1
|
Ding XY, Shi LX, Wang JY, Xu LJ, Zhang LY, Chen ZN. Doping Copper(I) in Ag 7 Cluster for Circularly Polarized OLEDs with External Quantum Efficiency of 26.7 . Angew Chem Int Ed Engl 2025; 64:e202417934. [PMID: 39627994 DOI: 10.1002/anie.202417934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 12/14/2024]
Abstract
Hetero-metal doping or substitution to create alloy clusters is a highly appealing strategy for improving physicochemical characteristics as well as tailoring optical and electronic properties, although high-yield synthesis of alloy clusters with precise positioning of doped metals is a daunting challenge. Herein, we manifest rational synthesis of chiral alloy cluster enantiomers R/S-Ag6Cu in 85 %-87 % yield by replacing one Ag(I) atom with Cu(I) in homometallic clusters R/S-Ag7, achieving circularly polarized luminescence (CPL) with a quantum yield beyond 90 %. As a small energy gap (ca. 0.07 eV) between S1 and T1 states facilitates thermally activated delay fluorescence (TADF) through reverse intersystem crossing (RISC), the photoluminescence (PL) of R/S-Ag7 and R/S-Ag6Cu at ambient temperature originates mostly from TADF (85 % and 86 %) in place of phosphorescence (15 % and 14 %). Relative to those of R/S-Ag7, copper(I) doping not only triples PL quantum yields of R/S-Ag6Cu due to accelerating ISC (intersystem crossing) and RISC, but also doubles CPL asymmetry factors of R/S-Ag6Cu ascribed to rigidizing cluster structure through stronger Ag-Cu interaction apart from dramatically improving thermodynamic stability. Solution-processable circularly polarized organic light-emitting diodes (CP-OLEDs) demonstrate high-efficiency circularly polarized electroluminescence (CPEL) with external quantum efficiency (EQE) of 26.7 %, which is superior to most of red-emitting OLEDs through solution process.
Collapse
Affiliation(s)
- Xu-Yang Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100039, China (LJX) (ZNC
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100039, China (LJX) (ZNC
| |
Collapse
|
2
|
Sheng K, Han BL, Wang Z, Gao ZY, Tung CH, Sun D. Epitaxial Growth of Silver Clusters from Ag57 to Ag72 via Laminating Multiple Different Anion Templates. Angew Chem Int Ed Engl 2025; 64:e202416065. [PMID: 39480152 DOI: 10.1002/anie.202416065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/20/2024]
Abstract
The established capability of anion templates in precisely manipulating the size, geometry, and function of metal clusters is well acknowledged. However, the development of a systematic methodology for orchestrating the assembly of silver clusters, particularly those encompassing multiple distinct types of anion templates, remains elusive due to the formidable synthetic challenge. In this work, we report two novel silver clusters, Ag57 and Ag72, using two and three different anion templates, respectively. Ag57 features a gyroscope-like monovalent cation with an Ag3 triangle core sandwiched by one [SiW9O34]10- and a triad of Cl- anion templates. By intentionally introducing the third anion template, SO4 2-, the structure is expanded to the unprecedented Ag72 (with 15 silver atoms epitaxially grown on top of Ag57) resembling a tumbler, inside of which two Ag3 layers are laminated by one [SiW9O34]10-, seven Cl- and one SO4 2- anion templates in parallel with respect to longitudinal orientation. It is noteworthy that Ag72 exhibits remarkable structural complexity and represents a pioneering achievement as the first silver cluster incorporating three distinct types of anion templates. In addition, Ag72 demonstrates a significant advantage over Ag57, particular in terms of applications such as luminescent thermometers and remote laser ignition. This work not only broadens the horizon for precise control of the silver cluster structures through the integration of multiple types of hetero-anions but also lays a solid foundation for potential optical applications in the future.
Collapse
Affiliation(s)
- Kai Sheng
- School of Aeronautics, Shandong Jiaotong University, Jinan, 250357, People's Republic of China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
3
|
Tian WD, Zhang C, Paul S, Si WD, Wang Z, Sun PP, Anoop A, Tung CH, Sun D. Lattice Modulation on Singlet-Triplet Splitting of Silver Cluster Boosting Near-Unity Photoluminescence Quantum Yield. Angew Chem Int Ed Engl 2024:e202421656. [PMID: 39676058 DOI: 10.1002/anie.202421656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Developing thermally activated delayed fluorescence (TADF)-active silver clusters with near-unity quantum efficiency is of practical importance in cutting-edge optoelectronic devices, but remains a tremendous challenge due to the difficulty of de novo synthesis and uncertainty of properties. Herein, we demonstrate a lattice modulation on parent TADF- active silver cluster, achieving TADF-driven photoluminescence quantum yield (PLQY) from 12 % to near-unity. Systematic experimental and calculated results reveal that the lattice modulation effectively lowers the singlet-triplet splitting (ΔEST) from 718 to 549 cm-1, thereby facilitating thermally activated reverse intersystem crossing: T5→S5, leading to extremely efficient TADF by surpassing both phosphorescence and non-radiative decay, thus boosting the near-unity PLQY. Such high PLQY is extremely rare in the TADF-active silver clusters and even in the whole noble-metal clusters. This research showcases an unparalleled example of lattice modulation to realize near unity PLQY of TADF-active silver clusters.
Collapse
Affiliation(s)
- Wei-Dong Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Sayan Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302
- India and Kerala University of Digital Sciences, Innovation and Technology (Digital University Kerala), Thiruvananthapuram, Kerala, 695317, India
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Pan-Pan Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302
- India and Kerala University of Digital Sciences, Innovation and Technology (Digital University Kerala), Thiruvananthapuram, Kerala, 695317, India
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| |
Collapse
|
4
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
5
|
Ye W, Meng Z, Zhan G, Lv A, Gao Y, Shen K, Ma H, Shi H, Yao W, Wang L, Huang W, An Z. High-Performance Circularly Polarized Phosphorescence by Confining Isolated Chromophores with Chiral Counterions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410073. [PMID: 39540308 DOI: 10.1002/adma.202410073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Organic room-temperature phosphorescence (RTP) featuring circularly polarized luminescence (CPL) is highly valuable in chiroptoelectronics, but the trade-off issue between luminescence efficiency (Φ) and dissymmetry factor (glum) is still challenging to be solved. Here, chiroptical ionic crystals (R/S-DNP) are constructed through ionization-induced assembly, in which isolated chromophore of carboxylic anion is tightly confined by the surrounding chiral counterions. The long-range ordered and chiral counterions with asymmetric stacking are closely connected with isolated chromophores for molecular assembly via high-density electrostatic interactions, thus enabling the simultaneous realization of excellent single-molecule RTP emission and efficient chirality transfer. The synchronous enhancement of ΦP and glum is further achieved as 43.2% and 0.13, respectively. In view of the excellent CPL performances, the ionic materials hold the promising chiroptical encryption via programmable control in an electric-driven circularly polarized phosphorescent device. This result not only makes deeper insights into the relationship between the structure and chiral RTP property but also provides a guide to developing highly efficient chiroptical materials for potential applications.
