1
|
Deng B, Zhang D, Dai Y, Lin S, Li Y, Wen C. A biodegradable Fe-0.6Se alloy with superior strength and effective antibacterial and antitumor capabilities for orthopedic applications. Acta Biomater 2024:S1742-7061(24)00595-6. [PMID: 39395702 DOI: 10.1016/j.actbio.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Iron-selenium (Fe-Se) alloys have potential as attractive biodegradable bone-implant materials, given the antitumor properties of Se in cancer prevention and therapy. However, the fabrication of Fe-Se alloys is challenging due to the volatility of elemental Se and the significantly different melting points of Se and Fe. In this study, we successfully fabricated Fe-xSe (x = 0.2, 0.4, 0.6, 0.8, and 1 wt.%) alloys using suction casting, with FeSe compounds as the Se source. The microstructures, tensile properties, corrosion behavior, biocompatibility, antibacterial ability, and antitumor properties of the Fe-Se alloys were evaluated. The microstructures of the Fe-Se alloys were composed of α-Fe and FeSe phases. Among the Fe-Se alloys, Fe-0.6Se showed the best combination of tensile properties, with a yield strength of 1096.5 ± 7.2 MPa, an ultimate tensile strength of 1271.6 ± 6.3 MPa, and a fracture strain of 15.6 ± 3.3 %, and a degradation rate of 56.9 ± 0.4 μm/year. Moreover, the Fe-0.6Se alloy showed superb antibacterial ability against S. aureus, antitumor activity against 143B osteosarcoma cells, and osteogenicity and biocompatibility toward pre-osteoblast MC3T3-E1 cells. In summary, adding 0.2-1.0 wt.% Se to Fe does not affect the growth of healthy cells but effectively inhibits the growth and reproduction of tumor cells, and the Fe-0.6Se alloy is promising for orthopedic applications owing to its unique combination of mechanical and biofunctional properties. STATEMENT OF SIGNIFICANCE: This work reports on Fe-xSe (x = 0.2, 0.4, 0.6, 0.8, and 1 wt.%) alloys fabricated using suction casting. The microstructures of the Fe-Se alloys were composed of α-Fe and FeSe phases. Among the Fe-Se alloys, the Fe-0.6Se showed the best combination of tensile properties, with a yield strength of 1058.6 ± 3.9 MPa, an ultimate tensile strength of 1134.1 ± 2.9 MPa, and a fracture strain of 16.8 ± 1.5 %, and a degradation rate of 56.9 ± 0.4 μm/year. Moreover, the Fe-0.6Se alloy showed superb antibacterial ability against S. aureus, antitumor activity against 143B osteosarcoma cells, and significant osteogenic ability and biocompatibility toward pre-osteoblast MC3T3-E1 cells. In summary, the Fe-0.6Se alloy is promising for orthopedic applications owing to its unique combination of mechanical and biofunctional properties.
Collapse
Affiliation(s)
- Bo Deng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Dechuang Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yilong Dai
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011 China.
| | - Yuncang Li
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
Chen YX, Yu H, Wu L, Tong YJ, Xu J, Pang H, Wu C, Tian T, Ouyang G. Unlocking multi-photon excited luminescence in pyrazolate trinuclear gold clusters for dynamic cell imaging. Nat Commun 2024; 15:7356. [PMID: 39191759 PMCID: PMC11350157 DOI: 10.1038/s41467-024-51753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The family of coinage-metal-based cyclic trinuclear complexes exhibits abundant photophysical properties, promising for diverse applications. However, their utility in biochemistry is often hindered by large particle size and strong hydrophobicity. Meanwhile, the investigation into multi-photon excited luminescence within this family remained undocumented, limiting their potential in bio-imaging. Herein, we unveil the multi-photon excited luminescent properties of pyrazolate-based trinuclear gold(I) clusters, facilitated by excimeric gold(I)···gold(I) interactions, revealing a nonlinear optical phenomenon within this family. Furthermore, to address issues of poor biocompatibility, we employ electrospinning coupled with hydroxypropyl-beta-cyclodextrin as the matrix to fabricate a flexible, durable, transparent, and red emissive film with a photoluminescence quantum yield as high as 88.3%. This strategy not only produces the film with sufficient hydrophilicity and stability, but also achieves the downsizing of trinuclear gold(I) clusters from microscale to nanoscale. Following the instantaneous dissolution of the film in the media, the released trinuclear gold(I) nanoparticles have illuminated cells and bacteria through a real-time, non-toxic, multi-photon bio-imaging approach. This achievement offers a fresh approach for utilizing coinage-metal-based cyclic trinuclear complexes in biochemical fields.
