1
|
Kusada K, Kitagawa H. Phase Control in Monometallic and Alloy Nanomaterials. Chem Rev 2025; 125:599-659. [PMID: 39751381 DOI: 10.1021/acs.chemrev.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials. Then, phase control in monometallic nanomaterials with respect to each element and alloy nanomaterials classified into three types based on their crystal structures is discussed. In the end, all the content introduced in this review is summarized, and challenges for advanced phase control are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Cai M, Zhang Y, He P, Zhang Z. Recent Advances in Revealing the Electrocatalytic Mechanism for Hydrogen Energy Conversion System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405008. [PMID: 39075971 DOI: 10.1002/smll.202405008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Indexed: 07/31/2024]
Abstract
In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Cai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiran Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Peilei He
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhicheng Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
3
|
Wang X, Ge Y, Sun M, Xu Z, Huang B, Li L, Zhou X, Zhang S, Liu G, Shi Z, Zhang A, Chen B, Wa Q, Luo Q, Zhu Y, Huang B, Zhang H. Facet-Controlled Synthesis of Unconventional-Phase Metal Alloys for Highly Efficient Hydrogen Oxidation. J Am Chem Soc 2024; 146:24141-24149. [PMID: 39162360 DOI: 10.1021/jacs.4c08905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Facet control and phase engineering of metal nanomaterials are both important strategies to regulate their physicochemical properties and improve their applications. However, it is still a challenge to tune the exposed facets of metal nanomaterials with unconventional crystal phases, hindering the exploration of the facet effects on their properties and functions. In this work, by using Pd nanoparticles with unconventional hexagonal close-packed (hcp, 2H type) phase, referred to as 2H-Pd, as seeds, a selective epitaxial growth method is developed to tune the predominant growth directions of secondary materials on 2H-Pd, forming Pd@NiRh nanoplates (NPLs) and nanorods (NRs) with 2H phase, referred to as 2H-Pd@2H-NiRh NPLs and NRs, respectively. The 2H-Pd@2H-NiRh NRs expose more (100)h and (101)h facets on the 2H-NiRh shells compared to the 2H-Pd@2H-NiRh NPLs. Impressively, when used as electrocatalysts toward hydrogen oxidation reaction (HOR), the 2H-Pd@2H-NiRh NRs show superior activity compared to the NiRh alloy with conventional face-centered cubic (fcc) phase (fcc-NiRh) and the 2H-Pd@2H-NiRh NPLs, revealing the crucial role of facet control in enhancing the catalytic performance of unconventional-phase metal nanomaterials. Density functional theory (DFT) calculations further unravel that the excellent HOR activity of 2H-Pd@2H-NiRh NRs can be attributed to the more exposed (100)h and (101)h facets on the 2H-NiRh shells, which possess high electron transfer efficiency, optimized H* binding energy, enhanced OH* binding energy, and a low energy barrier for the rate-determining step during the HOR process.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yiyao Ge
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhihang Xu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shuai Zhang
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Guanghua Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
4
|
Wang Y, Arandiyan H, Mofarah SS, Shen X, Bartlett SA, Koshy P, Sorrell CC, Sun H, Pozo-Gonzalo C, Dastafkan K, Britto S, Bhargava SK, Zhao C. Stacking Fault-Enriched MoNi 4/MoO 2 Enables High-Performance Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402156. [PMID: 38869191 DOI: 10.1002/adma.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiangjian Shen
- Engineering Research Centre of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stuart A Bartlett
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Cristina Pozo-Gonzalo
- Institute for Frontier Materials, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sylvia Britto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Huang K, Cao X, Lu Y, Xiu M, Cui K, Zhang B, Shi W, Xia J, Woods LM, Zhu S, Wang Z, Guo C, Li C, Liu Z, Wu J, Huang Y. Lattice-Disordered High-Entropy Alloy Engineered by Thermal Dezincification for Improved Catalytic Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304867. [PMID: 38837502 DOI: 10.1002/adma.202304867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/20/2024] [Indexed: 06/07/2024]
Abstract
A disordered crystal structure is an asymmetrical atomic lattice resulting from the missing atoms (vacancies) or the lattice misarrangement in a solid-state material. It has been widely proven to improve the electrocatalytic hydrogen evolution reaction (HER) process. In the present work, due to the special physical properties (the low evaporation temperature of below 900 °C), Zn is utilized as a sacrificial component to create senary PtIrNiCoFeZn high-entropy alloy (HEA) with highly disordered lattices. The structure of the lattice-disordered PtIrNiCoFeZn HEA is characterized by the thermal diffusion scattering (TDS) in transmission electron microscope. Density functional theory calculations reveal that lattice disorder not only accelerates both the Volmer step and Tafel step during the HER process but also optimizes the intensity and distribution of projected density of states near the Fermi energy after the H2O and H adsorption. Anomalously high alkaline HER activity and stability are proven by experimental measurements. This work introduces a novel approach to preparing irregular lattices offering highly efficient HEA and a TDS characterization method to reveal the disordered lattice in materials. It provides a new route toward exploring and developing the catalytic activities of materials with asymmetrically disordered lattices.