Collapse
Affiliation(s)
- Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhengong Meng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Guixiang Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yanhua Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kang Shen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Yao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
6
|
He JY, Wang Y, Chen X, Chen WP, Zhou G, Zheng YZ. Air and Thermally Stable Fluoride Bridged Rare-Earth Clusters Showing Intense Photoluminescence and Potential LED Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406882. [PMID: 39377363 DOI: 10.1002/adma.202406882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Fluoride based lattice is attractive for reducing phonon-induced quenching in rare-earth (RE) based luminescent materials. However, due to the strong affinity between RE and oxygen, the synthesis of fluoride-based complexes has to be protected under anhydrous conditions, and many known fluoride bridged RE clusters are unstable in air. Here, by using the "mixed-ligand" strategy a family of fluoride bridged RE clusters is synthesized, namely RE16(μ4-F)6(μ3-F)12(tBuCOO)18[N(CH2CH2O)3]4 (RE = Eu, EuFC-16; RE = Tb, TbFC-16), which are highly stable in air and decomposed thermally only when heating above 435 °C. Moreover, both clusters exhibit high photoluminescence quantum yields (PLQYEuFC-16 = 87.7%, PLQYTbFC-16 = 99.0%). Upon warming, EuFC-16 and TbFC-16 display excellent structural, thermal, and chroma stability. Thus, EuFC-16 and TbFC-16 have the potential to be used in light-emitting diode (LED) devices, offering many advantages over commercial phosphors. First, both clusters are soluble in UV-curable resin at any mixing rate, and the emission colors can be tuned from magenta, turquoise, willow green, and ivory to pure white if mixing blue phosphor BAM:Eu2+. Second, the clusters are hydrophobic, and the LEDs work well after soaking in water, indicating a good quality for outdoor lighting.
Collapse
Affiliation(s)
- Jian-Yue He
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yu Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xi Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Wei-Peng Chen
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Guijiang Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
7
|
Wang XT, He SR, Lv FW, Wang XT, Hong MX, Cao L, Zhuang GL, Chen C, Zheng J, Long LS, Zheng XY. Ln 3+ Induced Thermally Activated Delayed Fluorescence of Chiral Heterometallic Clusters Ln 2Ag 28. Angew Chem Int Ed Engl 2024; 63:e202410414. [PMID: 38924578 DOI: 10.1002/anie.202410414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln=Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln=Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x=6 for 0D, x=3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln=Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4 f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.
Collapse
Affiliation(s)
- Xue-Tao Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Sheng-Rong He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Fang-Wen Lv
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xue-Ting Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Mei-Xin Hong
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Gui-Lin Zhuang
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
8
|
Zheng LM, Shi WQ, Hu F, Guan ZJ, Wang QM. All-Calixarene-Protected Silver Nanocluster with All Silver Atoms in a Face-Centered Cubic Arrangement. J Am Chem Soc 2024; 146:25101-25107. [PMID: 39196903 DOI: 10.1021/jacs.4c08094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Tailoring the surface ligands of metal nanoclusters is important for engineering unique configurations of metal nanoclusters. Thiacalix[4]arene has found extensive applications in the construction of metal nanoclusters. In this investigation, we present the synthesis and characterization of the first all-calixarene-protected silver nanoclusters, [Ag(CH3CN)4]2[Ag44(BTCA)6] (Ag44, H4BTCA = p-tert-butylthiacalix[4]arene). Single-crystal X-ray structural analysis reveals that all silver atoms are in a face-centered cubic (fcc) arrangement. The formation of such an fcc structure is attributed to the selectively passivation on {100} facets by BTCA4-. Thiacalixarene substantially facilitates the stability of Ag44 due to its multiple coordination sites and bulkiness. Mass spectrometry and theoretical calculations reveal that Ag44 is a superatomic silver nanocluster with 22 free electrons in the following configuration: 1S21P61D61F22S21D4. This work not only elucidates the impact of macrocyclic ligands on the stabilization of silver clusters but also furnishes an approach for assembling atomically precise fcc nanoclusters.
Collapse
Affiliation(s)
- Lu-Ming Zheng
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Zheng P, Wang S, Zhao H, Li Q, Yang S, Chai J, Zhu M. Observation of a Novel Interligand Chiral Arrangement in Metal Nanoclusters and Its Implication in Resisting Racemization. SMALL METHODS 2024:e2401215. [PMID: 39246192 DOI: 10.1002/smtd.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Indexed: 09/10/2024]
Abstract
Given the scientifically significant importance of studying the chirality of clusters, the challenges of synthesizing chiral clusters are progressively surmounted. However, the racemization of clusters is unavoidable, and it limits the development of their follow-on chiral applications. To address this issue, chiral thiols are synthesized and used for the construction of high-stability optically pure nanoclusters in this work. As a result, a pair of chiral nanoclusters, Au24Cd2(SR)14, is obtained with excellent stability under thermal, acidic, alkaline, oxidizing, and reducing environments. Unexpectedly, it can also maintain its optical activity with the introduction of Cu2+ ions and chiral ligand with opposite configuration. Structural relationship analysis indicates that the excellent stability is mainly dependent on the hierarchical assembly of the nanoclusters, in which the chiral assembly of chiral ligands (a new pattern of chiral arrangement of intramolecular ligands on the surface of clusters) may be a key factor.
Collapse
Affiliation(s)
- Peisen Zheng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Shuang Wang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Huan Zhao
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Qinzhen Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Sha Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Jinsong Chai
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
10
|
Ge R, Cai PW, Sun C, Sun YQ, Li XX, Zheng ST. Development of non-closed silver clusters by transition-metal-coordination-cluster substituted polyoxometalate templates. Chem Sci 2024; 15:12543-12549. [PMID: 39118619 PMCID: PMC11304815 DOI: 10.1039/d4sc01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.
Collapse
Affiliation(s)
- Rui Ge
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University Fuzhou 350108 Fujian China
| |
Collapse
|
11
|
Wang XY, Meng W, Xie HP, Song DN, Du MH, Chen JX, Braunstein P, Lang JP. Zwitterionic Thiolate-Protected Ag 22(0/I) and Ag 20(I) Clusters: Assembly, Structural Characterization, and Antibacterial Activity. Inorg Chem 2024; 63:13014-13021. [PMID: 38943593 DOI: 10.1021/acs.inorgchem.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag22(Tab)24](PF6)20·16CH3OH·6Et2O (Ag22·16CH3OH·6Et2O), alongside an Ag(I) cluster [Ag20(Tab)12(PhCOO)10(MeCN)2(H2O)](PF6)10·11MeCN (Ag20·11MeCN). Ag22 has a distinct hierarchical supratetrahedral structure with a central {Ag6} kernel surrounded by four [Ag4(Tab)6]4+ units. High-resolution electrospray ionization mass spectra demonstrate that Ag22 has two free electrons, indicating a superatomic core. Ag20 has a drum-like [Ag12(Tab)6(PhCOO)6(H2O)]6+ inner core capped by two tetrahedral-like [Ag4(Tab)3(PhCOO)2(MeCN)]2+ units. Ag20 can be transformed into Ag22 after its reaction with NaBH4 in solution. Antibacterial measurements reveal that Ag22 has a significantly lower minimum inhibitory concentration than that of the Ag20 cluster. This work not only extends the stabilization of silver(0/I) clusters to neutral thiol ligands but also offers new materials for the development of novel antibacterial materials.
