C) SNP and IL-8 rs2227306 (C/T) SNP was determined using real-time PCR. Results. High frequency of IL-6 rs1800795GG and IL-8 rs2227306CC genotypes was noticed among PCa patients with associated OR 10.091 and 8.143, respectively. Comparisons based on allele frequencies revealed that IL-6G and IL-8C alleles are more frequent among PCa patients than other groups. Presence of IL-6 rs1800795G and IL-8 rs2227306C alleles in the same patient increase PCa risk by 16.7 times. Statistical correlations between PSA ratio and both of IL-6 and IL-8 SNP did not show any significant relation among PCa patients. Conclusion. IL-6 rs1800795G and IL-8 rs2227306C alleles could be considered risk factors for PCa development, particularly if presented together. However, no relation was found between both cytokines SNP and severity of prostate cancer.
Collapse
|
17
|
Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int J Mol Sci 2021; 22:6454. [PMID: 34208629 PMCID: PMC8235176 DOI: 10.3390/ijms22126454] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The vast majority of the genetic variants (mainly SNPs) associated with various human traits and diseases map to a noncoding part of the genome and are enriched in its regulatory compartment, suggesting that many causal variants may affect gene expression. The leading mechanism of action of these SNPs consists in the alterations in the transcription factor binding via creation or disruption of transcription factor binding sites (TFBSs) or some change in the affinity of these regulatory proteins to their cognate sites. In this review, we first focus on the history of the discovery of regulatory SNPs (rSNPs) and systematized description of the existing methodical approaches to their study. Then, we brief the recent comprehensive examples of rSNPs studied from the discovery of the changes in the TFBS sequence as a result of a nucleotide substitution to identification of its effect on the target gene expression and, eventually, to phenotype. We also describe state-of-the-art genome-wide approaches to identification of regulatory variants, including both making molecular sense of genome-wide association studies (GWAS) and the alternative approaches the primary goal of which is to determine the functionality of genetic variants. Among these approaches, special attention is paid to expression quantitative trait loci (eQTLs) analysis and the search for allele-specific events in RNA-seq (ASE events) as well as in ChIP-seq, DNase-seq, and ATAC-seq (ASB events) data.
Collapse
Affiliation(s)
- Arina O. Degtyareva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Elena V. Antontseva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Tatiana I. Merkulova
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Zheng J, Su G, Wang W, Zhao X, Liu M, Bi J, Zhao Z, Shi J, Lu W, Zhang L. Two Enhancers Regulate HoxB Genes Expression During Retinoic Acid-Induced Early Embryonic Stem Cells Differentiation Through Long-Range Chromatin Interactions. Stem Cells Dev 2021; 30:683-695. [PMID: 34030475 DOI: 10.1089/scd.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homeobox B cluster (HoxB) genes play important roles in retinoic acid (RA)-induced early embryonic stem cells (ESCs) differentiation. Knowledge of regulation network of HoxB is important to further unveil the mechanism of ESCs differentiation. In this study, we identified two enhancers that were activated by RA treatment and 4C data showed long-range interactions between HoxB genes and the two enhancers. CRISPR/Cas9-mediated individual or compound deletion of the two enhancers significantly inhibits HoxB gene expression, and transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in the enhancer KO cells. We propose new mechanism by which two enhancers regulate HoxB gene expression by different regulation modes during RA-induced early ESCs differentiation through long-range chromatin interactions.