Collapse
Affiliation(s)
- Kang Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- School of Optical and Electronic Information, Suzhou City University, Suzhou, 215104, China
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yu Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingzhen Xiu
- Energy Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kang Cui
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bowei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wencong Shi
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Jiuyang Xia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lilia M Woods
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Siyu Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zheng Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junsheng Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
6
|
Liu Y, Cai C, Zhu S, Zheng Z, Li G, Chen H, Li C, Sun H, Chou IM, Yu Y, Mei S, Wang L. Enhanced Hydrogen Evolution Catalysis of Pentlandite due to the Increases in Coordination Number and Sulfur Vacancy during Cubic-Hexagonal Phase Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311161. [PMID: 38456389 DOI: 10.1002/smll.202311161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS2 and WS2. Cubic pentlandite [cPn, (Fe, Ni)9S8] can be a functional material in batteries, solar cells, and catalytic fields. However, no report about the material properties of other phases of pentlandite exists. In this study, the unit-cell parameters of a new phase of pentlandite, sulfur-vacancy enriched hexagonal pentlandite (hPn), and the phase boundary between cPn and hPn are determined for the first time. Compared to cPn, the hPn shows a high coordination number, more sulfur vacancies, and high conductivity, which result in significantly higher hydrogen evolution performance of hPn than that of cPn and make the non-nano rock catalyst hPn superior to other most known nanosulfide catalysts. The increase of sulfur vacancies during phase transition provides a new approach to designing functional materials.
Collapse
Affiliation(s)
- Yuegao Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Chao Cai
- College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengcai Zhu
- School of Materials, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhi Zheng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guowu Li
- Crystal Structure Laboratory, Science Research Institute, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Haiyan Chen
- Mineral Physics Institute, Stony Brook University, Stony Brook, New York, 11794-2100, USA
- Argonne National Laboratory, Chicago, 60439, USA
| | - Chao Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyan Sun
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - I-Ming Chou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yanan Yu
- Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu, 610042, China
| | - Shenghua Mei
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Liping Wang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Wang Y, Xiong Y, Sun M, Zhou J, Hao F, Zhang Q, Ye C, Wang X, Xu Z, Wa Q, Liu F, Meng X, Wang J, Lu P, Ma Y, Yin J, Zhu Y, Chu S, Huang B, Gu L, Fan Z. Controlled Synthesis of Unconventional Phase Alloy Nanobranches for Highly Selective Electrocatalytic Nitrite Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202402841. [PMID: 38647519 DOI: 10.1002/anie.202402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Zhang J, Jin L, Sun H, Liu X, Ji Y, Li Y, Liu W, Su D, Liu X, Zhuang Z, Hu Z, Shao Q, Huang X. An all-metallic nanovesicle for hydrogen oxidation. Natl Sci Rev 2024; 11:nwae153. [PMID: 38800666 PMCID: PMC11126156 DOI: 10.1093/nsr/nwae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.
