1
|
Debisschop A, Bogaert B, Muntean C, De Smedt SC, Raemdonck K. Beyond chloroquine: Cationic amphiphilic drugs as endosomal escape enhancers for nucleic acid therapeutics. Curr Opin Chem Biol 2024; 83:102531. [PMID: 39369558 DOI: 10.1016/j.cbpa.2024.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Nucleic acid (NA) therapeutics have the potential to treat or prevent a myriad of diseases but generally require cytosolic delivery to be functional. NA drugs are therefore often encapsulated into delivery systems that mediate effective endocytic uptake by target cells, but unfortunately often display limited endosomal escape efficiency. This review will focus on the potential of repurposing cationic amphiphilic drugs (CADs) to enhance endosomal escape. In general terms, CADs are small molecules with one or more hydrophobic groups and a polar domain containing a basic amine. CADs have been reported to accumulate in acidified intracellular compartments (e.g., endosomes and lysosomes), integrate in cellular membranes and alter endosomal trafficking pathways, ultimately resulting in improved cytosolic release of the endocytosed cargo. As many CADs are widely used drugs, their repurposing offers opportunities for combination therapies with NAs.
Collapse
Affiliation(s)
- Aliona Debisschop
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Bogaert B, Debisschop A, Ehouarne T, Van Eeckhoutte HP, De Volder J, Jacobs A, Pottie E, De Rycke R, Crabbé A, Mestdagh P, Lentacker I, Brusselle GG, Stove C, Verstraelen S, Maes T, Bracke KR, De Smedt SC, Raemdonck K. Selective Replacement of Cholesterol with Cationic Amphiphilic Drugs Enables the Design of Lipid Nanoparticles with Improved RNA Delivery. NANO LETTERS 2024; 24:2961-2971. [PMID: 38477058 DOI: 10.1021/acs.nanolett.3c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.
Collapse
Affiliation(s)
- Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Aliona Debisschop
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas Ehouarne
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hannelore P Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joyceline De Volder
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - An Jacobs
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Riet De Rycke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, OncoRNAlab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Sandra Verstraelen
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
4
|
O' Donovan DH, De Fusco C, Kuhnke L, Reichel A. Trends in Molecular Properties, Bioavailability, and Permeability across the Bayer Compound Collection. J Med Chem 2023; 66:2347-2360. [PMID: 36752336 DOI: 10.1021/acs.jmedchem.2c01577] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
For oral drugs, medicinal chemists aim to design compounds with high oral bioavailability, of which permeability is a key determinant. Taking advantage of >2000 compounds tested in rat bioavailability studies and >20,000 compounds tested in Caco2 assays at Bayer, we have examined the molecular properties governing bioavailability and permeability. In addition to classical parameters such as logD and molecular weight, we also investigated the relationship between calculated pKa and permeability. We find that neutral compounds retain permeability up to a molecular weight limit of 700, while stronger acids and bases are restricted to weights of 400-500. We also investigate trends for common properties such as hydrogen bond donors and acceptors, polar surface area, aromatic ring count, and rotatable bonds, including compounds which exceed Lipinski's rule of five (Ro5). These property-structure relationships are combined to provide design guidelines for bioavailable drugs in both traditional and "beyond rule of 5" (bRo5) chemical space.
Collapse
Affiliation(s)
| | | | - Lara Kuhnke
- Drug Discovery Sciences, Bayer AG, 13342 Berlin, Germany
| | | |
Collapse
|
5
|
Bogaert B, Sauvage F, Guagliardo R, Muntean C, Nguyen VP, Pottie E, Wels M, Minnaert AK, De Rycke R, Yang Q, Peer D, Sanders N, Remaut K, Paulus YM, Stove C, De Smedt SC, Raemdonck K. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J Control Release 2022; 350:256-270. [PMID: 35963467 PMCID: PMC9401634 DOI: 10.1016/j.jconrel.2022.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.
Collapse
Affiliation(s)
- Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Félix Sauvage
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Riet De Rycke
- Ghent University Expertise Center for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium.
| | - Qiangbing Yang
- Experimental Cardiology Laboratory, Regenerative Medicine Center Utrecht and Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, Utrecht, the Netherlands.
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.
| | - Niek Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Christophe Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
7
|
Ismail VS, Britt HM, Mosely JA, Sanderson JM. Peptide lipidation in lysophospholipid micelles and lysophospholipid-enriched membranes. Faraday Discuss 2021; 232:282-294. [PMID: 34555137 DOI: 10.1039/d1fd00030f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl transfer from lipids to membrane-associated peptides is a well-documented process, leading to the generation of a lipidated peptide and a lysolipid. In this article, we demonstrate that acyl transfer from lysophosphatidylcholines (lysoPCs) to the peptide melittin also occurs, both in micelles of pure lysolipid and in lipid/lysolipid mixtures. In the case of bilayers containing lysolipids, acyl transfer from the lysolipid is marginally favoured over transfer from the lipid. In pure bilayers of saturated lipids, the introduction of even small amounts of lysolipid appears to significantly increase the reactivity towards lipidation.
Collapse
Affiliation(s)
- Vian S Ismail
- Chemistry Department, Durham University, Durham, DH1 3LE, UK.
| | - Hannah M Britt
- Chemistry Department, Durham University, Durham, DH1 3LE, UK.
| | - Jackie A Mosely
- National Horizons Centre, School of Health & Life Sciences, Teesside University, Darlington, DL1 1HG, UK.
| | | |
Collapse
|
8
|
Aragón-Muriel A, Liscano Y, Morales-Morales D, Polo-Cerón D, Oñate-Garzón J. A Study of the Interaction of a New Benzimidazole Schiff Base with Synthetic and Simulated Membrane Models of Bacterial and Mammalian Membranes. MEMBRANES 2021; 11:membranes11060449. [PMID: 34208443 PMCID: PMC8235182 DOI: 10.3390/membranes11060449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Biological membranes are complex dynamic systems composed of a great variety of carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organisms and through which the interchange of different substances is regulated in the cell. Given the complexity of membranes, models mimicking them provide a convenient way to study and better understand their mechanisms of action and their interactions with biologically active compounds. Thus, in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectrometric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively, were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simulations were also developed to better understand their interactions. In vitro and in silico assays provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results showed that, at low compound concentrations, the effects were similar in both membrane models. By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol) in the E. coli membrane model were mainly based on hydrophobic interactions.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760031, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, Mexico D.F. 04510, Mexico;
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760031, Colombia;
- Correspondence: (D.P.-C.); (J.O.-G.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia;
- Correspondence: (D.P.-C.); (J.O.-G.)
| |
Collapse
|