1
|
Langley A, Abeling-Wang S, Wagner E, Salogiannis J. Movement of the endoplasmic reticulum is driven by multiple classes of vesicles marked by Rab-GTPases. Mol Biol Cell 2025; 36:ar9. [PMID: 39630612 DOI: 10.1091/mbc.e24-04-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Peripheral endoplasmic reticulum (ER) tubules move along microtubules to interact with various organelles through membrane contact sites. Traditionally, ER moves by either sliding along stable microtubules via molecular motors or attaching to the plus ends of dynamic microtubules through tip attachment complexes (TAC). A recently discovered third process, hitchhiking, involves motile vesicles pulling ER tubules along microtubules. Previous research showed that ER hitchhikes on Rab5- and Rab7-marked endosomes, but it is uncertain whether other Rab-vesicles can do the same. In U2OS cells, we screened Rabs for their ability to cotransport with ER tubules and found that ER hitchhikes on post-Golgi vesicles marked by Rab6 (isoforms a and b). Rab6-ER hitchhiking occurs independently of ER-endolysosome contacts and TAC-mediated ER movement. Depleting Rab6 and the motility of Rab6-vesicles reduces overall ER movement. Conversely, relocating these vesicles to the cell periphery causes peripheral ER accumulation, indicating that Rab6-vesicle motility is crucial for a subset of ER movements. Proximal post-Golgi vesicles marked by TGN46 are involved in Rab6-ER hitchhiking, while late Golgi vesicles (Rabs 8/10/11/13/14) are not essential for ER movement. Our further analysis finds that ER to Golgi vesicles marked by Rab1 are also capable of driving a subset of ER movements. Taken together, our findings suggest that ER hitchhiking on Rab-vesicles is a significant mode of ER movement.
Collapse
Affiliation(s)
- Allison Langley
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405
- Department of Molecular Physiology and Biophysics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405
| | - Sarah Abeling-Wang
- Department of Molecular Physiology and Biophysics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405
| | - Erinn Wagner
- Department of Molecular Physiology and Biophysics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405
| | - John Salogiannis
- Department of Molecular Physiology and Biophysics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405
| |
Collapse
|
2
|
Mazumder B, Lu M, Rahmoune H, Fernandez-Villegas A, Ward E, Wang M, Ren J, Yu Y, Zhang T, Liang M, Li W, Läubli NF, Kaminski CF, Kaminski Schierle GS. Sea cucumber-derived extract can protect skin cells from oxidative DNA damage and mitochondrial degradation, and promote wound healing. Biomed Pharmacother 2024; 180:117466. [PMID: 39362069 DOI: 10.1016/j.biopha.2024.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Our skin serves as the primary barrier against external environmental insults, the latter of which can cause oxidative stress within cells, while various bioactive peptides sourced from natural resources hold promise in protecting cells against such oxidative stress. In this study, we investigate the efficacy of a low molecular weight extract from the sea cucumber Apostichopus japonicus, denoted as Sample-P, in facilitating cell migration and wound healing under oxidative stress conditions in skin cells. The naturally derived compound is a highly complex mix of peptides exhibiting antioxidative properties, as highlighted through liquid chromatography-mass spectrometry peptide screening and an in vitro antioxidant assay. Our results demonstrate that Sample-P is capable of promoting cell migration while preventing severe stress responses such as visible through mTOR expression. To further identify the molecular pathways underpinning the overall protective mechanism of Sample-P, we have utilised a proteomics approach. Our data reveal that Sample-P regulates protein expression associated with ribosomal pathways, glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum (ER), which help in preserving DNA integrity and safeguarding cellular organelles, such as mitochondria and the ER, under oxidative stress conditions in skin cells. In summary, in the presence of H2O2, Sample-P exhibits antioxidative properties at both molecular and cellular levels, rendering it a promising candidate for topical skin treatment to wound healing and to address age-related skin conditions.
Collapse
Affiliation(s)
- Bismoy Mazumder
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Meng Lu
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Current address: Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ana Fernandez-Villegas
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Ward
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yi Yu
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Ting Zhang
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Ming Liang
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Wenzhi Li
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Nino F Läubli
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| |
Collapse
|
3
|
Shi R, Zhu Y, Chen Y, Lin Y, Shi S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J Control Release 2024; 375:155-177. [PMID: 39242033 DOI: 10.1016/j.jconrel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Lu M, Hui E, Brockhoff M, Träuble J, Fernandez‐Villegas A, Burton OJ, Lamb J, Ward E, Woodhams PJ, Tadbier W, Läubli NF, Hofmann S, Kaminski CF, Lombardo A, Kaminski Schierle GS. Graphene Microelectrode Arrays, 4D Structured Illumination Microscopy, and a Machine Learning Spike Sorting Algorithm Permit the Analysis of Ultrastructural Neuronal Changes During Neuronal Signaling in a Model of Niemann-Pick Disease Type C. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402967. [PMID: 39340823 PMCID: PMC11600250 DOI: 10.1002/advs.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Indexed: 09/30/2024]
Abstract
Simultaneously recording network activity and ultrastructural changes of the synapse is essential for advancing understanding of the basis of neuronal functions. However, the rapid millisecond-scale fluctuations in neuronal activity and the subtle sub-diffraction resolution changes of synaptic morphology pose significant challenges to this endeavor. Here, specially designed graphene microelectrode arrays (G-MEAs) are used, which are compatible with high spatial resolution imaging across various scales as well as permit high temporal resolution electrophysiological recordings to address these challenges. Furthermore, alongside G-MEAs, an easy-to-implement machine learning algorithm is developed to efficiently process the large datasets collected from MEA recordings. It is demonstrated that the combined use of G-MEAs, machine learning (ML) spike analysis, and 4D structured illumination microscopy (SIM) enables monitoring the impact of disease progression on hippocampal neurons which are treated with an intracellular cholesterol transport inhibitor mimicking Niemann-Pick disease type C (NPC), and show that synaptic boutons, compared to untreated controls, significantly increase in size, leading to a loss in neuronal signaling capacity.