Collapse
Affiliation(s)
- Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lujie Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry and Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
9
|
Yu Z, Fan N, Fu Z, He B, Yan S, Cai H, Chen X, Zhang L, Zhang Y, Xu B, Wang G, Xu F. Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO 3 by strain-mediated phase separation. Nat Commun 2024; 15:3438. [PMID: 38653960 DOI: 10.1038/s41467-024-47776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
PbZrO3 has been broadly considered as a prototypical antiferroelectric material for high-power energy storage. A recent theoretical study suggests that the ground state of PbZrO3 is threefold-modulated ferrielectric, which challenges the generally accepted antiferroelectric configuration. However, such a novel ferrielectric phase was predicted only to be accessible at low temperatures. Here, we successfully achieve the room-temperature construction of the strongly competing ferrielectric and antiferroelectric state by strain-mediated phase separation in PbZrO3/SrTiO3 thin film. We demonstrate that the phase separation occurs spontaneously in quasi-periodic stripe-like patterns under a compressive misfit strain and can be tailored by varying the film thickness. The ferrielectric phase strikingly exhibitsa threefold modulation period with a nearly up-up-down configuration, which could be stabilized and manipulated by the formation and evolution of interfacial defects under applied strain. The present results construct a fertile ground for further exploring the physical properties and applications based on the novel ferrielectric phase.
Collapse
Affiliation(s)
- Ziyi Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ningbo Fan
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhengqian Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Biao He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shiguang Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Henghui Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuefeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Bin Xu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Genshui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Fangfang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures & The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Cui X, Liu Y, Chen Y. Ultrafast micro/nano-manufacturing of metastable materials for energy. Natl Sci Rev 2024; 11:nwae033. [PMID: 38469545 PMCID: PMC10926976 DOI: 10.1093/nsr/nwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/13/2024] Open
Abstract
The structural engineering of metastable nanomaterials with abundant defects has attracted much attention in energy-related fields. The high-temperature shock (HTS) technique, as a rapidly developing and advanced synthesis strategy, offers significant potential for the rational design and fabrication of high-quality nanocatalysts in an ultrafast, scalable, controllable and eco-friendly way. In this review, we provide an overview of various metastable micro- and nanomaterials synthesized via HTS, including single metallic and bimetallic nanostructures, high entropy alloys, metal compounds (e.g. metal oxides) and carbon nanomaterials. Note that HTS provides a new research dimension for nanostructures, i.e. kinetic modulation. Furthermore, we summarize the application of HTS-as supporting films for transmission electron microscopy grids-in the structural engineering of 2D materials, which is vital for the direct imaging of metastable materials. Finally, we discuss the potential future applications of high-throughput and liquid-phase HTS strategies for non-equilibrium micro/nano-manufacturing beyond energy-related fields. It is believed that this emerging research field will bring new opportunities to the development of nanoscience and nanotechnology in both fundamental and practical aspects.
Collapse
Affiliation(s)
- Xiaoya Cui
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Xi Q, Xie F, Sun Z, Liu J, Zhang X, Wang Y, Zhou A, Ma X, Gao X, Yue X, Ren J, Fan C, Jian X, Li R. NiRu-Mo 2Ti 2C 3O 2 as an efficient catalyst for alkaline hydrogen evolution reactions: the role of bimetallic site interactions in promoting Volmer-step kinetics. Phys Chem Chem Phys 2024; 26:7166-7176. [PMID: 38349087 DOI: 10.1039/d3cp05892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The Volmer step in alkaline hydrogen evolution reactions (HERs), which supplies H* to the following steps by cleaving H-O-H bonds, is considered the rate-determining step of the overall reaction. The Volmer step involves water dissociation and adsorbed hydroxyl (*OH) desorption; Ru-based catalysts display a compelling water dissociation process in an alkaline HER. Unfortunately, the strong affinity of Ru for *OH blocks the active sites, resulting in unsatisfactory performance during HER processes. Hence, this study investigates a series of key descriptors (ΔG*H2O, ΔG*H-OH, ΔG*H, and ΔG*OH) of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, or Pt)-Ru/Mo2Ti2C3O2 to systematically explore the effects of bimetallic site interactions on the kinetics of the Volmer step. The results indicate that bimetallic catalysts effectively reduced the strong adsorption of *OH on Ru sites; especially, the NiRu diatomic state shows the highest electron-donating ability, which promoted the smooth migration of *OH from Ru sites to Ni sites. Therefore, Ru, Ni and MXenes are suitable to serve as water adsorption and dissociation sites, *OH desorption sites, and H2 release sites, respectively. Ultimately, NiRu/Mo2Ti2C3O2 promotes Volmer kinetics and has the potential to improve alkaline HERs. This work provides theoretical support for the construction of synergistic MXene-based diatomic catalysts and their wide application in the field of alkaline HERs.