Collapse
Affiliation(s)
- Yu-Xin Chen
- GBRCE for Functional Molecular Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Haidong Yu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Lihua Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuan-Jun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, PR China
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Chao Wu
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, PR China.
| | - Tian Tian
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Gangfeng Ouyang
- GBRCE for Functional Molecular Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China.
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
4
|
Yang J, Peng S, Zhao Y, Tang T, Guo J, Cui R, Sun T, Zhang M. Improving Three-Photon Fluorescence of Near-Infrared Quantum Dots for Deep Brain Imaging by Suppressing Biexciton Decay. NANO LETTERS 2024; 24:6706-6713. [PMID: 38775232 DOI: 10.1021/acs.nanolett.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.
Collapse
Affiliation(s)
- Junlei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyi Peng
- State Key Laboratory of Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Zhejiang 310058, China
| | - Yunlong Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Tao Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Nwaji N, Gwak J, Nguyen MC, Nguyen HQ, Kang H, Choi Y, Kim Y, Chen H, Lee J. Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging. Med Res Rev 2024; 44:897-918. [PMID: 38084636 DOI: 10.1002/med.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/11/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Juyong Gwak
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - My-Chi Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyojin Kang
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngmi Kim
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Jaebeom Lee
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Lee J, Soares G, Doty C, Park J, Hovey J, Schrader A, Han HS. Versatile Prepolymer Platform for Controlled Tailoring of Quantum Dot Surface Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15202-15214. [PMID: 38470982 PMCID: PMC11070902 DOI: 10.1021/acsami.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Quantum dots (QDs) hold immense promise for bioimaging, yet technical challenges in surface engineering limit their wider scientific use. We introduce poly(pentafluorophenyl acrylate) (PPFPA) as a user-friendly prepolymer platform for creating precisely controlled multidentate polymeric ligands for QD surface engineering, accessible to researchers without extensive synthetic expertise. PPFPA combines the benefits of both bottom-up and prepolymer approaches, offering minimal susceptibility to hydrolysis and side reactions for controlled chemical composition, along with simple synthetic procedures using commercially available reagents. Live cell imaging experiments highlighted a significant reduction in nonspecific binding when employing PPFPA, owing to its minimal hydrolysis, in contrast to ligands synthesized by using a conventional prepolymer prone to uncontrolled hydrolysis. This observation underscores the distinct advantage of our prepolymer system. Leveraging PPFPA, we synthesized biomolecule-conjugated QDs and performed QD-based immunofluorescence to detect a cytosolic protein. To effectively label cytosolic targets in such a dense and complex environment, probes must exhibit minimal nonspecific binding and be compact. As a result, QD-immunofluorescence has focused primarily on cell surface targets. By creating compact QD-F(ab')2, we sensitively detected alpha-tubulin with a ∼50-fold higher signal-to-noise ratio compared to organic dye-based labeling. PPFPA represents a versatile and accessible platform for tailoring QD surfaces, offering a pathway to realize the full potential of colloidal QDs in various scientific applications.