Collapse
Affiliation(s)
- Meng Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ernestine Hui
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Marius Brockhoff
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Jakob Träuble
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ana Fernandez‐Villegas
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Oliver J Burton
- Department of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Jacob Lamb
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Edward Ward
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Philippa J Woodhams
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Wadood Tadbier
- Department of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Nino F Läubli
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Stephan Hofmann
- Department of EngineeringUniversity of Cambridge9 JJ Thomson AveCambridgeCB3 0FAUK
| | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | | | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
5
|
Jang W, Haucke V. ER remodeling via lipid metabolism. Trends Cell Biol 2024; 34:942-954. [PMID: 38395735 DOI: 10.1016/j.tcb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Unlike most other organelles found in multiple copies, the endoplasmic reticulum (ER) is a unique singular organelle within eukaryotic cells. Despite its continuous membrane structure, encompassing more than half of the cellular endomembrane system, the ER is subdivided into specialized sub-compartments, including morphological, membrane contact site (MCS), and de novo organelle biogenesis domains. In this review, we discuss recent emerging evidence indicating that, in response to nutrient stress, cells undergo a reorganization of these sub-compartmental ER domains through two main mechanisms: non-destructive remodeling of morphological ER domains via regulation of MCS and organelle hitchhiking, and destructive remodeling of specialized domains by ER-phagy. We further highlight and propose a critical role of membrane lipid metabolism in this ER remodeling during starvation.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
6
|
Scott ZC, Steen SB, Huber G, Westrate LM, Koslover EF. The endoplasmic reticulum as an active liquid network. Proc Natl Acad Sci U S A 2024; 121:e2409755121. [PMID: 39392663 PMCID: PMC11494354 DOI: 10.1073/pnas.2409755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The peripheral endoplasmic reticulum (ER) forms a dense, interconnected, and constantly evolving network of membrane-bound tubules in eukaryotic cells. While individual structural elements and the morphogens that stabilize them have been described, a quantitative understanding of the dynamic large-scale network topology remains elusive. We develop a physical model of the ER as an active liquid network, governed by a balance of tension-driven shrinking and new tubule growth. This minimalist model gives rise to steady-state network structures with density and rearrangement timescales predicted from the junction mobility and tubule spawning rate. Several parameter-independent geometric features of the liquid network model are shown to be representative of ER architecture in live mammalian cells. The liquid network model connects the timescales of distinct dynamic features such as ring closure and new tubule growth in the ER. Furthermore, it demonstrates how the steady-state network morphology on a cellular scale arises from the balance of microscopic dynamic rearrangements.
Collapse
Affiliation(s)
| | - Samuel B. Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Greg Huber
- Chan Zuckerberg Biohub—San Francisco, San Francisco, CA94158
| | - Laura M. Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI49546
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Qu L, Zhao S, Huang Y, Ye X, Wang K, Liu Y, Liu X, Mao H, Hu G, Chen W, Guo C, He J, Tan J, Li H, Chen L, Zhao W. Self-inspired learning for denoising live-cell super-resolution microscopy. Nat Methods 2024; 21:1895-1908. [PMID: 39261639 DOI: 10.1038/s41592-024-02400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances.
Collapse
Affiliation(s)
- Liying Qu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuanyuan Huang
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianxin Ye
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Kunhao Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuzhen Liu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianming Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Heng Mao
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Chen
- School of Mechanical Science and Engineering, Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, China
| | - Changliang Guo
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Jiaye He
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiubin Tan
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
| | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Huang J, Luo Y, Guo Y, Li W, Wang Z, Liu G, Yang G. Accurate segmentation of intracellular organelle networks using low-level features and topological self-similarity. Bioinformatics 2024; 40:btae559. [PMID: 39302662 PMCID: PMC11467052 DOI: 10.1093/bioinformatics/btae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
MOTIVATION Intracellular organelle networks (IONs) such as the endoplasmic reticulum (ER) network and the mitochondrial (MITO) network serve crucial physiological functions. The morphology of these networks plays a critical role in mediating their functions. Accurate image segmentation is required for analyzing the morphology and topology of these networks for applications such as molecular mechanism analysis and drug target screening. So far, however, progress has been hindered by their structural complexity and density. RESULTS In this study, we first establish a rigorous performance baseline for accurate segmentation of these organelle networks from fluorescence microscopy images by optimizing a baseline U-Net model. We then develop the multi-resolution encoder (MRE) and the hierarchical fusion loss (Lhf) based on two inductive components, namely low-level features and topological self-similarity, to assist the model in better adapting to the task of segmenting IONs. Empowered by MRE and Lhf, both U-Net and Pyramid Vision Transformer (PVT) outperform competing state-of-the-art models such as U-Net++, HR-Net, nnU-Net, and TransUNet on custom datasets of the ER network and the MITO network, as well as on public datasets of another biological network, the retinal blood vessel network. In addition, integrating MRE and Lhf with models such as HR-Net and TransUNet also enhances their segmentation performance. These experimental results confirm the generalization capability and potential of our approach. Furthermore, accurate segmentation of the ER network enables analysis that provides novel insights into its dynamic morphological and topological properties. AVAILABILITY AND IMPLEMENTATION Code and data are openly accessible at https://github.com/cbmi-group/MRE.
