1
|
He ZX, Yue MH, Liu KJ, Wang Y, Qiao JY, Lv XY, Xi K, Zhang YX, Fan JN, Yu HL, He XX, Zhu XJ. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacology 2024; 49:1689-1699. [PMID: 38649427 PMCID: PMC11399394 DOI: 10.1038/s41386-024-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mei-Hui Yue
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Kai-Jie Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao Wang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jiu-Ye Qiao
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xin-Yue Lv
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ke Xi
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Xin Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jia-Ni Fan
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
2
|
Vlkolinsky R, Khom S, Vozella V, Bajo M, Roberto M. Withdrawal from chronic alcohol impairs the serotonin-mediated modulation of GABAergic transmission in the infralimbic cortex in male rats. Neurobiol Dis 2024; 199:106590. [PMID: 38996987 PMCID: PMC11412312 DOI: 10.1016/j.nbd.2024.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The infralimbic cortex (IL) is part of the medial prefrontal cortex (mPFC), exerting top-down control over structures that are critically involved in the development of alcohol use disorder (AUD). Activity of the IL is tightly controlled by γ-aminobutyric acid (GABA) transmission, which is susceptible to chronic alcohol exposure and withdrawal. This inhibitory control is regulated by various neuromodulators, including 5-hydroxytryptamine (5-HT; serotonin). We used chronic intermittent ethanol vapor inhalation exposure, a model of AUD, in male Sprague-Dawley rats to induce alcohol dependence (Dep) followed by protracted withdrawal (WD; 2 weeks) and performed ex vivo electrophysiology using whole-cell patch clamp to study GABAergic transmission in layer V of IL pyramidal neurons. We found that WD increased frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs), whereas miniature IPSCs (mIPSCs; recorded in the presence of tetrodotoxin) were unaffected by either Dep or WD. The application of 5-HT (50 μM) increased sIPSC frequencies and amplitudes in naive and Dep rats but reduced sIPSC frequencies in WD rats. Additionally, 5-HT2A receptor antagonist M100907 and 5-HT2C receptor antagonist SB242084 reduced basal GABA release in all groups to a similar extent. The blockage of either 5-HT2A or 5-HT2C receptors in WD rats restored the impaired response to 5-HT, which then resembled responses in naive rats. Our findings expand our understanding of synaptic inhibition in the IL in AUD, indicating that antagonism of 5-HT2A and 5-HT2C receptors may restore GABAergic control over IL pyramidal neurons. SIGNIFICANCE STATEMENT: Impairment in the serotonergic modulation of GABAergic inhibition in the medial prefrontal cortex contributes to alcohol use disorder (AUD). We used a well-established rat model of AUD and ex vivo whole-cell patch-clamp electrophysiology to characterize the serotonin modulation of GABAergic transmission in layer V infralimbic (IL) pyramidal neurons in ethanol-naive, ethanol-dependent (Dep), and ethanol-withdrawn (WD) male rats. We found increased basal inhibition following WD from chronic alcohol and altered serotonin modulation. Exogenous serotonin enhanced GABAergic transmission in naive and Dep rats but reduced it in WD rats. 5-HT2A and 5-HT2C receptor blockage in WD rats restored the typical serotonin-mediated enhancement of GABAergic inhibition. Our findings expand our understanding of synaptic inhibition in the infralimbic neurons in AUD.
Collapse
Affiliation(s)
- Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria.
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Hong X, Ma J, Zheng S, Zhao G, Fu C. Advances in the research and application of neurokinin-1 receptor antagonists. J Zhejiang Univ Sci B 2024; 25:91-105. [PMID: 38303494 PMCID: PMC10835208 DOI: 10.1631/jzus.b2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/07/2023] [Indexed: 02/03/2024]
Abstract
Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.