Collapse
Affiliation(s)
- JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Biological and Environmental Studies, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Giselle Soares
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Calvin Doty
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joonhyuck Park
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Jack Hovey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alex Schrader
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Nabil M, Megahed F. Quantum Dot Nanomaterials: Preparation, Characterization, Advanced Bio-Imaging and Therapeutic Applications. J Fluoresc 2023:10.1007/s10895-023-03472-0. [PMID: 37878236 DOI: 10.1007/s10895-023-03472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
The bio-imaging technology is one of the most significant modern applications used in several fields, including early diagnosis of many illnesses that are most important diseases facing humanity and other vital uses. The primary advancement in nanotechnology is the creation of innovative fluorescence probes called quantum dots (QDs). The use of molecular tagging in research, in vivo, and in vitro studies is revolutionized by quantum dots. The application of QD indicates conversion in natural imaging and photography has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, and delivery of targeted genes, biosensing, photodynamic therapy, and diagnosis. New potential methods of early cancer detection and treatment management are being researched as a result of the special physical and chemical characteristics of QD probes. The bio-imaging technique depends on the fluorescent emission of the used materials, which is paired with living cells that are easy to see it in 3D without any surgical intervention. Therefore, the use of QDs many types that have unique and appropriate properties for use in that application; In terms of fluorescent emission strength, duration and luminosity.This review article displays some methods of preparation for QDs nanomaterials and the devices used in this. In addition, it presentssome of challenges that must be avoided for the possibility of using them in the bio-imaging field; as toxicity, bio-compatibility, and hydrophilization. It's reviewed some of the devices that use QDs in bio-imaging technique, the QDs application in cell analysis-imaging, and QDs application in vivo imaging.
Collapse
Affiliation(s)
- Marwa Nabil
- Department of Electronic Materials Researches, Advanced Technology and New Materials Research Institute, City for Scientific, Research and Technology Applications, Alexandria, 21934, Egypt.
| | - Fayed Megahed
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| |
Collapse
|
8
|
Li S, Chang R, Zhao L, Xing R, van Hest JCM, Yan X. Two-photon nanoprobes based on bioorganic nanoarchitectonics with a photo-oxidation enhanced emission mechanism. Nat Commun 2023; 14:5227. [PMID: 37633974 PMCID: PMC10460436 DOI: 10.1038/s41467-023-40897-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
Two-photon absorption (TPA) fluorescence imaging holds great promise in diagnostics and biomedicine owing to its unparalleled spatiotemporal resolution. However, the adaptability and applicability of currently available TPA probes, which act as a critical element for determining the imaging contrast effect, is severely challenged by limited photo-luminescence in vivo. This is particularly a result of uncontrollable aggregation that causes fluorescence quenching, and inevitable photo-oxidation in harsh physiological milieu, which normally leads to bleaching of the dye. Herein, we describe the remarkably enhanced TPA fluorescence imaging capacity of self-assembling near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be explained by a photo-oxidation enhanced emission mechanism. Singlet oxygen generated during photo-oxidation enables chromophore dimerization to form TPA intermediates responsible for enhanced TPA fluorescence emission. The resulting NPs possess uniform size distribution, excellent stability, more favorable TPA cross-section and anti-bleaching ability than a popular TPA probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs promote their applications in visualizing blood circulation and tumoral accumulation in real-time, even to cellular imaging in vivo. The photo-oxidation enhanced emission mechanism observed in these near-infrared cyanine dye-based nanoaggregates opens an avenue for design and development of more advanced TPA fluorescence probes.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
9
|
Tian T, Fang Y, Wang W, Yang M, Tan Y, Xu C, Zhang S, Chen Y, Xu M, Cai B, Wu WQ. Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging. Nat Commun 2023; 14:4429. [PMID: 37481653 PMCID: PMC10363139 DOI: 10.1038/s41467-023-40168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Organic nonlinear optical materials have potential in applications such as lightings and bioimaging, but tend to have low photoluminescent quantum yields and are prone to lose the nonlinear optical activity. Herein, we demonstrate to weave large-area, flexible organic nonlinear optical membranes composed of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate@cyclodextrin host-guest supramolecular complex. These membranes exhibited a record high photoluminescence quantum yield of 73.5%, and could continuously emit orange luminescence even being heated at 300 °C, thus enabling the fabrication of thermotolerant light-emitting diodes. The nonlinear optical property of these membranes can be well-preserved even in polar environment. The supramolecular assemblies with multiphoton absorption characteristics were used for in vivo real-time imaging of Escherichia coli at 1000 nm excitation. These findings demonstrate to achieve scalable fabrication of organic nonlinear optical materials with high photoluminescence quantum yields, and good stability against thermal stress and polar environment for high-performance, durable optoelectronic devices and humanized multiphoton bio-probes.