Collapse
Affiliation(s)
- Jiaxing Huang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoru Luo
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanhao Guo
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Li
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zichen Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guole Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Yang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Kang M, Kim MJ, Jeong D, Lim HJ, Go GE, Jeong U, Moon E, Kweon HS, Kang NG, Hwang SJ, Youn SH, Hwang BK, Kim D. A nanoscale visual exploration of the pathogenic effects of bacterial extracellular vesicles on host cells. J Nanobiotechnology 2024; 22:548. [PMID: 39238028 PMCID: PMC11378492 DOI: 10.1186/s12951-024-02817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S. aureus). RESULTS Using super-resolution fluorescence microscopy and high-voltage electron microscopy, we investigated the nanoscale alterations in mitochondria, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and microtubules of skin cells infected with bacterial EVs. Our results revealed significant mitochondrial fission, loss of cristae, transformation of the ER from tubular to sheet-like structures, and fragmentation of the Golgi apparatus in cells infected with S. aureus EVs, in contrast to the negligible effects observed following S. epidermidis EV infection, probably due to the pathogenic factors in S. aureus EV, including protein A and enterotoxin. These findings indicate that bacterial EVs, particularly those from pathogenic strains, induce profound ultrastructural changes of host cells that can disrupt cellular homeostasis and contribute to infection pathogenesis. CONCLUSIONS This study advances the understanding of bacterial EV-host cell interactions and contributes to the development of new diagnostic and therapeutic strategies for bacterial infections.
Collapse
Affiliation(s)
- Minjae Kang
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min Jeong Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dokyung Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung-Jun Lim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ga-Eun Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Uidon Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Nae-Gyu Kang
- R&D Center, LG H&H Co., Ltd, Seoul, 07795, Republic of Korea
| | - Seung Jin Hwang
- R&D Center, LG H&H Co., Ltd, Seoul, 07795, Republic of Korea
| | - Sung Hun Youn
- R&D Center, LG H&H Co., Ltd, Seoul, 07795, Republic of Korea
| | - Bo Kyoung Hwang
- R&D Center, LG H&H Co., Ltd, Seoul, 07795, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Ortiz HR, Cruz Flores P, Podgorski J, Ramonett A, Ahmed T, Hempel N, Charest PG, Ellis NA, Langlais PR, Montfort WR, Mythreye K, Kumar S, Lee NY. Extracellular signals induce dynamic ER remodeling through αTAT1-dependent microtubule acetylation. Neoplasia 2024; 53:101003. [PMID: 38759377 PMCID: PMC11127537 DOI: 10.1016/j.neo.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-β and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.
Collapse
Affiliation(s)
- Hannah R Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Julia Podgorski
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Nadine Hempel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pascale G Charest
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan A Ellis
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Paul R Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - William R Montfort
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | | | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research Tirupati, Mangalam Tirupati 517507, India.
| | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA; Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
12
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
13
|
Song Y, Zhao Z, Xu L, Huang P, Gao J, Li J, Wang X, Zhou Y, Wang J, Zhao W, Wang L, Zheng C, Gao B, Jiang L, Liu K, Guo Y, Yao X, Duan L. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev Cell 2024; 59:1396-1409.e5. [PMID: 38569547 DOI: 10.1016/j.devcel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jingxuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jinhui Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR 999077, China
| | - Bo Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yusong Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China.
| |
Collapse
|
14
|
Langley A, Abeling-Wang S, Wagner E, Salogiannis J. Movement of the endoplasmic reticulum is driven by multiple classes of vesicles marked by Rab-GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.592021. [PMID: 38798686 PMCID: PMC11118391 DOI: 10.1101/2024.05.14.592021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Peripheral endoplasmic reticulum (ER) tubules move along microtubules to interact with various organelles through membrane contact sites (MCS). Traditionally, ER moves by either sliding along stable microtubules via molecular motors or attaching to the plus ends of dynamic microtubules through tip attachment complexes (TAC). A recently discovered third process, hitchhiking, involves motile vesicles pulling ER tubules along microtubules. Previous research showed that ER hitchhikes on Rab5- and Rab7-marked endosomes, but it is uncertain if other Rab-vesicles can do the same. In U2OS cells, we screened Rabs for their ability to cotransport with ER tubules and found that ER hitchhikes on post-Golgi vesicles marked by Rab6 (isoforms a and b). Rab6-ER hitchhiking occurs independently of ER-endolysosome contacts and TAC-mediated ER movement. Disrupting either Rab6 or the motility of Rab6-vesicles reduces overall ER movement. Conversely, relocating these vesicles to the cell periphery causes peripheral ER accumulation, indicating that Rab6-vesicle motility is crucial for a subset of ER movements. Proximal post-Golgi vesicles marked by TGN46 are involved in Rab6-ER hitchhiking, while other post-Golgi vesicles (Rabs 8/10/11/13/14) are not essential for ER movement. Our further analysis finds that ER to Golgi vesicles marked by Rab1 are also capable of driving a subset of ER movements. Taken together, our findings suggest that ER hitchhiking on Rab-vesicles is a significant mode of ER movement. SIGNIFICANCE STATEMENT Peripheral endoplasmic reticulum tubules move on microtubules by either attaching to motors (cargo adaptor-mediated), dynamic microtubule-plus ends (tip attachment complexes) or motile vesicles (hitchhiking) but the prevalence of each mode is not clearPost-Golgi vesicles marked by Rab6/TGN46 and ER to Golgi vesicles marked by Rab1 drive ER movementsER hitchhiking on multiple classes of vesicles (endolysosomal, post-Golgi and ER to Golgi) marked by Rabs plays a prominent role in ER movement.