Collapse
Affiliation(s)
- Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
19
|
The Weight of HLA-DPA1 rs3077 Single Nucleotide Polymorphism in Prostate Cancer, a Multicenter Study. Prostate Cancer 2021; 2021:5539851. [PMID: 33976942 PMCID: PMC8084672 DOI: 10.1155/2021/5539851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) has almost the highest genetic transmission that mimics an autosomal dominance hereditary pattern of cancers in some families. Its incidence in Arab countries was reported to be steadily increasing. Aim. To determine the relevance of HLA-DPA1 rs3077 (A/G) SNP with prostate cancer's risk and/or severity. Subjects and Methods. Forty PCa patients and forty age matched patients with benign prostatic hyperplasia (BPH), as a control group, were enrolled in the study. Serum levels of urea, creatinine, total prostate-specific antigen (PSA), and free PSA were measured. PSA ratio was determined as well. Genotyping of HLA-DPA1 rs3077 (A/G) SNP was done using real-time PCR. Results. The measured lab parameters, except free PSA, were significantly higher among PCa patients in comparison to controls (P < 0.001 ∗ ). Moreover, PSA ratio was significantly high among PCa patients (P < 0.001 ∗ ). HLA-DPA1 rs3077 GG genotype was more frequent in PCa patients and the associated OR was 2.546 (P=0.059), while AA genotype was more frequent in the control group and the associated OR was 0.145 (P=0.081). Frequency of G allele was higher among PCa patients than the control group while A allele frequency was significantly decreased (P=0.034 ∗ ) (protective allele). On multivariate analysis, there is no significant correlation found between HLA-DPA1 rs3077 SNP and PSA ratio (OR = 4.5, 95% CI = 1.2-17.4, P=0.856). Conclusion. HLA-DPA1 rs3077 G allele could be a risk factor for prostate cancer. However, HLA-DPA1 rs3077 SNP has no relation to PCa severity.
Collapse
|
20
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. J Biol Chem 2021; 296:100413. [PMID: 33581110 PMCID: PMC7960549 DOI: 10.1016/j.jbc.2021.100413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.
Collapse
|
22
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
23
|
Goetjen A, Watson M, Lieberman R, Clinton K, Kranzler HR, Covault J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABA A subunit gene expression in the context of alcohol use disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:464-474. [PMID: 33029895 PMCID: PMC8022112 DOI: 10.1002/ajmg.b.32824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Twin studies indicate that there is a significant genetic contribution to the risk of developing alcohol use disorder (AUD). With the exception of coding variants in ADH1B and ALDH2, little is known about the molecular effects of AUD-associated loci. We previously reported that the AUD-associated synonymous polymorphism rs279858 within the GABAA α2 receptor subunit gene, GABRA2, was associated with gene expression of the chr4p12 GABAA subunit gene cluster in induced pluripotent stem cell (iPSC)-derived neural cultures. Based on this and other studies that showed changes in GABRA2 DNA methylation associated with schizophrenia and aging, we examined methylation in GABRA2. Specifically, using 69 iPSC lines and neural cultures derived from 47 of them, we examined whether GABRA2 rs279858 genotype predicted methylation levels and whether methylation was related to GABAA receptor subunit gene expression. We found that the GABRA2 CpG island undergoes random stochastic methylation during reprogramming and that methylation is associated with decreased GABRA2 gene expression, an effect that extends to the GABRB1 gene over 600 kb distal to GABRA2. Further, we identified additive effects of GABRA2 CpG methylation and GABRA2 rs279858 genotype on expression of the GABRB1 subunit gene in iPSC-derived neural cultures.