Collapse
Affiliation(s)
- Xiangyu Hong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shanshan Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangyu Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiyun Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Borgonetti V, Roberts AJ, Bajo M, Galeotti N, Roberto M. Chronic alcohol induced mechanical allodynia by promoting neuroinflammation: A mouse model of alcohol-evoked neuropathic pain. Br J Pharmacol 2023; 180:2377-2392. [PMID: 37050867 PMCID: PMC10898491 DOI: 10.1111/bph.16091] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain is considered a key factor contributing to alcohol use disorder (AUD). The mechanisms responsible for chronic pain associated with chronic alcohol consumption are unknown. We evaluated the development of chronic pain in a mouse model of alcohol dependence and investigate the role of neuroinflammation. EXPERIMENTAL APPROACH The chronic-intermittent ethanol two-bottle choice CIE-2BC paradigm generates three groups: alcohol-dependent with escalating alcohol intake, nondependent (moderate drinking) and alcohol-naïve control male and female mice. We measured mechanical allodynia during withdrawal and after the last voluntary drinking. Immunoblotting was used to evaluate the protein levels of IBA-1, CSFR, IL-6, p38 and ERK2/1 in spinal cord tissue of dependent and non-dependent animals. KEY RESULTS We found significant escalation of drinking in the dependent group in male and female compared with the non-dependent group. The dependent group developed mechanical allodynia during 72 h of withdrawal, which was completely reversed after voluntary drinking. We observed an increased pain hypersensitivity compared with the naïve in 50% of non-dependent group. Increased IBA-1 and CSFR expression was observed in spinal cord tissue of both hypersensitivity-abstinence related and neuropathy-alcohol mice, and increased IL-6 expression and ERK1/2 activation in mice with hypersensitivity-related to abstinence, but not in mice with alcohol-evoked neuropathic pain. CONCLUSIONS AND IMPLICATIONS The CIE-2BC model induces two distinct pain conditions specific to the type of ethanol exposure: abstinence-related hypersensitivity in dependent mice and alcohol-evoked neuropathic pain in about a half of the non-dependent mice.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michal Bajo
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, Florence, 50139, Italy
| | - Marisa Roberto
- Department of Molecular Medicine and Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Borgonetti V, Cruz B, Vozella V, Khom S, Steinman MQ, Bullard R, D’Ambrosio S, Oleata CS, Vlkolinsky R, Bajo M, Zorrilla EP, Kirson D, Roberto M. IL-18 Signaling in the Rat Central Amygdala Is Disrupted in a Comorbid Model of Post-Traumatic Stress and Alcohol Use Disorder. Cells 2023; 12:1943. [PMID: 37566022 PMCID: PMC10416956 DOI: 10.3390/cells12151943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Michael Q. Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Shannon D’Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| |
Collapse
|
6
|
Khom S, Borgonetti V, Vozella V, Kirson D, Rodriguez L, Gandhi P, Bianchi PC, Snyder A, Vlkolinsky R, Bajo M, Oleata CS, Ciccocioppo R, Roberto M. Glucocorticoid receptors regulate central amygdala GABAergic synapses in Marchigian-Sardinian alcohol-preferring rats. Neurobiol Stress 2023; 25:100547. [PMID: 37547774 PMCID: PMC10401345 DOI: 10.1016/j.ynstr.2023.100547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 08/08/2023] Open
Abstract
Impairments in the function of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced glucocorticoid receptor (GR) activity in the central amygdala (CeA) are critical mechanisms in the pathogenesis of alcohol use disorder (AUD). The GR antagonist mifepristone attenuates craving in AUD patients, alcohol consumption in AUD models, and decreases CeA γ-aminobutyric acid (GABA) transmission in alcohol-dependent rats. Previous studies suggest elevated GR activity in the CeA of male alcohol-preferring Marchigian-Sardinian (msP) rats, but its contribution to heightened CeA GABA transmission driving their characteristic post-dependent phenotype is largely unknown. We determined Nr3c1 (the gene encoding GR) gene transcription in the CeA in male and female msP and Wistar rats using in situ hybridization and studied acute effects of mifepristone (10 μM) and its interaction with ethanol (44 mM) on pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) and electrically evoked inhibitory postsynaptic potentials (eIPSPs) in the CeA using ex vivo slice electrophysiology. Female rats of both genotypes expressed more CeA GRs than males, suggesting a sexually dimorphic GR regulation of CeA activity. Mifepristone reduced sIPSC frequencies (GABA release) and eIPSP amplitudes in msP rats of both sexes, but not in their Wistar counterparts; however, it did not prevent acute ethanol-induced increase in CeA GABA transmission in male rats. In msP rats, GR regulates CeA GABAergic signaling under basal conditions, indicative of intrinsically active GR. Thus, enhanced GR function in the CeA represents a key mechanism contributing to maladaptive behaviors associated with AUD.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, A 1090, Austria
