1
|
Osborne HC, Foster BM, Al-Hazmi H, Meyer S, Larrosa I, Schmidt CK. Small-Molecule Inhibition of CBX4/7 Hypersensitises Homologous Recombination-Impaired Cancer to Radiation by Compromising CtIP-Mediated DNA End Resection. Cancers (Basel) 2024; 16:2155. [PMID: 38893273 PMCID: PMC11172190 DOI: 10.3390/cancers16112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The therapeutic targeting of DNA repair pathways is an emerging concept in cancer treatment. Compounds that target specific DNA repair processes, such as those mending DNA double-strand breaks (DSBs), are therefore of therapeutic interest. UNC3866 is a small molecule that targets CBX4, a chromobox protein, and a SUMO E3 ligase. As a key modulator of DNA end resection-a prerequisite for DSB repair by homologous recombination (HR)-CBX4 promotes the functions of the DNA resection factor CtIP. Here, we show that treatment with UNC3866 markedly sensitises HR-deficient, NHEJ-hyperactive cancer cells to ionising radiation (IR), while it is non-toxic in selected HR-proficient cells. Consistent with UNC3866 targeting CtIP functions, it inhibits end-resection-dependent DNA repair including HR, alternative end joining (alt-EJ), and single-strand annealing (SSA). These findings raise the possibility that the UNC3866-mediated inhibition of end resection processes we define highlights a distinct vulnerability for the selective killing of HR-ineffective cancers.
Collapse
Affiliation(s)
- Hugh C. Osborne
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Hazim Al-Hazmi
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| | - Stefan Meyer
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
- Department of Paediatric and Adolescent Oncology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
- Department of Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester M13 9PL, UK;
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK; (H.C.O.); (B.M.F.); (H.A.-H.); (S.M.)
| |
Collapse
|
2
|
Dibitetto D, Liptay M, Vivalda F, Dogan H, Gogola E, González Fernández M, Duarte A, Schmid JA, Decollogny M, Francica P, Przetocka S, Durant ST, Forment JV, Klebic I, Siffert M, de Bruijn R, Kousholt AN, Marti NA, Dettwiler M, Sørensen CS, Tille JC, Undurraga M, Labidi-Galy I, Lopes M, Sartori AA, Jonkers J, Rottenberg S. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours. Nat Commun 2024; 15:4430. [PMID: 38789420 PMCID: PMC11126719 DOI: 10.1038/s41467-024-48715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.
Collapse
Affiliation(s)
- Diego Dibitetto
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland.
- Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy.
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Hülya Dogan
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Martín González Fernández
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Alexandra Duarte
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Morgane Decollogny
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Sara Przetocka
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Stephen T Durant
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Josep V Forment
- DDR Biology, Bioscience, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Ismar Klebic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Myriam Siffert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Oncode Institute, Amsterdam, The Netherlands
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Nicole A Marti
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jean-Christophe Tille
- Division of Clinical Pathology, Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Manuela Undurraga
- Division of Gynecology, Department of Pediatrics and Gynecology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Intidhar Labidi-Galy
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, Geneva, 1205, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3012, Bern, Switzerland.