Collapse
Affiliation(s)
- Qing Xi
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Fangxia Xie
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zijun Sun
- Xi'an North Huian Chemical Industries Co. Ltd, Xi'an 710302, P. R. China
| | - Jianxin Liu
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaochao Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yawen Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Aijuan Zhou
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiaoli Ma
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Xiaoming Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiuping Yue
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | - Jun Ren
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Caimei Fan
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xuan Jian
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Rui Li
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
- Key Laboratory of Coal Science and Technology, Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
12
|
Zhou X, Zhang A, Chen B, Zhu S, Cui Y, Bai L, Yu J, Ge Y, Yun Q, Li L, Huang B, Liao L, Fu J, Wa Q, Wang G, Huang Z, Zheng L, Ren Y, Li S, Liu G, Zhai L, Li Z, Liu J, Chen Y, Ma L, Ling C, Wang J, Fan Z, Du Y, Shao M, Zhang H. Synthesis of 2H/fcc-Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO 2 Reduction at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304414. [PMID: 37515580 DOI: 10.1002/adma.202304414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Collapse
Affiliation(s)
- Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Licheng Bai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guangyao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
13
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Yang X, Ouyang B, Zhao L, Shen Q, Chen G, Sun Y, Li C, Xu K. Ultrathin Rh Nanosheets with Rich Grain Boundaries for Efficient Hydrogen Oxidation Electrocatalysis. J Am Chem Soc 2023. [PMID: 37949810 DOI: 10.1021/jacs.3c10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) Pt-group ultrathin nanosheets (NSs) are promising advanced electrocatalysts for energy-related catalytic reactions. However, improving the electrocatalytic activity of 2D Pt-group NSs through the addition of abundant grain boundaries (GBs) and understanding the underlying formation mechanism remain significant challenges. Herein, we report the controllable synthesis of a series of Rh-based nanocrystals (e.g., Rh nanoparticles, Rh NSs, and Rh NSs with GBs) through a CO-mediated kinetic control synthesis route. In light of the 2D NSs' structural advantages and GB modification, the Rh NSs with rich GBs exhibit an enhanced electrocatalytic activity compared to pure Rh NSs and commercial Pt/C toward the hydrogen oxidation reaction (HOR) in alkaline media. Both experimental results and theoretical computations corroborate that the GBs in the Rh NSs have the capacity to ameliorate the adsorption free energy of reaction intermediates during the HOR, thus resulting in outstanding HOR catalytic performance. Our work offers novel perspectives in the realm of developing sophisticated 2D Pt-group metal electrocatalysts with rich GBs for the energy conversion field.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Qi Shen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
15
|
Li G, Zhang H, Han Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem Rev 2023; 123:10728-10749. [PMID: 37642645 DOI: 10.1021/acs.chemrev.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phase engineering of nanomaterials (PEN) is an emerging field that aims to tailor the physicochemical properties of nanomaterials by precisely manipulating their crystal phases. To advance PEN effectively, it is vital to possess the capability of characterizing the structures and compositions of nanomaterials with precision. Transmission electron microscopy (TEM) is a versatile tool that combines reciprocal-space diffraction, real-space imaging, and spectroscopic techniques, allowing for comprehensive characterization with exceptional resolution in the domains of time, space, momentum, and, increasingly, even energy. In this Review, we first introduce the fundamental mechanisms behind various TEM-related techniques, along with their respective application scopes and limitations. Subsequently, we review notable applications of TEM in PEN research, including applications in fields such as metallic nanostructures, carbon allotropes, low-dimensional materials, and nanoporous materials. Specifically, we underscore its efficacy in phase identification, composition and chemical state analysis, in situ observations of phase evolution, as well as the challenges encountered when dealing with beam-sensitive materials. Furthermore, we discuss the potential generation of artifacts during TEM imaging, particularly in scanning modes, and propose methods to minimize their occurrence. Finally, we offer our insights into the present state and future trends of this field, discussing emerging technologies including four-dimensional scanning TEM, three-dimensional atomic-resolution imaging, and electron microscopy automation while highlighting the significance and feasibility of these advancements.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hui Zhang
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Chen Z, Gong W, Wang J, Hou S, Yang G, Zhu C, Fan X, Li Y, Gao R, Cui Y. Metallic W/WO 2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat Commun 2023; 14:5363. [PMID: 37660156 PMCID: PMC10475068 DOI: 10.1038/s41467-023-41097-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.