Collapse
|
15
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
16
|
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S, Li F. Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res 2024; 19:998-1005. [PMID: 37862201 PMCID: PMC10749592 DOI: 10.4103/1673-5374.385281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuqing Yan
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Anni Yu
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuefang Zhang
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyi Li
- Neurosurgery Department, Kunming Yenan Hospital, Kunming, Yunnan Province, China
| | - Qianlong Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Jerabkova-Roda K, Marwaha R, Das T, Goetz JG. Organelle morphology and positioning orchestrate physiological and disease-associated processes. Curr Opin Cell Biol 2024; 86:102293. [PMID: 38096602 PMCID: PMC7616369 DOI: 10.1016/j.ceb.2023.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 02/15/2024]
Abstract
In cells, organelles are distributed nonrandomly to regulate cells' physiological and disease-associated processes. Based on their morphology, position within the cell, and contacts with other organelles, they exert different biological functions. Endo-lysosomes are critical cell metabolism and nutrient-sensing regulators modulating cell growth and cellular adaptation in response to nutrient availability. Their spatial distribution is intimately linked to their function. In this review, we will discuss the role of endolysosomes under physiological conditions and in the context of cancer progression, with a special focus on their morphology, the molecular mechanisms determining their subcellular position, and the contacts they form with other organelles. We aim to highlight the relationship between cell architecture and cell function and its impact on maintaining organismal homeostasis.
Collapse
Affiliation(s)
- Katerina Jerabkova-Roda
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Equipe Labellisée Ligue Contre le Cancer, France.
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
18
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Kumar R, Khan M, Francis V, Aguila A, Kulasekaran G, Banks E, McPherson PS. DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy. Nat Commun 2024; 15:919. [PMID: 38296963 PMCID: PMC10830484 DOI: 10.1038/s41467-024-44957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Lysosomes help maintain cellular proteostasis, and defects in lysosomal positioning and function can cause disease, including neurodegenerative disorders. The spatiotemporal distribution of lysosomes is regulated by small GTPases including Rabs, which are activated by guanine nucleotide exchange factors (GEFs). DENN domain proteins are the largest family of Rab GEFs. Using a cell-based assay, we screened DENND6A, a member of the DENN domain protein family against all known Rabs and identified it as a potential GEF for 20 Rabs, including Rab34. Here, we demonstrate that DENND6A activates Rab34, which recruits a RILP/dynein complex to lysosomes, promoting lysosome retrograde transport. Further, we identify DENND6A as an effector of Arl8b, a major regulatory GTPase on lysosomes. We demonstrate that Arl8b recruits DENND6A to peripheral lysosomes to activate Rab34 and initiate retrograde transport, regulating nutrient-dependent lysosomal juxtanuclear repositioning. Loss of DENND6A impairs autophagic flux. Our findings support a model whereby Arl8b/DENND6A/Rab34-dependent lysosomal retrograde trafficking controls autophagy.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| | - Maleeha Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Srivastav S, van der Graaf K, Singh P, Utama AB, Meyer MD, McNew JA, Stern M. Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network. Autophagy 2024; 20:131-150. [PMID: 37649246 PMCID: PMC10761077 DOI: 10.1080/15548627.2023.2249794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
ABBREVIATIONS atl atlastin; ALR autophagic lysosome reformation; ER endoplasmic reticulum; GFP green fluorescent protein; HSP hereditary spastic paraplegia; Lamp1 lysosomal associated membrane protein 1 PolyUB polyubiquitin; RFP red fluorescent protein; spin spinster; mTor mechanistic Target of rapamycin; VCP valosin containing protein.
Collapse
Affiliation(s)
| | | | - Pratibha Singh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - James A. McNew
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Michael Stern
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
21
|
Chen JH, Xu N, Qi L, Yan HH, Wan FY, Gao F, Fu C, Cang C, Lu B, Bi GQ, Tang AH. Reduced lysosomal density in neuronal dendrites mediates deficits in synaptic plasticity in Huntington's disease. Cell Rep 2023; 42:113573. [PMID: 38096054 DOI: 10.1016/j.celrep.2023.113573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Huntington's disease (HD) usually causes cognitive disorders, including learning difficulties, that emerge before motor symptoms. Mutations related to lysosomal trafficking are linked to the pathogenesis of neurological diseases, whereas the cellular mechanisms remain elusive. Here, we discover a reduction in the dendritic density of lysosomes in the hippocampus that correlates with deficits in synaptic plasticity and spatial learning in early CAG-140 HD model mice. We directly manipulate intraneuronal lysosomal positioning with light-induced CRY2:CIB1 dimerization and demonstrate that lysosomal abundance in dendrites positively modulates long-term potentiation of glutamatergic synapses onto the neuron. This modulation depends on lysosomal Ca2+ release, which further promotes endoplasmic reticulum (ER) entry into spines. Importantly, optogenetically restoring lysosomal density in dendrites rescues the synaptic plasticity deficit in hippocampal slices of CAG-140 mice. Our data reveal dendritic lysosomal density as a modulator of synaptic plasticity and suggest a role of lysosomal mispositioning in cognitive decline in HD.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Na Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Lei Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Hao-Hao Yan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Fang-Yan Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chuanhai Fu
- CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chunlei Cang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guo-Qiang Bi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Guangdong 518055, China
| | - Ai-Hui Tang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
22
|
Park JS, Lee IB, Moon HM, Hong SC, Cho M. Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment. Nat Commun 2023; 14:7160. [PMID: 37963891 PMCID: PMC10645962 DOI: 10.1038/s41467-023-42347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Physics, Korea University, Seoul, Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea.