Collapse
Affiliation(s)
- Xin-Yao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hong-Ping Xie
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Dan-Na Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pierre Braunstein
- Université de Strasbourg - CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Zhang C, Si WD, Wang Z, Tung CH, Sun D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew Chem Int Ed Engl 2024; 63:e202404545. [PMID: 38664228 DOI: 10.1002/anie.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Near infrared (NIR) emitter with circularly polarized phosphorescence (CPP), known as NIR CPP, has emerged as a key part in the research of cutting-edge luminescent materials. However, it remains a challenge to obtain nanoclusters with NIR CPP activity. Here, we propose an asymmetric transformation approach to efficiently synthesize two pairs of chiral silver nanoclusters (R/S-Ag29 and R/S-Ag16) using an achiral Ag10 nanocluster as starting material in the presence of different concentration chiral inducer (R/S)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (R/S-BNP). R/S-Ag29, formed in the low-concentration R/S-BNP, exhibits a unique kernel-shell structure consisting of a distorted Ag13 icosahedron and an integrated cage-like organometallic shell with a C3 symmetry, and possesses a superatomic 6-electron configuration (1S2|1P4). By contrast, R/S-Ag16, formed in the high-concentration R/S-BNP, features a sandwich-like pentagram with AgI-pure kernel. Profiting from the hierarchically chiral structures and superatomic kernel-dominated phosphorescence, R/S-Ag29 exhibits infrequent CPP activity in the second near-infrared (975 nm) region, being the first instance of NIR-II CPP observed among CPL-active metal nanoclusters. This study presents a new approach to reduce the difficulty of de novo synthesis for chiral silver nanomaterials, and facilitates the design of CPP-active superatomic nanoclusters in NIR region.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| |
Collapse
|
13
|
Kumaranchira Ramankutty K. Circular dichroism and circularly polarized luminescence of ligand-protected molecular metal clusters: insights into structure-chiroptical property relationships. NANOSCALE 2024; 16:11914-11927. [PMID: 38845602 DOI: 10.1039/d4nr01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Molecular noble metal clusters are an emerging class of circularly polarized luminescent (CPL) nanomaterials. Many of the ligand-protected metal clusters exhibit discrete electronic absorption bands, which are assigned to their structural components such as metal core, ligands and metal-ligand interfaces. This implies the suitability of the chiroptical spectroscopic approach to unravel the structure-chiroptical property relationships in molecular metal clusters. Due to the tremendous developments in computational methods for investigating chiroptical properties, along with circular dichroism (CD) and CPL spectroscopy, understanding of the structure-chiroptical properties of these clusters is rapidly progressing. This review discusses various strategies such as the use of chiral ligands, metal atom substitution, ligand exchange, co-crystallization with chiral ligands, etc., for inducing and enhancing the CPL of such metal clusters. This review demonstrates the potential of combined CD-CPL spectroscopic investigations and theoretical calculations to unravel the origins of photoluminescence and CPL activity of chiral metal clusters.
Collapse
Affiliation(s)
- Krishnadas Kumaranchira Ramankutty
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, 69551, India.
| |
Collapse
|
14
|
Zheng H, Zhou Y, Yan B, Zhou G, Cheng X, Lin S, Duan M, Li J, Wang L, Fan C, Chen J, Shen J. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. J Am Chem Soc 2024; 146:17094-17102. [PMID: 38867462 DOI: 10.1021/jacs.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoang Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicheng Lin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
16
|
Zhong Y, Wang X, Li T, Yao Q, Dong W, Lu M, Bai X, Wu Z, Xie J, Zhang Y. White-Emitting Gold Nanocluster Assembly with Dynamic Color Tuning. NANO LETTERS 2024; 24:6997-7003. [PMID: 38721805 DOI: 10.1021/acs.nanolett.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.
Collapse
Affiliation(s)
- Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tingting Li
- College of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130012, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Tang J, Xu N, Ren A, Ma L, Xu W, Han Z, Chen Z, Li Q. Two-Orders-of-Magnitude Enhancement of Photoinitiation Activity via a Simple Surface Engineering of Metal Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202403645. [PMID: 38530138 DOI: 10.1002/anie.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
Collapse
Affiliation(s)
- Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ning Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zijie Chen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Shi Y, Li Y, Liu Q, Wang L, Zhang J, Shi G, Qiao X, He Y, Zhang W, Pang X. Confined Unimolecular Micelles for Directed Self-Assembly of Ultrastable Multiple-Responsive Ratiometric Fluorescent Ultrasmall Nanoparticle Assemblies. J Phys Chem Lett 2024; 15:4342-4350. [PMID: 38619464 DOI: 10.1021/acs.jpclett.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ultrasmall fluorescent nanomaterials have been widely studied as novel fluorescent probes; however, these nanomaterials are prone to structural damage or aggregation, and the sensitivity and accuracy of most single emission fluorescence probes were very low. Therefore, the controlled synthesis of stable dual-emission ratiometric fluorescence ultrasmall assembly probes still remains a challenge. Herein, star-like polymer unimolecular micelles were utilized as a scaffold template to encapsulate fluorescent ultrasmall carbon quantum dots (CQDs) and gold nanoclusters (AuNCs) via the polymer template directed self-assembly strategy to obtain multiple-responsive ratiometric fluorescent assemblies. The assemblies were ultrastable, well-defined, and nearly monodispersed with controlled size, regular morphology, and pH- and thermal-responsiveness. The assemblies can be applied to realize rapid, sensitive, quantitative, and specific detection of Cu2+ and GSH. Moreover, the convenient rapid real-time detection was realized via the combination of the visualized paper-based sensor, and the multilevel information encryption was also achieved.
Collapse
Affiliation(s)
- Yaxuan Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuying Li
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Luoyang Ship Material Research Institute, Luoyang 471023, P. R. China
| | - Qifu Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junle Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
19
|
Heintzelman DJ, Nelson SA, Knappenberger KL. Influence of Halogen-Solvent Hydrogen Bonding on Gold Nanocluster Photoluminescence. J Phys Chem Lett 2024; 15:2951-2956. [PMID: 38452374 DOI: 10.1021/acs.jpclett.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The influence of gold nanocluster-solvent interactions on nanostructure optical properties was determined. Using [Au11(BINAP)4X2]+, where X = Cl or Br, as a model system, the dramatic influence of halogen-solvent hydrogen bonding on nanocluster optical properties was resolved. The creation of a nanocluster-solvent hydrogen-bond network yielded intense photoluminescence (PL) and an accompanying 2-fold reduction in vibration-mediated nonradiative decay rates. PL was quenched for systems that did not support hydrogen bonding. As reflected by absorption line widths, Raman scattering, and transient absorption spectroscopy measurements, the hydrogen-bond network increased nanocluster structural rigidity and reduced nonradiative carrier decay rates. The results highlight the significant role of the nanocluster-solvent interface in determining the properties of structurally precise materials.
Collapse
Affiliation(s)
- Daniel J Heintzelman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seth A Nelson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Chen RQ, Wang ST, Liu YJ, Zhang J, Fang WH. Assembly of Homochiral Aluminum Oxo Clusters for Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:7524-7532. [PMID: 38451059 DOI: 10.1021/jacs.3c13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.
Collapse
Affiliation(s)
- Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Wen W, Liu G, Wei X, Huang H, Wang C, Zhu D, Sun J, Yan H, Huang X, Shi W, Dai X, Dong J, Jiang L, Guo Y, Wang H, Liu Y. Biomimetic nanocluster photoreceptors for adaptative circular polarization vision. Nat Commun 2024; 15:2397. [PMID: 38493210 PMCID: PMC10944536 DOI: 10.1038/s41467-024-46646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Nanoclusters with atomically precise structures and discrete energy levels are considered as nanoscale semiconductors for artificial intelligence. However, nanocluster electronic engineering and optoelectronic behavior have remained obscure and unexplored. Hence, we create nanocluster photoreceptors inspired by mantis shrimp visual systems to satisfy the needs of compact but multi-task vision hardware and explore the photo-induced electronic transport. Wafer-scale arrayed photoreceptors are constructed by a nanocluster-conjugated molecule heterostructure. Nanoclusters perform as an in-sensor charge reservoir to tune the conductance levels of artificial photoreceptors by a light valve mechanism. A ligand-assisted charge transfer process takes place at nanocluster interface and it features an integration of spectral-dependent visual adaptation and circular polarization recognition. This approach is further employed for developing concisely structured, multi-task, and compact artificial visual systems and provides valuable guidelines for nanocluster neuromorphic devices.