Collapse
Affiliation(s)
- Tian Tian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuxuan Fang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Meifang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Ying Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chuan Xu
- Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuo Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuxin Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingyi Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bin Cai
- Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Wu-Qiang Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
10
|
Boopathy LK, Gopal T, Roy A, Kalari Kandy RR, Arumugam MK. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Adv 2023; 13:18760-18774. [PMID: 37346950 PMCID: PMC10281231 DOI: 10.1039/d3ra02673f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Quantum dots (QDs) are small nanoparticles with semiconductor properties ranging from 2 to 10 nanometers comprising 10-50 atoms. The single wavelength excitation character of QDs makes it more significant, as it can excite multiple particles in a confined surface simultaneously by narrow emission. QDs are more photostable than traditional organic dyes; however, when injected into tissues, whole animals, or ionic solutions, there is a significant loss of fluorescence. HQD-based probes conjugated with cancer-specific ligands, antibodies, or peptides are used in clinical diagnosis. It is more precise and reliable than standard immunohistochemistry (IHC) at minimal protein expression levels. Advanced clinical studies use photodynamic therapy (PDT) with fluorescence imaging to effectively identify and treat cancer. Recent studies revealed that a combination of unique characteristics of QDs, including their fluorescence capacity and abnormal expression of miRNA in cancer cells, were used for the detection and monitoring progression of cancer. In this review, we have highlighted the unique properties of QDs and the theranostic behavior of various macromolecule-conjugated HQDs leading to cancer treatment.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Molecular Research Laboratory, Meenakshi Medical College Hospital and Research Institute, MAHER Kanchipuram 631552 Tamil Nadu India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
| | - Rakhee Rathnam Kalari Kandy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland Baltimore-21201 MD USA
| | - Madan Kumar Arumugam
- Cancer Biology Laboratory, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +91-9942110146
| |
Collapse
|
11
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Abstract
ConspectusChirality is ubiquitous in the universe and in living creatures over detectable length scales from the subatomic to the galactic, as exemplified in the two extremes by subatomic particles (neutrinos) and spiral galaxies. Between them are living creatures that display multiple levels of chirality emerging from hierarchically assembled asymmetric building blocks. Not too far from the bottom of this pyramid are the foundational building blocks with chiral atomic centers on sp3 carbon atoms exemplified by l-amino acids and d-sugars that are self-assembled into higher-order structures with increasing dimensions forming highly complex, amazingly functional, and energy-efficient living systems. The organization and materials employed in their construction inspired scientists to replicate complex living systems via the self-assembly of chiral components. Multiple studies pointed to unexpected and unique electromagnetic properties of chiral structures with nanoscale and microscale dimensions, including giant circular dichroism and collective circularly polarized scattering that their constituent units did not possess.To address the wide variety of chiral geometries observed in continuous materials, singular particles, and their complex systems, multiple analytic techniques are needed. Simultaneously, their spectroscopic properties create a pathway to multiple applications. For example, mirror-asymmetric vibrations at chiral centers formed by sp3 carbon atoms lead to optical activity for the infrared (IR) wavelength regions. At the same time, understanding the optical activity in, for example, the IR region enables biomedical applications because multiple modalities of biomedical imaging and vibrational optical activity (VOA) of biomolecules are known for IR range. In turn, VOA can be realized in both absorption and emission modalities due to large magnetic transition moments, as vibrational circular dichroism (VCD) or Raman optical activity (ROA) spectroscopy. In addition to the VOA, in the range of longer wavelengths, lattice vibrational mode or phononic behavior occurs in chiral crystals and nanoassemblies, which can be readily detected by terahertz circular dichroism (TCD) spectroscopy. Meanwhile, chiral self-assembly can induce circularly polarized light emission (CPLE) regardless of the existence of chirality in coassembled fluorophores. The CPLE from self-assembled chiral materials is particularly interesting because the CPLE can originate from both circularly polarized luminescence and circularly polarized scattering (CPS). Furthermore, because self-assembled nanostructures often exhibit stronger optical activity than their building blocks owing to dimension and resonance effects, the optical activity of single assembled nanostructures can be investigated by using microscopic technology combined with chiral optics. Here, we describe the state of the art for spectroscopic methods for the comprehensive analysis of chiral nanomaterials at various photon wavelengths, addressed with special attention given to new tools emerging both for materials with self-organized hierarchical chirality and single-particle spectroscopy.