- Department of Chemistry, Korea University, Seoul, Korea.
| |
Collapse
|
23
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
24
|
Quiñones-Frías MC, Ocken DM, Rodal A. High-resolution imaging of presynaptic ER networks in Atlastin mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555994. [PMID: 37693578 PMCID: PMC10491308 DOI: 10.1101/2023.09.01.555994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The endoplasmic reticulum (ER) is a continuous organelle that extends to the periphery of neurons and regulates many neuronal functions including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP). However, the ultrastructure and dynamics of the neuronal ER have been under-investigated, particularly at presynaptic terminals. Here we developed new super-resolution and live imaging methods in D. melanogaster larval motor neurons to investigate ER structure at presynaptic terminals from wild-type animals, and in null mutants of the HSP gene Atlastin. Previous studies indicated diffuse localization of an ER lumen marker at Atlastin mutant presynaptic terminals, which was attributed to ER fragmentation. By contrast, we found using an ER membrane marker that the ER in Atlastin mutants formed robust networks. Further, our high-resolution imaging results suggest that overexpression of luminal ER proteins in Atlastin mutants causes their progressive displacement to the cytosol at synapses, perhaps due to proteostatic stress and/or changes in ER membrane integrity. Remarkably, these luminal ER proteins remain correctly localized in cell bodies, axons, and other cell types such as body wall muscles, suggesting that ER tubules at synapses have unique structural and functional characteristics. This displacement phenotype has not been reported in numerous studies of Atlastin in non-neuronal cells, emphasizing the importance of conducting experiments in neurons when investigating the mechanisms leading to upper motor neuron dysfunction in HSP.
Collapse
Affiliation(s)
| | - Dina M. Ocken
- Department of Biology, Brandeis University, Waltham, MA
| | - Avital Rodal
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
25
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
26
|
Scott ZC, Koning K, Vanderwerp M, Cohen L, Westrate LM, Koslover EF. Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics. Biophys J 2023; 122:3191-3205. [PMID: 37401053 PMCID: PMC10432226 DOI: 10.1016/j.bpj.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of "hot spots" where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.
Collapse
Affiliation(s)
| | - Katherine Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Molly Vanderwerp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | | | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California.
| |
Collapse
|
27
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
28
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
29
|
Zhu G, Azharuddin M, Pramanik B, Roberg K, Biswas SK, D’arcy P, Lu M, Kaur A, Chen A, Dhara AK, Chivu A, Zhuang Y, Baker A, Liu X, Fairen-Jimenez D, Mazumder B, Chen R, Kaminski CF, Kaminski Schierle GS, Hinkula J, Slater NKH, Patra HK. Feasibility of Coacervate-Like Nanostructure for Instant Drug Nanoformulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17485-17494. [PMID: 36976817 PMCID: PMC10103128 DOI: 10.1021/acsami.2c21586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.
Collapse
Affiliation(s)
- Geyunjian
H. Zhu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Mohammad Azharuddin
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Bapan Pramanik
- Department
of Chemistry, Ben Gurion University of the
Negev, Be’er
Sheva 84105, Israel
| | - Karin Roberg
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
- Department
of Otorhinolaryngology in Linköping, Anaesthetics, Operations
and Specialty Surgery Center, Linköping
University Hospital, Region Östergötland, Linköping 58185, Sweden
| | - Sujoy Kumar Biswas
- AIMP
Laboratories, C86 Baishnabghata,
Patuli Township, Kolkata 700094, India
| | - Padraig D’arcy
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Meng Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Apanpreet Kaur
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Alexander Chen
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Ashis Kumar Dhara
- Department
of Electrical Engineering, National Institute
of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Alexandru Chivu
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| | - Yunhui Zhuang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Andrew Baker
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Xiewen Liu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - David Fairen-Jimenez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Bismoy Mazumder
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | | | - Jorma Hinkula
- Department
of Biomedical and Clinical Sciences (BKV), Linkoping University, Linköping 58183, Sweden
| | - Nigel K. H. Slater
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Hirak K. Patra
- Department
of Surgical Biotechnology, Division of Surgery and Interventional
Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
30
|
Lu M, Christensen CN, Weber JM, Konno T, Läubli NF, Scherer KM, Avezov E, Lio P, Lapkin AA, Kaminski Schierle GS, Kaminski CF. ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology. Nat Methods 2023; 20:569-579. [PMID: 36997816 DOI: 10.1038/s41592-023-01815-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/10/2023] [Indexed: 04/01/2023]
Abstract
The ability to quantify structural changes of the endoplasmic reticulum (ER) is crucial for understanding the structure and function of this organelle. However, the rapid movement and complex topology of ER networks make this challenging. Here, we construct a state-of-the-art semantic segmentation method that we call ERnet for the automatic classification of sheet and tubular ER domains inside individual cells. Data are skeletonized and represented by connectivity graphs, enabling precise and efficient quantification of network connectivity. ERnet generates metrics on topology and integrity of ER structures and quantifies structural change in response to genetic or metabolic manipulation. We validate ERnet using data obtained by various ER-imaging methods from different cell types as well as ground truth images of synthetic ER structures. ERnet can be deployed in an automatic high-throughput and unbiased fashion and identifies subtle changes in ER phenotypes that may inform on disease progression and response to therapy.