Collapse
Affiliation(s)
- Wei Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guocai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Danlei Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Tao Y, Luan N, Yang C, Sun J, Li K, Dai X, Hailong Zhang, Zhifang Chai, Wang S, Wang Y. Incorporation of the 99TcO 4- Anion within the Ag 24(C≡C tBu) 204+ Cluster Unveiling the Unique Shell-to-Core Charge Transfer. J Am Chem Soc 2024. [PMID: 38489242 DOI: 10.1021/jacs.3c13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We present the first example of an 99TcO4- anion entrapped within the cavity of a silver cluster, revealing an unprecedented photoinduced charge transfer phenomenon. [Ag24(C≡CtBu)20(99TcO4)]·(BF4)3 (denoted as 99TcO4-@Ag24) was successfully synthesized and structurally characterized. Single-crystal X-ray diffraction and Raman spectroscopy reveal that the tetrahedral structure of the 99TcO4- anion sustains significant symmetry breaking with weakened Tc-O bond strength under confinement within the Ag24(C≡CtBu)204+ cluster. Notably, 99TcO4-@Ag24 exhibits a broadband electronic absorption spectrum in the visible region, which was absent for the other 99TcO4--containing compounds. Density functional theory calculations elucidate that host-guest electrostatic interactions result in an electron polarization effect between the 99TcO4- anion core and the Ag24 cationic shell. The emergence of an absorption band in 99TcO4-@Ag24 is rationalized by intermolecular charge transfer from the Ag24 electronic states to the lowest unoccupied molecular orbitals of 99TcO4- instead of the intramolecular electron transition observed in other 99TcO4--containing compounds.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ni Luan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyun Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayu Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Zhang C, Guan S, Li HY, Dong XY, Zang SQ. Metal Clusters Confined in Chiral Zeolitic Imidazolate Framework for Circularly Polarized-Luminescence Inks. NANO LETTERS 2024; 24:2048-2056. [PMID: 38166154 DOI: 10.1021/acs.nanolett.3c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.
Collapse
Affiliation(s)
- Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Yang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Wang WF, Xie MJ, Wang PK, Lu J, Li BY, Wang MS, Wang SH, Zheng FK, Guo GC. Thermally Activated Delayed Fluorescence (TADF)-active Coinage-metal Sulfide Clusters for High-resolution X-ray Imaging. Angew Chem Int Ed Engl 2024; 63:e202318026. [PMID: 38157447 DOI: 10.1002/anie.202318026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420 photons MeV-1 , as well as a low detection limit of 208.65 nGy s-1 that is 26 times lower than the medical standard (5.5 μGy s-1 ). More importantly, a high X-ray imaging resolution of 16 lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.
Collapse
Affiliation(s)
- Wen-Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mei-Juan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Peng-Kun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Bao-Yi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
| | - Shuai-Hua Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Fa-Kun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350608, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Qu M, Zhang FQ, Zhang GL, Qiao MM, Zhao LX, Li SL, Walter M, Zhang XM. Cocrystallization-driven Formation of fcc-based Ag 110 Nanocluster with Chinese Triple Luban Lock Shape. Angew Chem Int Ed Engl 2024; 63:e202318390. [PMID: 38117040 DOI: 10.1002/anie.202318390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Luban locks with mortise and tenon structure have structural diversity and architectural stability, and it is extremely challenging to synthesize Luban lock-like structures at the molecular level. In this work, we report the cocrystallization of two structurally related atom-precise fcc silver nanoclusters Ag110 (SPhF)48 (PPh3 )12 (Ag110 ) and Ag14 (μ6 -S)(SPhF)12 (PPh3 )8 (Ag14 ). It is worth noting that the Ag110 cluster is the first compound to simulate the complex Luban lock structure at the molecular level. Meanwhile, Ag110 is the largest known fcc-based silver nanocluster, so far, there is no precedent for fcc silver nanocluster with more than 100 silver atoms. DFT calculations show that Ag110 is a 58-electron superatom with an electronically closed shell1S2 1P6 1D10 2S2 1F14 2P6 1G18 . Ag110 ⋅Ag14 can rapidly catalyze the reduction of 4-nitrophenol within 4 minutes. In addition, Ag110 presents clear structural evidence to reveal the critical size and mechanism of the transformation of metal core from fcc stacking to quasi-spherical superatom. This research work provides an important structural model for studying the nucleation mechanism and structural assembly of silver nanoclusters.
Collapse
Affiliation(s)
- Mei Qu
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Gai-Li Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Miao-Miao Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Li-Xiang Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, 79110, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, 79108, Freiburg, Germany
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| |
Collapse
|
26
|
Chandrashekar P, Sardar G, Sengupta T, Reber AC, Mondal PK, Kabra D, Khanna SN, Deria P, Mandal S. Modulation of Singlet-Triplet Gap in Atomically Precise Silver Cluster-Assembled Material. Angew Chem Int Ed Engl 2024; 63:e202317345. [PMID: 38078805 DOI: 10.1002/anie.202317345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Silver cluster-based solids have garnered considerable attention owing to their tunable luminescence behavior. While surface modification has enabled the construction of stable silver clusters, controlling interactions among clusters at the molecular level has been challenging due to their tendency to aggregate. Judicious choice of stabilizing ligands becomes pivotal in crafting a desired assembly. However, detailed photophysical behavior as a function of their cluster packing remained unexplored. Here, we modulate the packing pattern of Ag12 clusters by varying the nitrogen-based ligand. CAM-1 formed through coordination of the tritopic linker molecule and NC-1 with monodentate pyridine ligand; established via non-covalent interactions. Both the assemblies show ligand-to-metal-metal charge transfer (LMMCT) based cluster-centered emission band(s). Temperature-dependent photoluminescence spectra exhibit blue shifts at higher temperatures, which is attributed to the extent of the thermal reverse population of the S1 state from the closely spaced T1 state. The difference in the energy gap (ΔEST ) dictated by their assemblies played a pivotal role in the way that Ag12 cluster assembly in CAM-1 manifests a wider ΔEST and thus requires higher temperatures for reverse intersystem crossing (RISC) than assembly of NC-1. Such assembly-defined photoluminescence properties underscore the potential toolkit to design new cluster- assemblies with tailored optoelectronic properties.
Collapse
Affiliation(s)
- Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| | - Gopa Sardar
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Turbasu Sengupta
- Department of Physics, Virginia Commonwealth University, Richmond, VA-23220, USA
| | - Arthur C Reber
- Department of Physics, Virginia Commonwealth University, Richmond, VA-23220, USA
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shiv N Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, VA-23220, USA
| | - Pravas Deria
- School of Chemical & Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL-62901, USA
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
27
|
Feng N, Wang Z, Sun D, Zhang L, Xin X, Sun P, Azam M, Li H. Kinetically Controlled Structural Modulation of the Self-Assembled Silver Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305366. [PMID: 37792210 DOI: 10.1002/smll.202305366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Indexed: 10/05/2023]
Abstract
Metal nanoclusters (NCs) with atomic precision are growing into a fascinating class of building blocks for supramolecular chemistry. What makes it more interesting is the enhanced optical properties of the ordered structures, including aggregation-induced emission (AIE). However, algorithm dictating the self-assembly of metal NCs in multicomponent environment remains largely unknown, and effective means to manipulate the self-assembly is still lacking, especially under kinetic control. Herein, nanofibers which contain sub-1 nm nanowires and exhibit circularly polarized phosphorescence (CPP) are obtained from crystallization-induced self-assembly (CISA) of water-soluble, negatively charged silver NCs (Ag9 -NCs) in the presence of glutamic acid (Glu). By the introduction of a positively-charged additive (choline chloride, CC), the structure of the nanowires is modulated and the lateral interaction between adjacent nanofibers is adjusted, leading to simultaneous improvement of the phosphorescence and chirality which finally enhances CPP. Importantly, changing the time at which CC is introduced altered the kinetic pathway of the CISA, which enables to effectively manipulate both the final structures of the self-assembled Ag9 -NCs and the output of the optical signals.
Collapse
Affiliation(s)
- Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of China Research Institute of Daily Chemistry Co., Ltd, Sinolight Corporation, Taiyuan, 030001, P. R. China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
28
|
Biswas S, Negishi Y. A Comprehensive Analysis of Luminescent Crystallized Cu Nanoclusters. J Phys Chem Lett 2024; 15:947-958. [PMID: 38252029 PMCID: PMC10839905 DOI: 10.1021/acs.jpclett.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.