Collapse
Affiliation(s)
- Zhigang Chen
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, China
| | - Juan Wang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Shuang Hou
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guang Yang
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Chengfeng Zhu
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiyue Fan
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yifan Li
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Rui Gao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, ON, Canada
| | - Yi Cui
- i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
17
|
Sun C, Wang C, Xie H, Han G, Zhang Y, Zhao H. 2D Cobalt Chalcogenide Heteronanostructures Enable Efficient Alkaline Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302056. [PMID: 37186343 DOI: 10.1002/smll.202302056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The development of high-efficiency non-precious metal electrocatalysts for alkaline electrolyte hydrogen evolution reactions (HER) is of great significance in energy conversion to overcome the limited supply of fossil fuels and carbon emission. Here, a highly active electrocatalyst is presented for hydrogen production, consisting of 2D CoSe2 /Co3 S4 heterostructured nanosheets along Co3 O4 nanofibers. The different reaction rate between the ion exchange reaction and redox reaction leads to the heterogeneous volume swelling, promoting the growth of 2D structure. The 2D/1D heteronanostructures enable the improved the electrochemical active area, the number of active sites, and more favorable H binding energy compared to individual cobalt chalcogenides. The roles of the different composition of the heterojunction are investigated, and the electrocatalysts based on the CoSe2 /Co3 S4 @Co3 O4 exhibited an overpotential as low as 165 mV for 10 mA cm-2 and 393 mV for 200 mA cm-2 in 1 m KOH electrolyte. The as-prepared electrocatalysts remained active after 55 h operation without any significant decrease, indicating the excellent long-term operation stability of the electrode. The Faradaic efficiency of hydrogen production is close to 100% at different voltages. This work provides a new design strategy toward Co-based catalysts for efficient alkaline HER.
Collapse
Affiliation(s)
- Changchun Sun
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Chao Wang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou, Zhejiang, 310003, P. R. China
| | - Guangting Han
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Yuanming Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Haiguang Zhao
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
18
|
Kang Y, Cretu O, Kikkawa J, Kimoto K, Nara H, Nugraha AS, Kawamoto H, Eguchi M, Liao T, Sun Z, Asahi T, Yamauchi Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat Commun 2023; 14:4182. [PMID: 37443103 PMCID: PMC10344865 DOI: 10.1038/s41467-023-39157-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 07/15/2023] Open
Abstract
Multimetallic alloys (MMAs) with various compositions enrich the materials library with increasing diversity and have received much attention in catalysis applications. However, precisely shaping MMAs in mesoporous nanostructures and mapping the distributions of multiple elements remain big challenge due to the different reduction kinetics of various metal precursors and the complexity of crystal growth. Here we design a one-pot wet-chemical reduction approach to synthesize core-shell motif PtPdRhRuCu mesoporous nanospheres (PtPdRhRuCu MMNs) using a diblock copolymer as the soft template. The PtPdRhRuCu MMNs feature adjustable compositions and exposed porous structures rich in highly entropic alloy sites. The formation processes of the mesoporous structures and the reduction and growth kinetics of different metal precursors of PtPdRhRuCu MMNs are revealed. The PtPdRhRuCu MMNs exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 10, 13, and 28 mV at a current density of 10 mA cm-2 in alkaline (1.0 M KOH), acidic (0.5 M H2SO4), and neutral (1.0 M phosphate buffer solution (PBS)) electrolytes, respectively. The accelerated kinetics of the HER in PtPdRhRuCu MMNs are derived from multiple compositions with synergistic interactions among various metal sites and mesoporous structures with excellent mass/electron transportation characteristics.