Collapse
Affiliation(s)
- Meng Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, UK
| | - Charles N Christensen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Artificial Intelligence Group, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Jana M Weber
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Delft Bioinformatics Lab, Intelligent Systems Department, Delft University of Technology, Delft, the Netherlands
| | - Tasuku Konno
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nino F Läubli
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Katharina M Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pietro Lio
- Artificial Intelligence Group, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Alexei A Lapkin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
- Cambridge Infinitus Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Cui Y, Zhang X, Li X, Lin J. Multiscale microscopy to decipher plant cell structure and dynamics. THE NEW PHYTOLOGIST 2023; 237:1980-1997. [PMID: 36477856 DOI: 10.1111/nph.18641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.
Collapse
Affiliation(s)
- Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
32
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA.,Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Physiological roles of organelles at the pre-synapse in neurons. Int J Biochem Cell Biol 2023; 154:106345. [PMID: 36521722 DOI: 10.1016/j.biocel.2022.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria, endoplasmic reticulum and lysosomes are involved in different pathways that can regulate pre-synaptic function. In particular, they could modulate ATP availability in response to rapid changes, could control synaptic protein levels and adjust Ca2+ signalling, which could all impact on neuronal activity. Organelles functions in these processes need to be considered alone when describing the impact of pre-synaptic organelles on neurotransmission. However, the interplay among organelles, which occurs either via signalling pathways or through physical membranous contacts, has to be considered. In this brief review, the physiological role of organelles localized at the pre-synapse in neuronal function is discussed.
Collapse
|
34
|
Ward EN, Hecker L, Christensen CN, Lamb JR, Lu M, Mascheroni L, Chung CW, Wang A, Rowlands CJ, Schierle GSK, Kaminski CF. Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging. Nat Commun 2022; 13:7836. [PMID: 36543776 PMCID: PMC9772218 DOI: 10.1038/s41467-022-35307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption. Here, we present Machine-learning Assisted, Interferometric Structured Illumination Microscopy, MAI-SIM, as an easy-to-implement method for live cell super-resolution imaging at high speed and in multiple colors. The instrument is based on an interferometer design in which illumination patterns are generated, rotated, and stepped in phase through movement of a single galvanometric mirror element. The design is robust, flexible, and works for all wavelengths. We complement the unique properties of the microscope with an open source machine-learning toolbox that permits real-time reconstructions to be performed, providing instant visualization of super-resolved images from live biological samples.
Collapse
Affiliation(s)
- Edward N. Ward
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Lisa Hecker
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Charles N. Christensen
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jacob R. Lamb
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Meng Lu
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Luca Mascheroni
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Chyi Wei Chung
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anna Wang
- grid.4991.50000 0004 1936 8948Department of Physics, Oxford University, Oxford, UK
| | - Christopher J. Rowlands
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Gabriele S. Kaminski Schierle
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Clemens F. Kaminski
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Jang W, Puchkov D, Samsó P, Liang Y, Nadler-Holly M, Sigrist SJ, Kintscher U, Liu F, Mamchaoui K, Mouly V, Haucke V. Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function. Science 2022; 378:eabq5209. [PMID: 36520888 DOI: 10.1126/science.abq5209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.
Collapse
Affiliation(s)
- Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Paula Samsó
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - YongTian Liang
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Stephan J Sigrist
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Vincent Mouly
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
36
|
Verweij FJ, Bebelman MP, George AE, Couty M, Bécot A, Palmulli R, Heiligenstein X, Sirés-Campos J, Raposo G, Pegtel DM, van Niel G. ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. J Cell Biol 2022; 221:e202112032. [PMID: 36136097 PMCID: PMC9507465 DOI: 10.1083/jcb.202112032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are endosome-derived extracellular vesicles involved in intercellular communication. They are generated as intraluminal vesicles within endosomal compartments that fuse with the plasma membrane (PM). The molecular events that generate secretory endosomes and lead to the release of exosomes are not well understood. We identified a subclass of non-proteolytic endosomes at prelysosomal stage as the compartment of origin of CD63 positive exosomes. These compartments undergo a Rab7a/Arl8b/Rab27a GTPase cascade to fuse with the PM. Dynamic endoplasmic reticulum (ER)-late endosome (LE) membrane contact sites (MCS) through ORP1L have the distinct capacity to modulate this process by affecting LE motility, maturation state, and small GTPase association. Thus, exosome secretion is a multi-step process regulated by GTPase switching and MCS, highlighting the ER as a new player in exosome-mediated intercellular communication.