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pauravi Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula Cristina Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil
| | - Angela Snyder
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Chuong V, Farokhnia M, Khom S, Pince CL, Elvig SK, Vlkolinsky R, Marchette RC, Koob GF, Roberto M, Vendruscolo LF, Leggio L. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023; 8:e170671. [PMID: 37192005 PMCID: PMC10371247 DOI: 10.1172/jci.insight.170671] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Growing evidence indicates that the glucagon-like peptide-1 (GLP-1) system is involved in the neurobiology of addictive behaviors, and GLP-1 analogues may be used for the treatment of alcohol use disorder (AUD). Here, we examined the effects of semaglutide, a long-acting GLP-1 analogue, on biobehavioral correlates of alcohol use in rodents. A drinking-in-the-dark procedure was used to test the effects of semaglutide on binge-like drinking in male and female mice. We also tested the effects of semaglutide on binge-like and dependence-induced alcohol drinking in male and female rats, as well as acute effects of semaglutide on spontaneous inhibitory postsynaptic currents (sIPSCs) from central amygdala (CeA) and infralimbic cortex (ILC) neurons. Semaglutide dose-dependently reduced binge-like alcohol drinking in mice; a similar effect was observed on the intake of other caloric/noncaloric solutions. Semaglutide also reduced binge-like and dependence-induced alcohol drinking in rats. Semaglutide increased sIPSC frequency in CeA and ILC neurons from alcohol-naive rats, suggesting enhanced GABA release, but had no overall effect on GABA transmission in alcohol-dependent rats. In conclusion, the GLP-1 analogue semaglutide decreased alcohol intake across different drinking models and species and modulated central GABA neurotransmission, providing support for clinical testing of semaglutide as a potentially novel pharmacotherapy for AUD.
Collapse
Affiliation(s)
- Vicky Chuong
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Claire L. Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Sophie K. Elvig
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - George F. Koob
- Neurobiology of Addiction Section, NIDA IRP, NIH, Baltimore, Maryland, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, NIDA IRP and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR), NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
8
|
Heilig M. Stress-related neuropeptide systems as targets for treatment of alcohol addiction: A clinical perspective. J Intern Med 2023; 293:559-573. [PMID: 37052145 DOI: 10.1111/joim.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Alcohol use is a major cause of disability and death globally. These negative consequences disproportionately affect people who develop alcohol addiction, a chronic relapsing condition characterized by increased motivation to use alcohol, choice of alcohol over healthy, natural rewards, and continued use despite negative consequences. Available pharmacotherapies for alcohol addiction are few, have effect sizes in need of improvement, and remain infrequently prescribed. Research aimed at developing novel therapeutics has in large part focused on attenuating pleasurable or "rewarding" properties of alcohol, but this targets processes that primarily play a role as initiation factors. As clinical alcohol addiction develops, long-term changes in brain function result in a shift of affective homeostasis, and rewarding alcohol effects become progressively reduced. Instead, increased stress sensitivity and negative affective states emerge in the absence of alcohol and create powerful incentives for relapse and continued use through negative reinforcement, or "relief." Based on research in animal models, several neuropeptide systems have been proposed to play an important role in this shift, suggesting that these systems could be targeted by novel medications. Two mechanisms in this category, antagonism at corticotropin-releasing factor type 1, and neurokinin 1/substance P receptors, have been subject to initial evaluation in humans. A third, kappa-opioid receptor antagonism, has been evaluated in nicotine addiction and could soon be tested for alcohol. This paper discusses findings with these mechanisms to date, and their prospects as future targets for novel medications.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
9
|
The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain. Cell Mol Neurobiol 2023; 43:511-523. [PMID: 35179680 DOI: 10.1007/s10571-022-01205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/07/2023]
Abstract
The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.