Collapse
Affiliation(s)
- Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Jin Choi
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Materials Science and Engineering, Department of Chemical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, Department of Chemical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Sokolov P, Nifontova G, Samokhvalov P, Karaulov A, Sukhanova A, Nabiev I. Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15030946. [PMID: 36986807 PMCID: PMC10052755 DOI: 10.3390/pharmaceutics15030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Multiplexed fluorescent immunohistochemical analysis of breast cancer (BC) markers and high-resolution 3D immunofluorescence imaging of the tumor and its microenvironment not only facilitate making the disease prognosis and selecting effective anticancer therapy (including photodynamic therapy), but also provides information on signaling and metabolic mechanisms of carcinogenesis and helps in the search for new therapeutic targets and drugs. The characteristics of imaging nanoprobe efficiency, such as sensitivity, target affinity, depth of tissue penetration, and photostability, are determined by the properties of their components, fluorophores and capture molecules, and by the method of their conjugation. Regarding individual nanoprobe components, fluorescent nanocrystals (NCs) are widely used for optical imaging in vitro and in vivo, and single-domain antibodies (sdAbs) are well established as highly specific capture molecules in diagnostic and therapeutic applications. Moreover, the technologies of obtaining functionally active sdAb–NC conjugates with the highest possible avidity, with all sdAb molecules bound to the NC in a strictly oriented manner, provide 3D-imaging nanoprobes with strong comparative advantages. This review is aimed at highlighting the importance of an integrated approach to BC diagnosis, including the detection of biomarkers of the tumor and its microenvironment, as well as the need for their quantitative profiling and imaging of their mutual location, using advanced approaches to 3D detection in thick tissue sections. The existing approaches to 3D imaging of tumors and their microenvironment using fluorescent NCs are described, and the main comparative advantages and disadvantages of nontoxic fluorescent sdAb–NC conjugates as nanoprobes for multiplexed detection and 3D imaging of BC markers are discussed.
Collapse
Affiliation(s)
- Pavel Sokolov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence:
| |
Collapse
|
14
|
Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun 2023; 14:1310. [PMID: 36898989 PMCID: PMC10006417 DOI: 10.1038/s41467-023-36958-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Multiphoton excited luminescence is of paramount importance in the field of optical detection and biological photonics. Self-trapped exciton (STE) emission with self-absorption-free advantages provide a choice for multiphoton excited luminescence. Herein, multiphoton excited singlet/triplet mixed STE emission with a large full width at half-maximum (617 meV) and Stokes shift (1.29 eV) has been demonstrated in single-crystalline ZnO nanocrystals. Temperature dependent steady state, transient state and time-resolved electron spin resonance spectra demonstrate a mixture of singlet (63%) and triplet (37%) mixed STE emission, which contributes to a high photoluminescence quantum yield (60.5%). First-principles calculations suggest 48.34 meV energy per exciton stored by phonons in the distorted lattice of excited states, and 58 meV singlet-triplet splitting energy for the nanocrystals being consistent with the experimental measurements. The model clarifies long and controversial debates on ZnO emission in visible region, and the multiphoton excited singlet/triplet mixed STE emission is also observed.