Collapse
Affiliation(s)
- Frederik J. Verweij
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
- Department of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University, University Medical Center Utrecht, The Netherlands
| | - Maarten P. Bebelman
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University, Amsterdam, The Netherlands
| | - Anna E. George
- Department of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University, University Medical Center Utrecht, The Netherlands
| | - Mickael Couty
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
| | - Anaïs Bécot
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
| | - Roberta Palmulli
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
| | - Xavier Heiligenstein
- Institut Curie, Paris Sciences & Lettres Research University, CNRS, UMR144, Paris, France
| | - Julia Sirés-Campos
- Institut Curie, Paris Sciences & Lettres Research University, CNRS, UMR144, Paris, France
| | - Graça Raposo
- Institut Curie, Paris Sciences & Lettres Research University, CNRS, UMR144, Paris, France
| | - Dirk Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Guillaume van Niel
- Institute for Psychiatry and Neurosciences of Paris, Hopital Saint-Anne, Université de Paris, Institut national de la santé et de la recherche médicale, U1266, Paris, France
- Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
37
|
Gaudioso Á, Silva TP, Ledesma MD. Models to study basic and applied aspects of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114532. [PMID: 36122863 DOI: 10.1016/j.addr.2022.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
The lack of available treatments and fatal outcome in most lysosomal storage disorders (LSDs) have spurred research on pathological mechanisms and novel therapies in recent years. In this effort, experimental methodology in cellular and animal models have been developed, with aims to address major challenges in many LSDs such as patient-to-patient variability and brain condition. These techniques and models have advanced knowledge not only of LSDs but also for other lysosomal disorders and have provided fundamental insights into the biological roles of lysosomes. They can also serve to assess the efficacy of classical therapies and modern drug delivery systems. Here, we summarize the techniques and models used in LSD research, which include both established and recently developed in vitro methods, with general utility or specifically addressing lysosomal features. We also review animal models of LSDs together with cutting-edge technology that may reduce the need for animals in the study of these devastating diseases.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Teresa P Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
38
|
Zhao Y, Kim HS, Zou X, Huang L, Liang X, Li Z, Kim JS, Lin W. Harnessing Dual-Fluorescence Lifetime Probes to Validate Regulatory Mechanisms of Organelle Interactions. J Am Chem Soc 2022; 144:20854-20865. [DOI: 10.1021/jacs.2c08966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuping Zhao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xiang Zou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xing Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
39
|
Christensen JR, Reck-Peterson SL. Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells. Annu Rev Cell Dev Biol 2022; 38:155-178. [PMID: 35905769 PMCID: PMC10967659 DOI: 10.1146/annurev-cellbio-120420-104341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
- Department of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
40
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
41
|
Kendrick AA, Christensen JR. Bidirectional lysosome transport: a balancing act between ARL8 effectors. Nat Commun 2022; 13:5261. [PMID: 36071047 PMCID: PMC9452499 DOI: 10.1038/s41467-022-32965-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
42
|
Ampuero F, Hase MO. First-passage process in degree space for the time-dependent Erdős-Rényi and Watts-Strogatz models. Phys Rev E 2022; 106:034320. [PMID: 36266810 DOI: 10.1103/physreve.106.034320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, we investigate the temporal evolution of the degree of a given vertex in a network by mapping the dynamics into a random walk problem in degree space. We analyze when the degree approximates a preestablished value through a parallel with the first-passage problem of random walks. The method is illustrated on the time-dependent versions of the Erdős-Rényi and Watts-Strogatz models, which were originally formulated as static networks. We have succeeded in obtaining an analytic form for the first and the second moments of the first-passage time and showing how they depend on the size of the network. The dominant contribution for large networks with N vertices indicates that these quantities scale on the ratio N/p, where p is the linking probability.
Collapse
Affiliation(s)
- F Ampuero
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio 1000, 03828-000 São Paulo, Brazil
| | - M O Hase
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio 1000, 03828-000 São Paulo, Brazil
| |
Collapse
|
43
|
Parutto P, Heck J, Lu M, Kaminski C, Avezov E, Heine M, Holcman D. High-throughput super-resolution single-particle trajectory analysis reconstructs organelle dynamics and membrane reorganization. CELL REPORTS METHODS 2022; 2:100277. [PMID: 36046627 PMCID: PMC9421586 DOI: 10.1016/j.crmeth.2022.100277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Super-resolution imaging can generate thousands of single-particle trajectories. These data can potentially reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However, computational methods that can derive quantitative information from such massive datasets are currently lacking. We present data analysis and algorithms that are broadly applicable to reveal local binding and trafficking interactions and organization of dynamic subcellular sites. We applied this analysis to the endoplasmic reticulum and neuronal membrane. The method is based on spatiotemporal segmentation that explores data at multiple levels and detects the architecture and boundaries of high-density regions in areas measuring hundreds of nanometers. By connecting dense regions, we reconstructed the network topology of the endoplasmic reticulum (ER), as well as molecular flow redistribution and the local space explored by trajectories. The presented methods are available as an ImageJ plugin that can be applied to large datasets of overlapping trajectories offering a standard of single-particle trajectory (SPT) metrics.
Collapse
Affiliation(s)
- Pierre Parutto
- Group of Data Modeling and Computational Biology, IBENS, Ecole Normale Supérieure, 75005 Paris, France
| | - Jennifer Heck
- Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Meng Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Heine
- Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David Holcman
- Group of Data Modeling and Computational Biology, IBENS, Ecole Normale Supérieure, 75005 Paris, France
- DAMPT, University of Cambridge, DAMPT and Churchill College, Cambridge CB30DS, UK
| |
Collapse
|
44
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
45
|
Maja M, Mohammed D, Dumitru AC, Verstraeten S, Lingurski M, Mingeot-Leclercq MP, Alsteens D, Tyteca D. Surface cholesterol-enriched domains specifically promote invasion of breast cancer cell lines by controlling invadopodia and extracellular matrix degradation. Cell Mol Life Sci 2022; 79:417. [PMID: 35819726 PMCID: PMC9276565 DOI: 10.1007/s00018-022-04426-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium.