Collapse
|
10
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Rockville, MD, USA
| | - Marisa Roberto
- Molecular Medicine Department, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Rodriguez L, Kirson D, Wolfe SA, Patel RR, Varodayan FP, Snyder AE, Gandhi PJ, Khom S, Vlkolinsky R, Bajo M, Roberto M. Alcohol Dependence Induces CRF Sensitivity in Female Central Amygdala GABA Synapses. Int J Mol Sci 2022; 23:7842. [PMID: 35887190 PMCID: PMC9318832 DOI: 10.3390/ijms23147842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronically relapsing disease characterized by loss of control in seeking and consuming alcohol (ethanol) driven by the recruitment of brain stress systems. However, AUD differs among the sexes: men are more likely to develop AUD, but women progress from casual to binge drinking and heavy alcohol use more quickly. The central amygdala (CeA) is a hub of stress and anxiety, with corticotropin-releasing factor (CRF)-CRF1 receptor and Gamma-Aminobutyric Acid (GABA)-ergic signaling dysregulation occurring in alcohol-dependent male rodents. However, we recently showed that GABAergic synapses in female rats are less sensitive to the acute effects of ethanol. Here, we used patch-clamp electrophysiology to examine the effects of alcohol dependence on the CRF modulation of rat CeA GABAergic transmission of both sexes. We found that GABAergic synapses of naïve female rats were unresponsive to CRF application compared to males, although alcohol dependence induced a similar CRF responsivity in both sexes. In situ hybridization revealed that females had fewer CeA neurons containing mRNA for the CRF1 receptor (Crhr1) than males, but in dependence, the percentage of Crhr1-expressing neurons in females increased, unlike in males. Overall, our data provide evidence for sexually dimorphic CeA CRF system effects on GABAergic synapses in dependence.
Collapse
Affiliation(s)
- Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarah A. Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Florence P. Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Angela E. Snyder
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Pauravi J. Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Pharmaceutical Sciences, University of Vienna Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| |
Collapse
|
12
|
Melkumyan M, Silberman Y. Subregional Differences in Alcohol Modulation of Central Amygdala Neurocircuitry. Front Mol Neurosci 2022; 15:888345. [PMID: 35866156 PMCID: PMC9294740 DOI: 10.3389/fnmol.2022.888345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder is a highly significant medical condition characterized by an impaired ability to stop or control alcohol use, compulsive alcohol seeking behavior, and withdrawal symptoms in the absence of alcohol. Understanding how alcohol modulates neurocircuitry critical for long term and binge-like alcohol use, such as the central amygdala (CeA), may lead to the development of novel therapeutic strategies to treat alcohol use disorder. In clinical studies, reduction in the volume of the amygdala has been linked with susceptibility to relapse to alcohol use. Preclinical studies have shown the involvement of the CeA in the effects of alcohol use, with lesions of the amygdala showing a reduction in alcohol drinking, and manipulations of cells in the CeA altering alcohol drinking. A great deal of work has shown that acute alcohol, as well as chronic alcohol exposure via intake or dependence models, alters glutamatergic and GABAergic transmission in the CeA. The CeA, however, contains heterogeneous cell populations and distinct subregional differences in neurocircuit architecture which may influence the mechanism by which alcohol modulates CeA function overall. The current review aimed to parse out the differences in alcohol effects on the medial and lateral subregions of the CeA, and what role neuroinflammatory cells and markers, the endocannabinoid system, and the most commonly studied neuropeptide systems play in mediating these effects. A better understanding of alcohol effects on CeA subregional cell type and neurocircuit function may lead to development of more selective pharmacological interventions for alcohol use disorder.