Collapse
|
15
|
Stephanie R, Kim BB, Xu P, Choi Y, Park CY, Park TJ. In vitro biosynthesis of iron selenide nanoparticles for imageable drug delivery platform. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Quantitative Detection of Gastrointestinal Tumor Markers Using a Machine Learning Algorithm and Multicolor Quantum Dot Biosensor. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9022821. [PMID: 36093502 PMCID: PMC9458379 DOI: 10.1155/2022/9022821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
This work was to explore the application value of gastrointestinal tumor markers based on gene feature selection model of principal component analysis (PCA) algorithm and multicolor quantum dots (QDs) immunobiosensor in the detection of gastrointestinal tumors. Based on the PCA method, the neighborhood rough set algorithm was introduced to improve it, and the tumor gene feature selection model (OPCA) was established to analyze its classification accuracy and accuracy. Four kinds of coupled biosensors were fabricated based on QDs, namely, 525 nm Cd Se/Zn S QDs-carbohydrate antigen 125 (QDs525-CA125 McAb), 605 nm Cd Se/Zn S QDs-cancer antigen 19-9 (QDs605-CA19-9 McAb), 645 nm Cd Se/Zn S QDs-anticancer embryonic antigen (QDs 645-CEA McAb), and 565 nm Cd Se/Zn S QDs-anti-alpha-fetoprotein (QDs565-AFP McAb). The quantum dot-antibody conjugates were identified and quantified by fluorescence spectroscopy and ultraviolet absorption spectroscopy. The results showed that the classification precision of OPCA model in colon tumor and gastric cancer datasets was 99.52% and 99.03%, respectively, and the classification accuracy was 94.86% and 94.2%, respectively, which were significantly higher than those of other algorithms. The fluorescence values of AFP McAb, CEA McAb, CA19-9 McAb, and CA125 McAb reached the maximum when the conjugation concentrations were 25 µg/mL, 20 µg/mL, 30 µg/mL, and 30 µg/m, respectively. The highest recovery rate of AFP was 98.51%, and its fluorescence intensity was 35.78 ± 2.99, which was significantly higher than that of other antigens (P < 0.001). In summary, the OPCA model based on PCA algorithm can obtain fewer feature gene sets and improve the accuracy of sample classification. Intelligent immunobiosensors based on machine learning algorithms and QDs have potential application value in gastrointestinal gene feature selection and tumor marker detection, which provides a new idea for clinical diagnosis of gastrointestinal tumors.
Collapse
|
17
|
Qiu Z, Yu X, Zhang J, Xu C, Gao M, Cheng Y, Zhu M. Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials 2022; 287:121666. [PMID: 35835002 PMCID: PMC9250848 DOI: 10.1016/j.biomaterials.2022.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.
Collapse
Affiliation(s)
- Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| |
Collapse
|
18
|
Abbas M, Kurian P. Quantum probes in cancer research. Nat Rev Cancer 2022; 22:378-379. [PMID: 35296867 DOI: 10.1038/s41568-022-00465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muneer Abbas
- Microbiology Dept. and National Human Genome Center, Howard University, Washington, DC, USA.