Collapse
Affiliation(s)
- Yunqing Kang
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ovidiu Cretu
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Kikkawa
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Kimoto
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hiroki Nara
- Research Center for Materials Nanoarchitectonics and Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hiroki Kawamoto
- Hitachi High-Tech Corporation, 882, Ichige, Hitachinaka-shi, Ibaraki, 312-0033, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
19
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
20
|
Wang G, Ma Y, Wang J, Lu P, Wang Y, Fan Z. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. NANOSCALE 2023; 15:6456-6475. [PMID: 36951476 DOI: 10.1039/d3nr00484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.
Collapse
Affiliation(s)
- Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
21
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Stabilization of unprecedented crystal phases of metal nanomaterials. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Ao W, Cheng C, Ren H, Fan Z, Yin P, Qin Q, Chen ZN, Dai L. Heterostructured Ru/Ni(OH) 2 Nanomaterials as Multifunctional Electrocatalysts for Selective Reforming of Ethanol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45042-45050. [PMID: 36149741 DOI: 10.1021/acsami.2c13864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrochemical reforming of ethanol into hydrogen and hydrocarbons can reduce the electric potential energy barrier of hydrogen production from electrochemical water splitting, obtaining high value-added anode products. In this work, Ru/Ni(OH)2 heterostructured nanomaterials were synthesized successfully by an in situ reduction strategy with remarkable multifunctional catalytic properties. In the hydrogen evolution reaction, Ru/Ni(OH)2 exhibits a smaller overpotential of 31 mV to obtain a current density of 10 mA/cm2, which is better than that of commercial Pt/C. Notably, such heterostructured Ru/Ni(OH)2 nanomaterials also perform an outstanding catalytic selectivity toward an acetaldehyde product in the oxidation of ethanol. DFT calculations reveal that abundant Ru(0)-Ni(II) heterostructured sites are the key factor for the excellent performances. As a result, an ethanol-selective reforming electrolyzer driven by a 2 V solar cell is constructed to produce hydrogen and acetaldehyde in the cathodic and anodic part, respectively, via using Ru/Ni(OH)2 heterostructured catalysts. This work provides a forward-looking technical guidance for the design of novel energy conversion systems.
Collapse
Affiliation(s)
- Weidong Ao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Changgen Cheng
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Huijun Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Zhishuai Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Peiqun Yin
- Center of Biomedical Materials, School of Biomedical Engineering and Research and Engineering, Anhui Medical University, Hefei 230032, China
| | - Qing Qin
- The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
24
|
Wu J, Fan J, Zhao X, Wang Y, Wang D, Liu H, Gu L, Zhang Q, Zheng L, Singh DJ, Cui X, Zheng W. Atomically Dispersed MoO x on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202207512. [PMID: 35762984 DOI: 10.1002/anie.202207512] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/06/2022]
Abstract
Accelerating slow water dissociation kinetics is key to boosting the hydrogen evolution reaction (HER) in alkaline media. We report the synthesis of atomically dispersed MoOx species anchored on Rh metallene using a one-pot solvothermal method. The resulting structures expose the oxide-metal interfaces to the maximum extent. This leads to a MoOx -Rh catalyst with ultrahigh alkaline HER activity. We obtained a mass activity of 2.32 A mgRh -1 at an overpotential of 50 mV, which is 11.8 times higher than that of commercial Pt/C and surpasses the previously reported Rh-based electrocatalysts. First-principles calculations demonstrate that the interface between MoOx and Rh is the active center for alkaline HER. The MoOx sites preferentially adsorb and dissociate water molecules, and adjacent Rh sites adsorb the generated atomic hydrogen for efficient H2 evolution. Our findings illustrate the potential of atomic interface engineering strategies in electrocatalysis.
Collapse
Affiliation(s)
- Jiandong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Hongtai Liu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Lin Gu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO 65211-7010, USA
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| |
Collapse
|
25
|
Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. NANOMATERIALS 2022; 12:nano12142389. [PMID: 35889615 PMCID: PMC9324018 DOI: 10.3390/nano12142389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most effective methods to convert CO2 into useful fuels. Introducing defects into metal nanostructures can effectively improve the catalytic activity and selectivity towards CO2RR. This review provides the recent progress on the use of metal nanomaterials with defects towards electrochemical CO2RR and defects engineering methods. Accompanying these ideas, we introduce the structure of defects characterized by electron microscopy techniques as the characterization and analysis of defects are relatively difficult. Subsequently, we present the intrinsic mechanism of how the defects affect CO2RR performance. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning defects engineering in metal nanomaterials towards CO2RR are put forward.