Collapse
Affiliation(s)
- Mariam Melkumyan
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Varodayan FP, Patel RR, Matzeu A, Wolfe SA, Curley DE, Khom S, Gandhi PJ, Rodriguez L, Bajo M, D'Ambrosio S, Sun H, Kerr TM, Gonzales RA, Leggio L, Natividad LA, Haass-Koffler CL, Martin-Fardon R, Roberto M. The Amygdala Noradrenergic System Is Compromised With Alcohol Use Disorder. Biol Psychiatry 2022; 91:1008-1018. [PMID: 35430085 PMCID: PMC9167785 DOI: 10.1016/j.biopsych.2022.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a leading preventable cause of death. The central amygdala (CeA) is a hub for stress and AUD, while dysfunction of the noradrenaline stress system is implicated in AUD relapse. METHODS Here, we investigated whether alcohol (ethanol) dependence and protracted withdrawal alter noradrenergic regulation of the amygdala in rodents and humans. Male adult rats were housed under control conditions, subjected to chronic intermittent ethanol vapor exposure to induce dependence, or withdrawn from chronic intermittent ethanol vapor exposure for 2 weeks, and ex vivo electrophysiology, biochemistry (catecholamine quantification by high-performance liquid chromatography), in situ hybridization, and behavioral brain-site specific pharmacology studies were performed. We also used real-time quantitative polymerase chain reaction to assess gene expression of α1B, β1, and β2 adrenergic receptors in human postmortem brain tissue from men diagnosed with AUD and matched control subjects. RESULTS We found that α1 receptors potentiate CeA GABAergic (gamma-aminobutyric acidergic) transmission and drive moderate alcohol intake in control rats. In dependent rats, β receptors disinhibit a subpopulation of CeA neurons, contributing to their excessive drinking. Withdrawal produces CeA functional recovery with no change in local noradrenaline tissue concentrations, although there are some long-lasting differences in the cellular patterns of adrenergic receptor messenger RNA expression. In addition, postmortem brain analyses reveal increased α1B receptor messenger RNA in the amygdala of humans with AUD. CONCLUSIONS CeA adrenergic receptors are key neural substrates of AUD. Identification of these novel mechanisms that drive alcohol drinking, particularly during the alcohol-dependent state, supports ongoing new medication development for AUD.
Collapse
Affiliation(s)
- Florence P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California; Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Reesha R Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California; Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Dallece E Curley
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island; Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Pauravi J Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Shannon D'Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tony M Kerr
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas
| | - Rueben A Gonzales
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island; Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Luis A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island; Carney Institute for Brain Science, Brown University, Providence, Rhode Island; Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
14
|
Vink R, Corrigan F. Chronic traumatic encephalopathy: genes load the gun and repeated concussion pulls the trigger. Neural Regen Res 2022; 17:1963-1964. [PMID: 35142676 PMCID: PMC8848591 DOI: 10.4103/1673-5374.335147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Robert Vink
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Frances Corrigan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Khom S, Rodriguez L, Gandhi P, Kirson D, Bajo M, Oleata CS, Vendruscolo LF, Mason BJ, Roberto M. Alcohol dependence and withdrawal increase sensitivity of central amygdalar GABAergic synapses to the glucocorticoid receptor antagonist mifepristone in male rats. Neurobiol Dis 2022; 164:105610. [PMID: 34995754 PMCID: PMC9301881 DOI: 10.1016/j.nbd.2022.105610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence. Regulation of CeA synaptic activity by GR is currently unknown. Here, we utilized mifepristone and the selective GR antagonist CORT118335 (both at 10 μM) as pharmacological tools to dissect the role of GR on GABA transmission in male, adult Sprague-Dawley rats using slice electrophysiology. We subjected rats to chronic intermittent alcohol vapor exposure for 5–7 weeks to induce alcohol dependence. A subset of dependent rats subsequently underwent protracted alcohol withdrawal for 2 weeks, and air-exposed rats served as controls. Mifepristone reduced the frequency of pharmacologically-isolated spontaneous inhibitory postsynaptic currents (sIPSC) in the CeA (medial subdivision) without affecting postsynaptic measures in all groups, suggesting decreased GABA release with the largest effect in dependent rats. CORT118335 did not significantly alter GABA transmission in naive, but decreased sIPSC frequency in dependent rats. Similarly, mifepristone decreased amplitudes of evoked inhibitory postsynaptic potentials only in dependent rats and during protracted withdrawal. Collectively, our study provides insight into regulation of CeA GABAergic synapses by GR. Chronic ethanol enhances the efficiency of mifepristone and CORT118335, thus highlighting the potential of drugs targeting GR as a promising pharmacological avenue for the treatment of AUD.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America; Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Larry Rodriguez
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Pauravi Gandhi
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Dean Kirson
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, 71 S Manassas, Memphis, TN 38163, United States of America
| | - Michal Bajo
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Christopher S Oleata
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD 21224, United States of America
| | - Barbara J Mason
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States of America.