- Quantum Biology Laboratory, Howard University, Washington, DC, USA.
| | - Philip Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC, USA
| |
Collapse
|
19
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
20
|
Wei Z, Yi Y, Luo Z, Gong X, Jiang Y, Hou D, Zhang L, Liu Z, Wang M, Wang J, Guo R, Yang J, Wang L, Wang H, Zhao Y. Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108167. [PMID: 35132688 DOI: 10.1002/adma.202108167] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Chemoimmunotherapy using nanotechnology has shown great potential for cancer therapy in the clinic. However, uncontrolled transportation and synergistic responses remain challenges. Here, a self-assembled selenopeptide nanoparticle that strengthens tumor chemoimmunotherapy through the activation of natural killer (NK) cells by the oxidative metabolite of the selenopeptide is developed. With the advantages of the enzyme-induced size-reduction and the reactive-oxygen-species-driven deselenization, this selenopeptide is able to deliver therapeutics, e.g., doxorubicin (DOX), to solid tumors and further activate the NK cells in a programmed manner. Importantly, in vitro and in vivo results prove the mutual promotion between the DOX-induced chemotherapy and the selenopeptide-induced immunotherapy, which synergistically contribute to the improved antitumor efficacy. It is anticipated that the selenopeptide may provide a type of promising stimuli-responsive immune modulator for versatile biomedical applications.
Collapse
Affiliation(s)
- Ziyu Wei
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin, 300384, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Luo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, 18, Beisanhuandonglu, Chaoyang District, Beijing, 100029, China
| | - Yuxing Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Dayong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Li Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zimo Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mandi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruochen Guo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin, 300384, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
21
|
Jun SW, Jang H, Kim J, Kim CS. Multiphoton excitation imaging via an actively mode-locked tunable fiber-cavity SOA laser around 800 nm. BIOMEDICAL OPTICS EXPRESS 2022; 13:525-538. [PMID: 35284185 PMCID: PMC8884227 DOI: 10.1364/boe.447010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In this study, an active mode-locked tunable pulsed laser (AML-TPL) is proposed to excite picosecond pulsed light with a rapid wavelength tunability of approximately 800 nm for multiphoton microscopy. The AML-TPL is schematically based on a fiber-cavity semiconductor optical amplifier (SOA) configuration to implement a robust and align-free pulsed light source with a duration of 1.6 ps, a repetition rate of 27.9271 MHz, and average output power of over 600 mW. A custom-built multiphoton imaging system was also built to demonstrate the imaging performance of the proposed AML-TPL by comparing with the commercial Ti:Sapphire femtosecond laser. Two-photon excited fluorescence images were successfully acquired using a human breast cancer cell line (MDA-MB-231) stained with acridine orange.
Collapse
Affiliation(s)
- Seung Won Jun
- Ground Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
- These authors contributed equally to this work
| | - Hansol Jang
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
- These authors contributed equally to this work
| | - Jaeheung Kim
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
| |
Collapse
|
22
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
23
|
Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, Fu F. Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Curr Med Chem 2021; 28:3753-3772. [PMID: 33019919 DOI: 10.2174/0929867327666201005111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index, and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. More to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the in-depth research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics, and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Fenghua Fu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| |
Collapse
|
24
|
Paramanik S, Chatterjee S, Pal AJ. Reverse bandgap-bowing in nickel-cadmium sulfide alloys (Ni 1-xCd xS) and its origin. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:245703. [PMID: 33631725 DOI: 10.1088/1361-648x/abe9d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
We present evolution of band energies in α-NiS when alloyed with a cationic doping through isovalent cadmium (Cd2+). Optical bandgap of nickel-cadmium sulfide (Ni1-xCdxS) alloys, as a deviation from the linear relationship or Vegard's law, have exhibited a reverse bandgap-bowing in the form of downward-concave dependence. Such a phenomenon, which manifests as a negative value of bowing coefficient (b), is uncommon in chalcogenide alloys. In this work, we have deliberated on the origin of reverse bandgap-bowing in nickel-cadmium alloys and identified the band responsible for the bowing phenomenon. While thin-films of the alloys were formed through successive ionic layer adsorption and reaction method, tunnel conductance and thereby density of states of the materials were derived from scanning tunneling spectroscopy. The spectroscopy provided the variation of conduction and valence band-edges (CB and VB, respectively) with respect to the cadmium-content in Ni1-xCdxS. The CB-edge of the alloys could be seen to remain mostly unaffected with increasing cadmium-content, since the band is composed of only the S 2porbitals; the VB-energy, on the other hand, which forms due to an effective coupling between the metaldand the anionporbitals, could be seen to be affected due to ap-drepulsion. Based on our experimental findings, we inferred that an antagonism between volume deformation and structural relaxation had resulted in the reverse bandgap-bowing in Ni1-xCdxS alloys.