Collapse
Affiliation(s)
- Alexandra Goetjen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Genetics and Developmental Biology Graduate Program, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Maegan Watson
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kaitlin Clinton
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
24
|
Cai X, Wei B, Li L, Chen X, Yang J, Li X, Jiang X, Lv M, Li M, Lin Y, Xu Q, Guo W, Gu Y. Therapeutic Potential of Apatinib Against Colorectal Cancer by Inhibiting VEGFR2-Mediated Angiogenesis and β-Catenin Signaling. Onco Targets Ther 2020; 13:11031-11044. [PMID: 33154652 PMCID: PMC7606303 DOI: 10.2147/ott.s266549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose Apatinib is an inhibitor of VEGFR2 (vascular endothelial growth factor receptor 2) that has attracted a great deal of attention due to its promotion of anticancer activity. In the present study, we investigated the therapeutic effects of apatinib against colorectal cancer (CRC) and examined the underlying mechanism. Materials and Methods Both in vivo and in vitro assays were conducted to study the effect of apatinib on CRC. To elucidate the associated mechanism, RNA-seq (transcriptome) analysis was conducted on apatinib-treated HCT116 cells. Results Apatinib showed antiproliferative and proapoptotic effects, induced G0/G1 arrest and blocked cell migration and invasion in CRC. An analysis of the mechanism associated with apatinib activity demonstrated that by interacting with VEGFR2, apatinib decreased p-Src, p-Akt, and p-GSK3β levels, which further increased β-catenin ubiquitination and reduced the nuclear translocation of β-catenin. Furthermore, apatinib strongly suppressed CT26 cell growth in mouse xenograft models by inhibiting β-catenin signaling and angiogenesis. Conclusion Overall, the results of the present study here indicated that by inhibiting the VEGFR2-β-catenin-mediated malignant phenotype, apatinib significantly suppresses the growth of CRC, suggesting that the use of apatinib is a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Wei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Lele Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaozheng Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Mu Lv
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Mingyang Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yumeng Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Osman N, Shawky A, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.. [DOI: 10.1101/2020.10.06.328567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.
Collapse
|
26
|
Sun Z, Zhang H, Wu J, Gao F, Zhang C, Hu X, Liu Q, Wei Y, Zhuang J, Huang X. A Novel Model System for Understanding Anticancer Activity of Hypoxia-Activated Prodrugs. Mol Pharm 2020; 17:2072-2082. [PMID: 32352301 DOI: 10.1021/acs.molpharmaceut.0c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reports on the comprehensive factors for design considerations of hypoxia-activated prodrugs (HAPs) are rare. We introduced a new model system composed of a series of highly water-soluble HAPs, providing a platform to comprehensively understand the interaction between HAPs and hypoxic biosystems. Specifically, four kinds of new HAPs were designed and synthesized, containing the same biologically active moiety but masked by different bioreductive groups. Our results demonstrated that the activity of the prodrugs was strongly dependent on not only the molecular structure but also the hypoxic tumor microenvironment. We found the presence of a direct linear relationship between cytotoxicity of the HAPs and the reduction potential of whole molecule/oxygen concentration/reductase expression. Moreover, limited blood vasculature in hypoxic regions was also a critical barrier for effective activation of the HAPs. This study offers a comprehensive insight into understanding the design factors required for HAPs.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Congcong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Pathway Analysis of Genes Identified through Post-GWAS to Underpin Prostate Cancer Aetiology. Genes (Basel) 2020; 11:genes11050526. [PMID: 32397189 PMCID: PMC7291227 DOI: 10.3390/genes11050526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding the functional role of risk regions identified by genome-wide association studies (GWAS) has made considerable recent progress and is referred to as the post-GWAS era. Annotation of functional variants to the genes, including cis or trans and understanding their biological pathway/gene network enrichments, is expected to give rich dividends by elucidating the mechanisms underlying prostate cancer. To this aim, we compiled and analysed currently available post-GWAS data that is validated through further studies in prostate cancer, to investigate molecular biological pathways enriched for assigned functional genes. In total, about 100 canonical pathways were significantly, at false discovery rate (FDR) < 0.05), enriched in assigned genes using different algorithms. The results have highlighted some well-known cancer signalling pathways, antigen presentation processes and enrichment in cell growth and development gene networks, suggesting risk loci may exert their functional effect on prostate cancer by acting through multiple gene sets and pathways. Additional upstream analysis of the involved genes identified critical transcription factors such as HDAC1 and STAT5A. We also investigated the common genes between post-GWAS and three well-annotated gene expression datasets to endeavour to uncover the main genes involved in prostate cancer development/progression. Post-GWAS generated knowledge of gene networks and pathways, although continuously evolving, if analysed further and targeted appropriately, will have an important impact on clinical management of the disease.
Collapse
|
28
|
A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Res 2020; 30:155-163. [PMID: 31953347 PMCID: PMC7050528 DOI: 10.1101/gr.251058.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus, knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture Hi-C, and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and 3C data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.
Collapse
|