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Nickoloff JA. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy. Molecules 2022; 27:4736. [PMID: 35897913 PMCID: PMC9330692 DOI: 10.3390/molecules27154736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Proliferating cells regularly experience replication stress caused by spontaneous DNA damage that results from endogenous reactive oxygen species (ROS), DNA sequences that can assume secondary and tertiary structures, and collisions between opposing transcription and replication machineries. Cancer cells face additional replication stress, including oncogenic stress that results from the dysregulation of fork progression and origin firing, and from DNA damage induced by radiotherapy and most cancer chemotherapeutic agents. Cells respond to such stress by activating a complex network of sensor, signaling and effector pathways that protect genome integrity. These responses include slowing or stopping active replication forks, protecting stalled replication forks from collapse, preventing late origin replication firing, stimulating DNA repair pathways that promote the repair and restart of stalled or collapsed replication forks, and activating dormant origins to rescue adjacent stressed forks. Currently, most cancer patients are treated with genotoxic chemotherapeutics and/or ionizing radiation, and cancer cells can gain resistance to the resulting replication stress by activating pro-survival replication stress pathways. Thus, there has been substantial effort to develop small molecule inhibitors of key replication stress proteins to enhance tumor cell killing by these agents. Replication stress targets include ATR, the master kinase that regulates both normal replication and replication stress responses; the downstream signaling kinase Chk1; nucleases that process stressed replication forks (MUS81, EEPD1, Metnase); the homologous recombination catalyst RAD51; and other factors including ATM, DNA-PKcs, and PARP1. This review provides an overview of replication stress response pathways and discusses recent pre-clinical studies and clinical trials aimed at improving cancer therapy by targeting replication stress response factors.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Shi L, Kuang D, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Yang J, Li G. Peptide Assembled in a Nano-confined Space as a Molecular Rectifier for the Availability of Ionic Current Modulation. NANO LETTERS 2022; 22:1083-1090. [PMID: 35049303 DOI: 10.1021/acs.nanolett.1c04154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired nanochannels have emerged as a powerful tool for bioengineering and biomedical research due to their robust mechanical and controllable chemical properties. Inspired by inward-rectifier potassium (K+) channels, herein, the charged peptide assembly has been introduced into a nano-confined space for the modulation of ion current rectification (ICR). Peptide-responsive reaction-triggered sequence changes can contribute to polarity conversion of the surface charge; therefore, ICR reversal (ICRR) is generated. Compared with other responsive elements, natural charged peptides show the merit of controllable charge polarity. By electrochemically monitoring the ICRR as an output signal, one can utilize the peptide assembly-mediated ICRR to construct an ionic sensory platform. In addition, a logic gate has been established to demonstrate the availability of an ionic sensory platform for inhibitor screening. As peptide nanoassemblies may also have various structures and functions due to their diverse properties, the ionic modulation system can provide alternatives for the assay of peptide-associated biotargets with biomedical applications.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Deqi Kuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemei Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, Huang M, Ma X, Guo Z, Li T, Deng W, Zheng M, Ji Q, Zhao Y, Ma Y, Wang QE, Tang TS, Guo C. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82:1297-1312.e8. [DOI: 10.1016/j.molcel.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
7
|
Sesquiterpene Lactones Potentiate Olaparib-Induced DNA Damage in p53 Wildtype Cancer Cells. Int J Mol Sci 2022; 23:ijms23031116. [PMID: 35163037 PMCID: PMC8835362 DOI: 10.3390/ijms23031116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Despite notable advances in utilising PARP inhibitor monotherapy, many cancers are not PARP inhibitor-sensitive or develop treatment resistance. In this work, we show that the two structurally-related sesquiterpene lactones, a 2-bromobenzyloxy derivative of dehydrosantonin (BdS) and alantolactone (ATL) sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose treatment with the PARP inhibitor, olaparib. Exposure to combination treatments of olaparib with BdS or ATL induces cell-cycle changes, chromosomal instability, as well as considerable increases in nuclear area. Mechanistically, we uncover that mitotic errors likely depend on oxidative stress elicited by the electrophilic lactone warheads and olaparib-mediated PARP-trapping, culminating in replication stress. Combination treatments exhibit moderately synergistic effects on cell survival, probably attenuated by a p53-mediated, protective cell-cycle arrest in the G2 cell-cycle phase. Indeed, using a WEE1 inhibitor, AZD1775, to inhibit the G2/M cell-cycle checkpoint further decreased cell survival. Around half of all cancers diagnosed retain p53 functionality, and this proportion could be expected to increase with improved diagnostic approaches in the clinic. Utilising sublethal oxidative stress to sensitise p53 wildtype, homologous recombination-proficient cancer cells to low-dose PARP-trapping could therefore serve as the basis for future research into the treatment of cancers currently refractory to PARP inhibition.
Collapse
|
8
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021; 60:20301-20307. [PMID: 34272794 PMCID: PMC8457249 DOI: 10.1002/anie.202108885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/11/2022]
Abstract
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.
Collapse
Affiliation(s)
- Yue Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Waygen Thor
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Kaitlin Hao Yi Chan
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Xia Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Nicholas J. Long
- Department of ChemistryImperial College London, Molecular Sciences Research HubLondonUK
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
9
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|