Collapse
|
26
|
Wu J, Fan J, Zhao X, Wang Y, Wang D, Liu H, Gu L, Zhang Q, Zheng L, Cui X, Singh DJ, Zheng W. Atomically Dispersed MoOx on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiandong Wu
- Jilin University School of Materials Science and Engineering CHINA
| | - Jinchang Fan
- Jilin University School of Materials Science and Engineering CHINA
| | - Xiao Zhao
- Jilin University School of Materials Science and Engineering CHINA
| | - Ying Wang
- Jilin University School of Materials Science and Engineering CHINA
| | - Dewen Wang
- Jilin University School of Materials Science and Engineering CHINA
| | - Hongtai Liu
- Jilin University School of Materials Science and Engineering CHINA
| | - Lin Gu
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Qinghua Zhang
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Lirong Zheng
- Chinese Academy of Sciences Institute of High Energy Physics CHINA
| | - Xiaoqiang Cui
- Jilin University School of Materials Science and Engineering 2699 Qianjin Street 130012 Changchun CHINA
| | - David J. Singh
- University of Missouri Department of Physics and Astronomy and Department of Chemistry UNITED STATES
| | - Weitao Zheng
- Jilin University School of Materials Science and Engineering CHINA
| |
Collapse
|
27
|
Li J, Hou M, Zhang Z. Insight into the effects of the crystal phase of Ru over ultrathin Ru@Pt core-shell nanosheets for methanol electrooxidation. NANOSCALE 2022; 14:8096-8102. [PMID: 35611673 DOI: 10.1039/d2nr01602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coating a second metal on the surface of ultrathin 2D nanosheets (NSs) could induce lattice strain and modify the electronic structure, thereby changing the surface reactivity. Herein, we report the effects of different crystal phases of Ru on the electrocatalytic performance of ultrathin Ru@Pt core-shell NSs for the methanol oxidation reaction (MOR). Importantly, Ru with a novel face-centered-cubic phase was found to have more effect on the electronic structure of Pt than Ru with a conventional hexagonal close-packed phase, thereby leading to improved electrocatalytic activity toward the MOR under acidic and basic conditions. It is believed that the strategy presented here would offer a new approach to the construction of bimetallic core-shell nanostructures with various promising applications.
Collapse
Affiliation(s)
- Junjun Li
- Department of Chemistry, School of Science, Tianjin University & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin 300072, China.
| | - Man Hou
- Department of Chemistry, School of Science, Tianjin University & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin 300072, China.
| | - Zhicheng Zhang
- Department of Chemistry, School of Science, Tianjin University & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin 300072, China.
| |
Collapse
|
28
|
Li Z, Zhai L, Ge Y, Huang Z, Shi Z, Liu J, Zhai W, Liang J, Zhang H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl Sci Rev 2022; 9:nwab142. [PMID: 35591920 PMCID: PMC9113131 DOI: 10.1093/nsr/nwab142] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/01/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022] Open
Abstract
Two-dimensional (2D) metal nanomaterials have gained ever-growing research interest owing to their fascinating physicochemical properties and promising application, especially in the field of electrocatalysis. In this review, we briefly introduce the recent advances in wet-chemical synthesis of 2D metal nanomaterials. Subsequently, the catalytic performances of 2D metal nanomaterials in a variety of electrochemical reactions are illustrated. Finally, we summarize current challenges and highlight our perspectives on preparing high-performance 2D metal electrocatalysts.