Collapse
Affiliation(s)
- Sourav Biswas
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
29
|
Ma XH, Si Y, Hu JH, Dong XY, Xie G, Pan F, Wei YL, Zang SQ, Zhao Y. High-Efficiency Pure Blue Circularly Polarized Phosphorescence from Chiral N-Heterocyclic-Carbene-Stabilized Copper(I) Clusters. J Am Chem Soc 2023; 145:25874-25886. [PMID: 37963217 DOI: 10.1021/jacs.3c10192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Circularly polarized luminescence (CPL) materials have attracted considerable attention for their promising applications in encryption, chiral sensing, and three-dimensional (3D) displays. However, the preparation of high-efficiency, pure blue CPL materials remains challenging. In this study, we reported an enantiomeric pair of triangle copper(I) clusters (R/S-Cu3) rigidified by employing chiral N-heterocyclic carbene (NHC) ligands with two pyridine-functionalized wingtips. These chiral clusters emitted pure blue phosphorescence that overlapped with that of the commercial blue phosphor having Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.14, 0.10), and the films exhibited an unprecedented photoluminescence quantum yield (PLQY) of ∼70.0%. Additionally, the solutions showed very bright circularly polarized phosphorescence (CPP) with a dissymmetry factor of ±2.1 × 10-3. The excellent solubility and photostability endowed these pure-blue-emitting chiral clusters with promising applications as pure blue CPP inks for 3D printing white objects, such as precise-atomic-enlarged models of metal clusters and a lovely white stereoscopic "rabbit". The intricate mechanism underlying blue phosphorescence in this small cluster and across various states is elucidated through a comprehensive approach that integrates thorough analysis of luminescence properties, controlled experiments, and theoretical calculations. For the first time, we propose that the dominant high-energy emission center is constituted by delocalized hybrid orbitals over multiple atomic centers, encompassing both the metal and the coordinated atoms. This challenges stereotypical assumptions that the cluster center solely supports low-energy emissions. This work expands the currently limited range of CPP functional materials and provides a new direction for CPP applications involving NHC-stabilized metal clusters.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, P. R. China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Li Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
30
|
Dong JP, Xu Y, Zhang XG, Zhang H, Yao L, Wang R, Zang SQ. Copper-Sulfur-Nitrogen Cluster Providing a Local Proton for Efficient Carbon Dioxide Photoreduction. Angew Chem Int Ed Engl 2023; 62:e202313648. [PMID: 37801352 DOI: 10.1002/anie.202313648] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Atomically precise Cu clusters are highly desirable as catalysts for CO2 reduction reaction (CO2 RR), and they provide an appropriate model platform for elaborating their structure-activity relationship. However, an efficient overall photocatalytic CO2 RR with H2 O using assembled Cu-cluster aggregates as single component photocatalyst has not been reported. Herein, we report a stable crystalline Cu-S-N cluster photocatalyst with local protonated N-H groups (denoted as Cu6 -NH). The catalyst exhibits suitable photocatalytic redox potentials, high structural stability, active catalytic species, and a narrow band gap, which account for its outstanding photocatalytic CO2 RR performance under visible light, with ≈100 % selectivity for CO evolution. Remarkably, systematic isostructural Cu-cluster control experiments, in situ infrared spectroscopy, and density functional theory calculations revealed that the protonated pyrimidine N atoms in the Cu6 -NH cluster act as a proton relay station, providing a local proton during the photocatalytic CO2 RR. This efficiently lowers the energy barrier for the formation of the *COOH intermediate, which is the rate-limiting step, efficiently enhancing the photocatalytic performance. This work lays the foundation for the development of atomically precise metal-cluster-based photocatalysts.
Collapse
Affiliation(s)
- Jian-Peng Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xun-Guang Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Huan Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ling Yao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
31
|
Liu YJ, Liu Y, Zang SQ. Solvation-Mediated Self-Assembly from Crystals to Helices of Protic Acyclic Carbene Au I -Enantiomers with Chirality Amplification. Angew Chem Int Ed Engl 2023; 62:e202311572. [PMID: 37732820 DOI: 10.1002/anie.202311572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Constructing chiral supramolecular assembly and exploring the underlying mechanism are of great significance in promoting the development of circularly polarized luminescence (CPL)-active materials. Herein, we report a solvation-mediated self-assembly from single-crystals to helical nanofibers based on the first protic acyclic (methoxy)(amino)carbenes (pAMACs) AuI -enantiomers driven by a synergetic aurophilic interactions and H-bonds. Their aggregation-dependent thermally activated delayed fluorescence properties with high quantum yields (ΦFL ) up to 95 % were proved to be attributed to packing modes of Au⋅⋅⋅Au dimers with π-stacking or one-dimensional extended Au⋅⋅⋅Au chains. Via drop-casting method, supramolecular P- or M-helices were prepared. Detailed studies on the helices demonstrate that formations of extended helical Au⋅⋅⋅Au molecular chains amplify supramolecular chirality, leading to strong CPL with high dissymmetry factor (|glum |=0.030, ΦFL =67 %) and high CPL brightness (BCPL ) of 4.87×10-3 . Our findings bring new insights into the fabrication of helical structures to improve CPL performance by modifying aurophilic interactions.
Collapse
Affiliation(s)
- Ying-Jie Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
32
|
Li Q, Yuan J, Zhao D, Wang Y, Li H. Stable and Highly Luminescent Silver Nanoclusters in the 13X Zeolite Enabled by Mg 2+ Doping and Their Luminescence Tuning by Heating Temperature. Inorg Chem 2023; 62:18299-18306. [PMID: 37883650 DOI: 10.1021/acs.inorgchem.3c03079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Zeolite-confined silver nanoclusters (Ag-zeolite) have aroused vast interest due to their remarkable luminescence. The countercations within a zeolite play critical roles in determining the luminescent properties of the resulting Ag-zeolite. We observed, in this work, that introducing Mg2+ enabled the Ag-13X zeolite a stable and bright yellow emission with a high PLQY of 94.6%, the first report on the luminescence enhancement of the Ag-13X zeolite by Mg2+, to the best of our knowledge. The formation of specific internal electric fields inside 13X and the structural contraction of the zeolite framework due to the high charge density and the small ionic radius of Mg2+ are believed to be responsible for the enhanced stable and bright yellow emission. The stabilization effect of Mg2+ is removed by increasing the heating temperature above 700 °C, which leads to the variation of silver nanoclusters as a result of the framework collapse of the zeolite. The Ag-zeolite synthesized by us, featured with a broad emission band, a high PLQY of 94.6%, and good thermal stability, can be considered a suitable candidate to replace the traditional commercial yellow-emitting phosphor YAG:Ce3+ for light-based applications. This work contributes to a valuable reference for the rational design of silver nanoclusters confined in zeolites with promising new functionalities and stimulates potential applications as novel phosphors for near-ultraviolet light-emitting diodes (NUV-LEDs).
Collapse
Affiliation(s)
- Qianrui Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Jinping Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Di Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yige Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
33
|
Sevilla RC, Soebroto RJ, Kurniawan IS, Chen PW, Chang SH, Shen JL, Chou WC, Yeh JM, Huang HY, Yuan CT. Self-Trapped, Thermally Equilibrated Delayed Fluorescence Enables Low-Reabsorption Luminescent Solar Concentrators Based on Gold-Doped Silver Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922121 DOI: 10.1021/acsami.3c13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Reabsorption-free luminescent solar concentrators (LSCs) are crucial ingredients for photovoltaic windows. Atomically precise metal nanoclusters (NCs) with large Stokes-shifted photoluminescence (PL) hold great promise for applications in LSCs. However, a fundamental understanding of the PL mechanism, particularly on the excited-state interaction and exciton kinetics, is still lacking. Herein, we studied the exciton-phonon coupling and singlet/triplet exciton dynamics for gold-doped silver NCs in a solid matrix. Following photoexcitation, the excitons can be self-trapped via strong exciton-phonon coupling. Subsequently, rapid thermal equilibration between the singlet and triplet states occurs due to the coexistence of small energy splitting and spin-orbit coupling. Finally, broadband delayed fluorescence with a large Stokes shift can be generated, namely, self-trapped, thermally equilibrated delayed fluorescence (ST-TEDF). Benefiting from superior ST-TEDF, we demonstrated efficient LSCs with minimized reabsorption.