| |
Collapse
|
16
|
Khom S, Nguyen JD, Vandewater SA, Grant Y, Roberto M, Taffe MA. Self-Administration of Entactogen Psychostimulants Dysregulates Gamma-Aminobutyric Acid (GABA) and Kappa Opioid Receptor Signaling in the Central Nucleus of the Amygdala of Female Wistar Rats. Front Behav Neurosci 2021; 15:780500. [PMID: 34975428 PMCID: PMC8716434 DOI: 10.3389/fnbeh.2021.780500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Male rats escalate intravenous self-administration of entactogen psychostimulants, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxymethamphetamine (MDMA) under extended access conditions, as with typical psychostimulants. Here, we investigated whether female rats escalate self-administration of methylone, 3,4-methylenedioxypentedrone (pentylone), and MDMA and then studied consequences of MDMA and pentylone self-administration on GABAA receptor and kappa opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA), a brain area critically dysregulated by extended access self-administration of alcohol or cocaine. Adult female Wistar rats were trained to self-administer methylone, pentylone, MDMA (0.5 mg/kg/infusion), or saline-vehicle using a fixed-ratio 1 response contingency in 6-h sessions (long-access: LgA) followed by progressive ratio (PR) dose-response testing. The effects of pentylone-LgA, MDMA-LgA and saline on basal GABAergic transmission (miniature post-synaptic inhibitory currents, mIPSCs) and the modulatory role of KOR at CeA GABAergic synapses were determined in acute brain slices using whole-cell patch-clamp. Methylone-LgA and pentylone-LgA rats similarly escalated their drug intake (both obtained more infusions compared to MDMA-LgA rats), however, pentylone-LgA rats reached higher breakpoints in PR tests. At the cellular level, baseline CeA GABA transmission was markedly elevated in pentylone-LgA and MDMA-LgA rats compared to saline-vehicle. Specifically, pentylone-LgA was associated with increased CeA mIPSC frequency (GABA release) and amplitude (post-synaptic GABAA receptor function), while mIPSC amplitudes (but not frequency) was larger in MDMA-LgA rats compared to saline rats. In addition, pentylone-LgA and MDMA-LgA profoundly disrupted CeA KOR signaling such as both KOR agonism (1 mM U50488) and KOR antagonism (200 nM nor-binaltorphimine) decreased mIPSC frequency suggesting recruitment of non-canonical KOR signaling pathways. This study confirms escalated self-administration of entactogen psychostimulants under LgA conditions in female rats which is accompanied by increased CeA GABAergic inhibition and altered KOR signaling. Collectively, our study suggests that CeA GABA and KOR mechanisms play a critical role in entactogen self-administration like those observed with escalation of alcohol or cocaine self-administration.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jacques D. Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Sophia A. Vandewater
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Michael A. Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Kirson D, Khom S, Rodriguez L, Wolfe SA, Varodayan FP, Gandhi PJ, Patel RR, Vlkolinsky R, Bajo M, Roberto M. Sex Differences in Acute Alcohol Sensitivity of Naïve and Alcohol Dependent Central Amygdala GABA Synapses. Alcohol Alcohol 2021; 56:581-588. [PMID: 33912894 DOI: 10.1093/alcalc/agab034] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption. We have shown dysregulation of CeA GABAergic synaptic signaling in alcohol dependence animal models, but previous studies have exclusively used males. METHODS Here, we used whole-cell patch clamp electrophysiology to examine basal CeA GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naïve and alcohol dependent rats of both sexes. RESULTS We found that sIPSC kinetics differ between females and males, as well as between naïve and alcohol-dependent animals, with naïve females having the fastest current kinetics. Additionally, we find differences in baseline current kinetics across estrous cycle stages. In contrast to the increase in sIPSC frequency routinely found in males, acute alcohol (11-88 mM) had no effect on sIPSCs in naïve females, however the highest concentration of alcohol increased sIPSC frequency in dependent females. CONCLUSION These results provide important insight into sex differences in CeA neuronal function and dysregulation with alcohol dependence and highlight the need for sex-specific considerations in the development of effective AUD treatment.