Collapse
Affiliation(s)
- Subham Paramanik
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumyo Chatterjee
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
25
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
26
|
Martínez-Negro M, González-Rubio G, Aicart E, Landfester K, Guerrero-Martínez A, Junquera E. Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Adv Colloid Interface Sci 2021; 289:102366. [PMID: 33540289 DOI: 10.1016/j.cis.2021.102366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Colloidal nanoparticles (NPs) have attracted significant attention due to their unique physicochemical properties suitable for diagnosing and treating different human diseases. Nevertheless, the successful implementation of NPs in medicine demands a proper understanding of their interactions with the different proteins found in biological fluids. Once introduced into the body, NPs are covered by a protein corona (PC) that determines the biological behavior of the NPs. The formation of the PC can eventually favor the rapid clearance of the NPs from the body before fulfilling the desired objective or lead to increased cytotoxicity. The PC nature varies as a function of the different repulsive and attractive forces that govern the NP-protein interaction and their colloidal stability. This review focuses on the phenomenon of PC formation on NPs from a physicochemical perspective, aiming to provide a general overview of this critical process. Main issues related to NP toxicity and clearance from the body as a result of protein adsorption are covered, including the most promising strategies to control PC formation and, thereby, ensure the successful application of NPs in nanomedicine.
Collapse
|
27
|
Yang H, Li R, Zhang Y, Yu M, Wang Z, Liu X, You W, Tu D, Sun Z, Zhang R, Chen X, Wang Q. Colloidal Alloyed Quantum Dots with Enhanced Photoluminescence Quantum Yield in the NIR-II Window. J Am Chem Soc 2021; 143:2601-2607. [DOI: 10.1021/jacs.0c13071] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mengxuan Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zan Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xi Liu
- In-Situ Center for Physical Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwu You
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ziqiang Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rong Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
28
|
Huang Y, Wolowiec C, Zhu T, Hu Y, An L, Li Z, Grossman JC, Schuller IK, Ren S. Emerging Magnetic Interactions in van der Waals Heterostructures. NANO LETTERS 2020; 20:7852-7859. [PMID: 33054240 DOI: 10.1021/acs.nanolett.0c02175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer. Molecular intercalation in this heterostructure induces a transformation from a paramagnetic to spin-glass-like state that is sensitive to the stoichiometry of molecular donor and an applied magnetic field. Besides, electron-donating molecules reduce the electrical resistivity in the heterostructure and modify its response to laser illumination. This hybrid heterostructure provides a promising platform to study emerging magnetic and electronic behaviors in strongly correlated layered materials.
Collapse
Affiliation(s)
- Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christian Wolowiec
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, United States
| | - Taishan Zhu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Hu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lu An
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zheng Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, United States
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environment, and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
29
|
He Y, Li X, Li Z, Bian J, Zhang X, Wei S, Zhang X, Gao D. A magnetically responsive drug-loaded nanocatalyst with cobalt-involved redox for the enhancement of tumor ferrotherapy. Chem Commun (Camb) 2020; 56:10533-10536. [DOI: 10.1039/d0cc03829f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A magnetic-field-responsive nanocatalyst with Co-involved redox was constructed to amplify the effects of tumor ferrotherapy.
Collapse
Affiliation(s)
- Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Xiaowei Li
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Zhuo Li
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Jiaxin Bian
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Xinyue Zhang
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Shipan Wei
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology
- Applying Chemistry Key Lab of Hebei Province
- Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse
- Yanshan University
- Qinhuangdao
| |
Collapse
|