Collapse
Affiliation(s)
- Russel Cruz Sevilla
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ruth Jeane Soebroto
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Irwan Saleh Kurniawan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Po-Wen Chen
- Physics Division, National Atomic Research Institute, Taoyuan 325207, Taiwan
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
34
|
Rück V, Liisberg MB, Mollerup CB, He Y, Chen J, Cerretani C, Vosch T. A DNA-Stabilized Ag 18 12+ Cluster with Excitation-Intensity-Dependent Dual Emission. Angew Chem Int Ed Engl 2023; 62:e202309760. [PMID: 37578902 DOI: 10.1002/anie.202309760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
DNA-stabilized silver nanoclusters (DNA-AgNCs) are easily tunable emitters with intriguing photophysical properties. Here, a DNA-AgNC with dual emission in the red and near-infrared (NIR) regions is presented. Mass spectrometry data showed that two DNA strands stabilize 18 silver atoms with a nanocluster charge of 12+. Besides determining the composition and charge of DNA2 [Ag18 ]12+ , steady-state and time-resolved methods were applied to characterize the picosecond red fluorescence and the relatively intense microsecond-lived NIR luminescence. During this process, the luminescence-to-fluorescence ratio was found to be excitation-intensity-dependent. This peculiar feature is very rare for molecular emitters and allows the use of DNA2 [Ag18 ]12+ as a nanoscale excitation intensity probe. For this purpose, calibration curves were constructed using three different approaches based either on steady-state or time-resolved emission measurements. The results showed that processes like thermally activated delayed fluorescence (TADF) or photon upconversion through triplet-triplet annihilation (TTA) could be excluded for DNA2 [Ag18 ]12+ . We, therefore, speculate that the ratiometric excitation intensity response could be the result of optically activated delayed fluorescence.
Collapse
Affiliation(s)
- Vanessa Rück
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Mikkel B Liisberg
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Christian Brinch Mollerup
- Department of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen, Denmark
| | - Yanmei He
- Division of Chemical Physics and NanoLund, Lund University P.O. Box 124, 22100, Lund, Sweden
| | - Junsheng Chen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Cecilia Cerretani
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
35
|
Li Y, Xu S, Zhang X, Man Y, Zhang J, Zhang G, Chen S, Duan C, Han C, Xu H. Bulk Passivation Enables Hundredfold-Enhanced Electroluminescence of Monophosphine Cu 4 I 4 Cubes. Angew Chem Int Ed Engl 2023; 62:e202308410. [PMID: 37578640 DOI: 10.1002/anie.202308410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Electroluminescent (EL) clusters emerged rapidly, owing to their organic-inorganic hybrid character useful for comprehensive performance integration and the potential for large-scale display and lighting applications. However, despite their good photoluminescent (PL) properties, until present, no efficient EL monodentate ligand-based clusters were reported due to structural variation during processing and excitation and exciton confinement on cluster-centered quenching states. Here we demonstrate an effective bulky passivation strategy for efficient cluster light-emitting diodes with a monophosphine Cu4 I4 cube named [TMeOPP]4 Cu4 I4 . With terminal pyridine groups, an active matrix named TmPyPB supports an effective host-cluster interplay for configuration fixation, structural stabilization, and exciton-confinement optimization. Compared to common inactive hosts, the passivation effects of TmPyPB markedly reduce trap-state densities by 24-40 % to suppress nonradiative decay, resulting in state-of-the-art PL and EL quantum yields reaching 99 % and 15.6 %, respectively, which are significantly improved by about 7-fold. TmPyPB simultaneously increases EL luminance to 104 nits, which is ≈100-fold that of the non-doped analogue.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Siwei Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Guangming Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
36
|
Li Y, Zhang X, Man Y, Xu S, Zhang J, Zhang G, Chen S, Duan C, Han C, Xu H. Interfacial Passivation Enormously Enhances Electroluminescence of Triphenylphosphine Cu 4 I 4 Cube. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302984. [PMID: 37267437 DOI: 10.1002/adma.202302984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Defect is one of the key factors limiting optoelectronic performances of organic-inorganic hybrid systems. Although high-efficiency bidentate ligands based electroluminescent (EL) clusters reported, until present, only few EL clusters based on monodentate ligands are realized since their structural instability induces more surface/interface defects. Herein, this bottleneck is first overcome in virtue of interfacial passivation by electron transporting layers (ETL). Through using TmPyPB with meta-linked pyridines as ETL, photoluminescent (PL) and EL quantum efficiencies of the simplest monophosphine Cu4 I4 cube [TPP]4 Cu4 I4 are greatly improved by ≈2 and 23 folds, respectively, as well as ≈200 folds increased luminance, corresponding to a huge leap from nearly unlighted (<20 nits) to highly bright (>3000 nits). The passivation effect of TmPyPB on surface defects of cluster layer is embodied as preventing interfacial charge trapping and suppressing exciton nonradiation.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shiwei Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Guangming Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
37
|
Barman S, Ranjan P, Datta A. Achiral phosphonium induced remarkable circular polarized luminescence in a chiral cadmium(II) halide perovskite material. Chem Commun (Camb) 2023; 59:10283-10286. [PMID: 37539629 DOI: 10.1039/d3cc02666c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Circular polarized luminescence (CPL) sensitive two-dimensional organic inorganic halide perovskites have versatile applications in optical displays, encrypted transmission and quantum communications. Here, a new chiral hybrid [MePh3P]2CdCl4 (PCC) single crystal (SC) is synthesized using an achiral phosphonium cation by a solvent evaporation process at room temperature (rt). SC x-ray study reveals a non-centrosymmetric point group 23, with 21-screw optical axes providing a chiral Sohncke space group. Hirshfeld surface analysis suggests long-range H-bonding and ionic interactions (~ 3-9 kJ mol-1) and short-range Van der Waals and dispersion interactions (∼0.4-4 kJ mol-1). Both the PCC thin films and SCs exhibit prominent circular dichroism (CD) and remarkably superior CPL activity at rt (|gCD| ≈ 5 × 10-3 and |glum| ≈ 4.3 × 10-2).
Collapse
Affiliation(s)
- Shubhankar Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Priya Ranjan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
- Technical Research Center, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
38
|
Peng QC, Si YB, Wang ZY, Dai SH, Chen QS, Li K, Zang SQ. Thermally Activated Delayed Fluorescence Coinage Metal Cluster Scintillator. ACS CENTRAL SCIENCE 2023; 9:1419-1426. [PMID: 37521783 PMCID: PMC10375876 DOI: 10.1021/acscentsci.3c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 08/01/2023]
Abstract
X-ray scintillators are widely used in medical imaging, industrial flaw detection, security inspection, and space exploration. However, traditional commercial scintillators are usually associated with a high use cost because of their substantial toxicity and easy deliquescence. In this work, an atomically precise Au-Cu cluster scintillator (1) with a thermally activated delayed fluorescence (TADF) property was facilely synthesized, which is environmentally friendly and highly stable to water and oxygen. The TADF property of 1 endows it with an ultrahigh exciton utilization rate. Combined with the effective absorption of X-ray caused by the heavy-atom effect and a limited nonradiative transition caused by close packing in the crystal state, 1 exhibits an excellent radioluminescence property. Moreover, 1 has good processability for fabricating a large, flexible thin-film device (10 cm × 10 cm) for high-resolution X-ray imaging, which can reach 40 μm (12.5 LP mm-1). The properties mentioned earlier make the coinage metal cluster promising for use as a substitute for traditional commercial scintillators.