Collapse
Affiliation(s)
- Dean Kirson
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sophia Khom
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Larry Rodriguez
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sarah A Wolfe
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Florence P Varodayan
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Reesha R Patel
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roman Vlkolinsky
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
21
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Khom S, Wolfe SA, Patel RR, Kirson D, Hedges DM, Varodayan FP, Bajo M, Roberto M. Alcohol Dependence and Withdrawal Impair Serotonergic Regulation of GABA Transmission in the Rat Central Nucleus of the Amygdala. J Neurosci 2020; 40:6842-6853. [PMID: 32769108 PMCID: PMC7470924 DOI: 10.1523/jneurosci.0733-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Excessive serotonin (5-HT) signaling plays a critical role in the etiology of alcohol use disorder. The central nucleus of the amygdala (CeA) is a key player in alcohol-dependence associated behaviors. The CeA receives dense innervation from the dorsal raphe nucleus, the major source of 5-HT, and expresses 5-HT receptor subtypes (e.g., 5-HT2C and 5-HT1A) critically linked to alcohol use disorder. Notably, the role of 5-HT regulating rat CeA activity in alcohol dependence is poorly investigated. Here, we examined neuroadaptations of CeA 5-HT signaling in adult, male Sprague Dawley rats using an established model of alcohol dependence (chronic intermittent alcohol vapor exposure), ex vivo slice electrophysiology and ISH. 5-HT increased frequency of sIPSCs without affecting postsynaptic measures, suggesting increased CeA GABA release in naive rats. In dependent rats, this 5-HT-induced increase of GABA release was attenuated, suggesting blunted CeA 5-HT sensitivity, which partially recovered in protracted withdrawal (2 weeks). 5-HT increased vesicular GABA release in naive and dependent rats but had split effects (increase and decrease) after protracted withdrawal indicative of neuroadaptations of presynaptic 5-HT receptors. Accordingly, 5-HT abolished spontaneous neuronal firing in naive and dependent rats but had bidirectional effects in withdrawn. Alcohol dependence and protracted withdrawal did not alter either 5-HT1A-mediated decrease of CeA GABA release or Htr1a expression but disrupted 5-HT2C-signaling without affecting Htr2c expression. Collectively, our study provides detailed insights into modulation of CeA activity by the 5-HT system and unravels the vulnerability of the CeA 5-HT system to chronic alcohol and protracted withdrawal.SIGNIFICANCE STATEMENT Elevated GABA signaling in the central nucleus of the amygdala (CeA) underlies key behaviors associated with alcohol dependence. The CeA is reciprocally connected with the dorsal raphe nucleus, the main source of serotonin (5-HT) in the mammalian brain, and excessive 5-HT signaling is critically implicated in the etiology of alcohol use disorder. Our study, using a well-established rat model of alcohol dependence, ex vivo electrophysiology and ISH, provides mechanistic insights into how both chronic alcohol exposure and protracted withdrawal dysregulate 5-HT signaling in the CeA. Thus, our study further expands our understanding of CeA cellular mechanisms involved in the pathophysiology of alcohol dependence and withdrawal.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Reesha R Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - David M Hedges
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Florence P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92307
| |
Collapse
|