| |
Collapse
|
46
|
Vrijsen S, Vrancx C, Del Vecchio M, Swinnen JV, Agostinis P, Winderickx J, Vangheluwe P, Annaert W. Inter-organellar Communication in Parkinson's and Alzheimer's Disease: Looking Beyond Endoplasmic Reticulum-Mitochondria Contact Sites. Front Neurosci 2022; 16:900338. [PMID: 35801175 PMCID: PMC9253489 DOI: 10.3389/fnins.2022.900338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative diseases (NDs) are generally considered proteinopathies but whereas this may initiate disease in familial cases, onset in sporadic diseases may originate from a gradually disrupted organellar homeostasis. Herein, endolysosomal abnormalities, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and altered lipid metabolism are commonly observed in early preclinical stages of major NDs, including Parkinson's disease (PD) and Alzheimer's disease (AD). Among the multitude of underlying defective molecular mechanisms that have been suggested in the past decades, dysregulation of inter-organellar communication through the so-called membrane contact sites (MCSs) is becoming increasingly apparent. Although MCSs exist between almost every other type of subcellular organelle, to date, most focus has been put on defective communication between the ER and mitochondria in NDs, given these compartments are critical in neuronal survival. Contributions of other MCSs, notably those with endolysosomes and lipid droplets are emerging, supported as well by genetic studies, identifying genes functionally involved in lysosomal homeostasis. In this review, we summarize the molecular identity of the organelle interactome in yeast and mammalian cells, and critically evaluate the evidence supporting the contribution of disturbed MCSs to the general disrupted inter-organellar homeostasis in NDs, taking PD and AD as major examples.
Collapse
Affiliation(s)
- Stephanie Vrijsen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mara Del Vecchio
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, VIB-Center for Cancer Research, KU Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Daniel J, Rose JTA, Vinnarasi FSF, Rajinikanth V. VGG-UNet/VGG-SegNet Supported Automatic Segmentation of Endoplasmic Reticulum Network in Fluorescence Microscopy Images. SCANNING 2022; 2022:7733860. [PMID: 35800206 PMCID: PMC9200602 DOI: 10.1155/2022/7733860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This research work aims to implement an automated segmentation process to extract the endoplasmic reticulum (ER) network in fluorescence microscopy images (FMI) using pretrained convolutional neural network (CNN). The threshold level of the raw FMT is complex, and extraction of the ER network is a challenging task. Hence, an image conversion procedure is initially employed to reduce its complexity. This work employed the pretrained CNN schemes, such as VGG-UNet and VGG-SegNet, to mine the ER network from the chosen FMI test images. The proposed ER segmentation pipeline consists of the following phases; (i) clinical image collection, 16-bit to 8-bit conversion and resizing; (ii) implementation of pretrained VGG-UNet and VGG-SegNet; (iii) extraction of the binary form of ER network; (iv) comparing the mined ER with ground-truth; and (v) computation of image measures and validation. The considered FMI dataset consists of 223 test images, and image augmentation is then implemented to increase these images. The result of this scheme is then confirmed against other CNN methods, such as U-Net, SegNet, and Res-UNet. The experimental outcome confirms a segmentation accuracy of >98% with VGG-UNet and VGG-SegNet. The results of this research authenticate that the proposed pipeline can be considered to examine the clinical-grade FMI.
Collapse
Affiliation(s)
- Jesline Daniel
- Department of Computer Science and Engineering, St. Joseph's College of Engineering, OMR, Chennai, 600 119 Tamil Nadu, India
| | - J. T. Anita Rose
- Department of Computer Science and Engineering, St. Joseph's College of Engineering, OMR, Chennai, 600 119 Tamil Nadu, India
| | | | - Venkatesan Rajinikanth
- Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, OMR, Chennai, 600 119 Tamil Nadu, India
| |
Collapse
|
48
|
Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci 2022; 5:341-366. [PMID: 35576556 DOI: 10.1146/annurev-biodatasci-072018-021246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Senthil Arumugam
- Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Afshin Khadangi
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Joshua Chung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Michael Pan
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
50
|
Kumar G, Chawla P, Dhiman N, Chadha S, Sharma S, Sethi K, Sharma M, Tuli A. RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning. Nat Commun 2022; 13:1540. [PMID: 35314681 PMCID: PMC8938454 DOI: 10.1038/s41467-022-29077-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
The bidirectional movement of lysosomes on microtubule tracks regulates their whole-cell spatial arrangement. Arl8b, a small GTP-binding (G) protein, promotes lysosome anterograde trafficking mediated by kinesin-1. Herein, we report an Arl8b effector, RUFY3, which regulates the retrograde transport of lysosomes. We show that RUFY3 interacts with the JIP4-dynein-dynactin complex and facilitates Arl8b association with the retrograde motor complex. Accordingly, RUFY3 knockdown disrupts the positioning of Arl8b-positive endosomes and reduces Arl8b colocalization with Rab7-marked late endosomal compartments. Moreover, we find that RUFY3 regulates nutrient-dependent lysosome distribution, although autophagosome-lysosome fusion and autophagic cargo degradation are not impaired upon RUFY3 depletion. Interestingly, lysosome size is significantly reduced in RUFY3 depleted cells, which could be rescued by inhibition of the lysosome reformation regulatory factor PIKFYVE. These findings suggest a model in which the perinuclear cloud arrangement of lysosomes regulates both the positioning and size of these proteolytic compartments.
Collapse
Affiliation(s)
- Gaurav Kumar
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Prateek Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Neha Dhiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sanya Chadha
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sheetal Sharma
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Kanupriya Sethi
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
| |
Collapse
|