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Bing Si
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Heng Dai
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
State Key Laboratory of Photocatalysis on Energy and Environment,
College of Chemistry, Fuzhou University, Fuzhou 350100, China
| | - Qiu-Shui Chen
- MOE
Key Laboratory for Analytical Science of Food Safety and Biology,
State Key Laboratory of Photocatalysis on Energy and Environment,
College of Chemistry, Fuzhou University, Fuzhou 350100, China
| | - Kai Li
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Tan SCL, He Z, Wang G, Yu Y, Yang L. Protein-Templated Metal Nanoclusters: Molecular-like Hybrids for Biosensing, Diagnostics and Pharmaceutics. Molecules 2023; 28:5531. [PMID: 37513403 PMCID: PMC10383052 DOI: 10.3390/molecules28145531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The use of proteins as biomolecular templates to synthesize atomically precise metal nanoclusters has been gaining traction due to their appealing properties such as photoluminescence, good colloidal- and photostability and biocompatibility. The synergistic effect of using a protein scaffold and metal nanoclusters makes it especially attractive for biomedical applications. Unlike other reviews, we focus on proteins in general as the protective ligand for various metal nanoclusters and highlight their applications in the biomedical field. We first introduce the approaches and underlined principles in synthesizing protein-templated metal nanoclusters and summarize some of the typical proteins that have been used thus far. Afterwards, we highlight the key physicochemical properties and the characterization techniques commonly used for the size, structure and optical properties of protein-templated metal nanoclusters. We feature two case studies to illustrate the importance of combining these characterization techniques to elucidate the formation process of protein-templated metal nanoclusters. Lastly, we highlight the promising applications of protein-templated metal nanoclusters in three areas-biosensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhijian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
40
|
Wang S, He W, Cui Y, Zhou Z, Ma L, Zang SQ. Atomically precise chiral silver clusters based on non-chiral ligands for acid/base stimulated luminescence response. NANOSCALE 2023. [PMID: 37466042 DOI: 10.1039/d3nr03095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chiral metal nanoclusters synthesized by non-chiral ligands are usually in the form of racemates. Thus, resolving racemic compounds continues to be a great challenge. Herein, we report a case of the racemic compound hexanuclear silver cluster (Ag6-Rac) protected by the non-chiral sulfhydryl ligand sodium 1H-1,2,3-triazole-5-thiolate (SHTT) and 2,6-bis(diphenylphosphino)pyridine (dpppy). The homochiral clusters in Ag6-Rac are able to spontaneously crystallize and undergo chiral resolution to obtain a racemic conglomerate (Ag6-S/Ag6-R) by solvent-induced crystallization. Interestingly, the Ag6-Rac clusters exhibit strong luminescence in solid and solution, which can respond to trifluoroacetic acid (TFA) and reversible cycling over five times using diethylamine (DEA). This work provides a new research model for resolving racemic clusters and constructing stimulus-responsive clusters.
Collapse
Affiliation(s)
- Shuaibo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weimiao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yujia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Lufang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Ma XH, Li J, Luo P, Hu JH, Han Z, Dong XY, Xie G, Zang SQ. Carbene-stabilized enantiopure heterometallic clusters featuring EQE of 20.8% in circularly-polarized OLED. Nat Commun 2023; 14:4121. [PMID: 37433775 DOI: 10.1038/s41467-023-39802-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Bright and efficient chiral coinage metal clusters show promise for use in emerging circularly polarized light-emitting materials and diodes. To date, highly efficient circularly polarized organic light-emitting diodes (CP-OLEDs) with enantiopure metal clusters have not been reported. Herein, through rational design of a multidentate chiral N-heterocyclic carbene (NHC) ligand and a modular building strategy, we synthesize a series of enantiopure Au(I)-Cu(I) clusters with exceptional stability. Modulation of the ligands stabilize the chiral excited states of clusters to allow thermally activated delayed fluorescence, resulting in the highest orange-red photoluminescence quantum yields over 93.0% in the solid state, which is accompanied by circularly polarized luminescence. Based on the solution process, a prototypical orange-red CP-OLED with a considerably high external quantum efficiency of 20.8% is prepared. These results demonstrate the extensive designability of chiral NHC ligands to stabilize polymetallic clusters for high performance in chiroptical applications.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Jing Li
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering Henan Polytechnic University, 454000, Jiaozuo, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhen Han
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
- College of Chemistry and Chemical Engineering Henan Polytechnic University, 454000, Jiaozuo, China.
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, 430072, Wuhan, China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
42
|
Dutta C, Maniappan S, Kumar J. Delayed luminescence guided enhanced circularly polarized emission in atomically precise copper nanoclusters. Chem Sci 2023; 14:5593-5601. [PMID: 37265730 PMCID: PMC10231326 DOI: 10.1039/d3sc00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Metal nanoclusters, owing to their intriguing optical properties, have captivated research interest over the years. Of special interest have been chiral nanoclusters that display optical activity in the visible region of the electromagnetic spectrum. While the ground state chiral properties of metal nanoclusters have been reasonably well studied, of late research focus has shifted attention to their excited state chiral investigations. Herein, we report the synthesis and chiral investigations of a pair of enantiomerically pure copper nanoclusters that exhibit intense optical activity, both in their ground and excited states. The synthesis of nanoclusters using l- and d-isomers of the chiral ligand led to the formation of metal clusters that displayed mirror image circular dichroism and circularly polarized luminescence signals. Structural validation using single crystal XRD, powder XRD and XPS in conjunction with chiroptical and computational analysis helped to develop a structure-property correlation that is unique to such clusters. Investigations on the mechanism of photoluminescence revealed that the system exhibits long excited state lifetimes. A combination of delayed luminescence and chirality resulted in circularly polarized delayed luminescence, a phenomenon that is rather uncommon to the field of metal clusters. The chiral emissive properties could be successfully demonstrated in free-standing polymeric films highlighting their potential for use in the field of data encryption, security tags and polarized light emitting devices. Moreover, the fundamental understanding of the mechanism of excited state chirality in copper clusters opens avenues for the exploration of similar effects in a variety of other clusters.
Collapse
Affiliation(s)
- Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| |
Collapse
|
43
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
44
|
Wang JY, Si Y, Luo XM, Wang ZY, Dong XY, Luo P, Zhang C, Duan C, Zang SQ. Stepwise Amplification of Circularly Polarized Luminescence in Chiral Metal Cluster Ensembles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207660. [PMID: 36840632 PMCID: PMC10161016 DOI: 10.1002/advs.202207660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Chiral metal-organic frameworks (MOFs) are usually endowed by chiral linkers and/or guests. The strategy using chiral secondary building units in MOFs for solving the trade-off of circularly polarized luminescence (CPL)-active materials, high photoluminescence quantum yields (PLQYs) and high dissymmetry factors (|glum |) has not been demonstrated. This work directionally assembles predesigned chiral silver clusters with ACQ linkers through reticular chemistry. The nanoscale chirality of the cluster transmits through MOF's framework, where the linkers are arranged in a quasi-parallel manner and are efficiently isolated and rigidified. Consequently, this backbone of chiral cluster-based MOFs demonstrates superb CPL, high PLQYs of 50.3%, and |glum | of 1.2 × 10-2 . Crystallographic analyses and DFT calculations show the quasi-parallel arrangement manners of emitting linkers leading to a large angle between the electric and magnetic transition dipole moments, boosting CPL response. As compared, an ion-pair-direct assembly without interactions between linkers induces one-ninth |glum | and one-sixth PLQY values, further highlighting the merits of directional arrangement in reticular nets. In addition, a prototype CPL switching fabricated by a chiral framework is controlled through alternating ultraviolet and visible light. This work is expected to inspire the development of reticular chemistry for high-performance chiroptical materials.
Collapse
Affiliation(s)
- Jia-Yin Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Peng Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
45
|
Miyajima S, Hossain S, Ikeda A, Kosaka T, Kawawaki T, Niihori Y, Iwasa T, Taketsugu T, Negishi Y. Key factors for connecting silver-based icosahedral superatoms by vertex sharing. Commun Chem 2023; 6:57. [PMID: 36977829 PMCID: PMC10050180 DOI: 10.1038/s42004-023-00854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Metal nanoclusters composed of noble elements such as gold (Au) or silver (Ag) are regarded as superatoms. In recent years, the understanding of the materials composed of superatoms, which are often called superatomic molecules, has gradually progressed for Au-based materials. However, there is still little information on Ag-based superatomic molecules. In the present study, we synthesise two di-superatomic molecules with Ag as the main constituent element and reveal the three essential conditions for the formation and isolation of a superatomic molecule comprising two Ag13-xMx structures (M = Ag or other metal; x = number of M) connected by vertex sharing. The effects of the central atom and the type of bridging halogen on the electronic structure of the resulting superatomic molecule are also clarified in detail. These findings are expected to provide clear design guidelines for the creation of superatomic molecules with various properties and functions.
Collapse
Affiliation(s)
- Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Taiga Kosaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
- WPI-ICReDD, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
46
|
Han Z, Si Y, Dong XY, Hu JH, Zhang C, Zhao XH, Yuan JW, Wang Y, Zang SQ. Smart Reversible Transformations between Chiral Superstructures of Copper Clusters for Optical and Chiroptical Switching. J Am Chem Soc 2023; 145:6166-6176. [PMID: 36912642 DOI: 10.1021/jacs.2c12055] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Superstructures made from nanoscale clusters with new collective properties are promising in high-tech applications; however, chiral superstructures remain elusive, and the limited intercluster coupling effect at room temperature hampers the tailoring of collective properties. Here, we show that from chiral monomeric copper clusters to two enantiomeric pairs of supercrystals with distinct phases, the absorption band edge red-shifts by over 1.3 eV, with photoluminescence and circularly polarized phosphorescence from visible (572 nm) to near-infrared (NIR, 858 nm). These supercrystals with high NIR quantum yields of up to 45% at room temperature are prototyped for night-vision imaging. In response to solvent and temperature stimuli, chiral supercrystal-to-supercrystal transformations occurred, concomitant with high-contrast optical/chiroptical switching. In situ single-crystal X-ray diffraction (SCXRD), steady-state and time-resolved optical spectroscopy, and response experiments combined with theoretical calculations demonstrate that distance-sensitive intercluster orbital interactions contribute to the exceptional collective optical responses. Such chiral supercrystals built from subnanoscale metal clusters with novel collective chiroptical responses would be useful in the fields of information storage and NIR optical devices.
Collapse
Affiliation(s)
- Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jia-Hua Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xuan-Hui Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Wang Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Multiphoton excited singlet/triplet mixed self-trapped exciton emission. Nat Commun 2023; 14:1310. [PMID: 36898989 PMCID: PMC10006417 DOI: 10.1038/s41467-023-36958-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Multiphoton excited luminescence is of paramount importance in the field of optical detection and biological photonics. Self-trapped exciton (STE) emission with self-absorption-free advantages provide a choice for multiphoton excited luminescence. Herein, multiphoton excited singlet/triplet mixed STE emission with a large full width at half-maximum (617 meV) and Stokes shift (1.29 eV) has been demonstrated in single-crystalline ZnO nanocrystals. Temperature dependent steady state, transient state and time-resolved electron spin resonance spectra demonstrate a mixture of singlet (63%) and triplet (37%) mixed STE emission, which contributes to a high photoluminescence quantum yield (60.5%). First-principles calculations suggest 48.34 meV energy per exciton stored by phonons in the distorted lattice of excited states, and 58 meV singlet-triplet splitting energy for the nanocrystals being consistent with the experimental measurements. The model clarifies long and controversial debates on ZnO emission in visible region, and the multiphoton excited singlet/triplet mixed STE emission is also observed.
Collapse
|
48
|
Sakurada T, Cho Y, Paritmongkol W, Lee WS, Wan R, Su A, Shcherbakov-Wu W, Müller P, Kulik HJ, Tisdale WA. 1D Hybrid Semiconductor Silver 2,6-Difluorophenylselenolate. J Am Chem Soc 2023; 145:5183-5190. [PMID: 36811999 DOI: 10.1021/jacs.2c11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Organic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF2(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains. Density functional theory calculations reveal that AgSePhF2 (2,6) has strongly dispersive conduction and valence bands along the 1D crystal axis. Visible photoluminescence centered around λp ≈ 570 nm at room temperature exhibits both prompt (110 ps) and delayed (36 ns) components. The absorption spectrum exhibits excitonic resonances characteristic of low-dimensional hybrid semiconductors, with an exciton binding energy of approximately 170 meV as determined by temperature-dependent photoluminescence. The discovery of an emissive 1D silver organoselenolate highlights the structural and compositional richness of the chalcogenolate material family and provides new insights for molecular engineering of low-dimensional hybrid organic-inorganic semiconductors.
Collapse
Affiliation(s)
- Tomoaki Sakurada
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Watcharaphol Paritmongkol
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ruomeng Wan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Annlin Su
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Zuo Z, Pan X, Yang G, Zhang Y, Liu X, Zha J, Yuan X. Cu(I) complexes with aggregation-induced emission for enhanced photodynamic antibacterial application. Dalton Trans 2023; 52:2942-2947. [PMID: 36847279 DOI: 10.1039/d3dt00333g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This communication reports the design of aggregation-induced emission (AIE)-featured PEG-condensed Cu(I)-p-MBA aggregates (PCuA). Benefiting from the AIE trait and intrinsic antibacterial property of Cu species, the as-developed PCuA exhibits enhanced photodynamic antibacterial activities against broad-spectrum bacteria, providing a paradigm in the design of novel antibacterial agents.
Collapse
Affiliation(s)
- Zhongxiang Zuo
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xinxin Pan
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Yuemin Zhang
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xingwen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Jinrun Zha
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), 53 Zhengzhou Rd., Shibei District, Qingdao 266042, P. R. China.
| |
Collapse
|
50
|
Das S, Sekine T, Mabuchi H, Hossain S, Das S, Aoki S, Takahashi S, Negishi Y. Silver cluster-assembled materials for label-free DNA detection. Chem Commun (Camb) 2023; 59:4000-4003. [PMID: 36876908 DOI: 10.1039/d2cc06933d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Herein, we report two newly synthesized silver cluster-assembled materials (SCAMs), [Ag14(StBu)10(CF3COO)4(bpa)2]n (bpa = 1,2-bis(4-pyridyl)acetylene) and [Ag12(StBu)6(CF3COO)6(bpeb)3]n (bpeb = 1,4-bis(pyridin-4-ylethynyl)benzene) composed of Ag14 and Ag12 chalcogenolate cluster cores, respectively, bridged by acetylenic bispyridine linkers. The linker structures and electrostatic interaction between positively charged SCAMs and negatively charged DNA confer the SCAMs with the ability to suppress the high background fluorescence of single-stranded (ss) DNA probes with SYBR Green I nucleic acid stain, leading to high signal-to-noise ratio for label-free target DNA detection.
Collapse
Affiliation(s)
- Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Subhabrata Das
- Chemical Materials Development Department, TANAKA KIKINZOKU KOGYO K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki 300-4247, Japan.
| | - Shun Aoki
- Bio Chemical Development Department, TANAKA KIKINZOKU KOGYO K.K., Hiratsuka Technical Center, 2-73, Shinmachi, Hiratsuka, Kanagawa 254-0076, Japan
| | - Shuntaro Takahashi
- Chemical Materials Development Department, TANAKA KIKINZOKU KOGYO K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki 300-4247, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|