Collapse
Affiliation(s)
- Zijian Li
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639665, Singapore
| | - Wei Zhai
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinzhe Liang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Departmentof Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
29
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p-d Hybridization Interaction in Heterostructural Pd-PdSe Nanosheets Boosts C-C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202200899. [PMID: 35083836 DOI: 10.1002/anie.202200899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/14/2023]
Abstract
Advanced electrocatalysts for complete oxidation of ethylene glycol (EG) in direct EG fuel cells are strongly desired owing to the higher energy efficiency. Herein, Pd-PdSe heterostructural nanosheets (Pd-PdSe HNSs) have been successfully fabricated via a one-step approach. These Pd-PdSe HNSs feature unique electronic and geometrical structures, in which unconventional p-d hybridization interactions and tensile strain effect co-exist. Compared with commercial Pd/C and Pd NSs catalysts, Pd-PdSe HNSs display 5.5 (6.6) and 2.5 (2.6) fold enhancement of specific (mass) activity for the EG oxidation reaction (EGOR). Especially, the optimum C1 pathway selectivity of Pd-PdSe HNSs reaches 44.3 %, illustrating the superior C-C bond cleavage ability. Electrochemical in situ FTIR spectroscopy and theoretical calculations demonstrate that the extraordinary p-d hybridization interaction and tensile strain effect could effectively reduce the activation energy of C-C bond breaking and accelerate CO* oxidation, boosting the complete oxidation of EG and improving the catalytic performance.
Collapse
Affiliation(s)
- Yuchen Qin
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Wenlong Zhang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Fengqi Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, college of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xia Sheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Chenxi Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Xiaoyu Liang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Pei Liu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xiaopeng Wang
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Xin Zheng
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Yunlai Ren
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Cuilian Xu
- College of sciences, Henan Agricultural University, Zhengzhou, 450000, P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
30
|
Cai L, Huo J, Zou P, Li G, Liu J, Xu W, Gao M, Zhang S, Wang JQ. Key Role of Lorentz Excitation in the Electromagnetic-Enhanced Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15243-15249. [PMID: 35382552 DOI: 10.1021/acsami.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alternating magnetic fields (AMFs) are recently demonstrated as a promising strategy to promote the electrochemical catalytic reactions. However, the underlying mechanisms are still an open question. In this work, we systematically investigated the influence of AMFs on the hydrogen evolution reaction (HER) by using a Fe-Co-Ni-P-B magnetic catalyst. The HER catalytic efficiency is boosted significantly by AMFs, with 27% increase in current density at 20 mT. This is attributed to the enhancement of charge-transfer efficiency by Lorentz interaction with a minor contribution from the heating effect. The high magnetic permeability and skin effect of electromagnetic eddy current for the Fe-Co-Ni-P-B electrode can magnify the Lorentz effect. These findings clarify the mechanism of AMF-enhanced HER catalytic activities and open a door for designing a high-efficiency electrocatalysis system.
Collapse
Affiliation(s)
- Liang Cai
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zou
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jian Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shuzhi Zhang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Defect engineering for high-selection-performance of N2 activation over CeO2(111) surface. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Chen Z, Xu Y, Ding D, Song G, Gan X, Li H, Wei W, Chen J, Li Z, Gong Z, Dong X, Zhu C, Yang N, Ma J, Gao R, Luo D, Cong S, Wang L, Zhao Z, Cui Y. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat Commun 2022; 13:763. [PMID: 35140218 PMCID: PMC8828749 DOI: 10.1038/s41467-022-28413-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
Tungsten carbides, featured by their Pt-like electronic structure, have long been advocated as potential replacements for the benchmark Pt-group catalysts in hydrogen evolution reaction. However, tungsten-carbide catalysts usually exhibit poor alkaline HER performance because of the sluggish hydrogen desorption behavior and possible corrosion problem of tungsten atoms by the produced hydroxyl intermediates. Herein, we report the synthesis of tungsten atomic clusters anchored on P-doped carbon materials via a thermal-migration strategy using tungsten single atoms as the parent material, which is evidenced to have the most favorable Pt-like electronic structure by in-situ variable-temperature near ambient pressure X-ray photoelectron spectroscopy measurements. Accordingly, tungsten atomic clusters show markedly enhanced alkaline HER activity with an ultralow overpotential of 53 mV at 10 mA/cm2 and a Tafel slope as low as 38 mV/dec. These findings may provide a feasible route towards the rational design of atomic-cluster catalysts with high alkaline hydrogen evolution activity.
Collapse
Affiliation(s)
- Zhigang Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yafeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ding Ding
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xingxing Gan
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hao Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Chen
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhiyun Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoming Dong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chengfeng Zhu
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Nana Yang
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Suzhou, 201204, China
| | - Rui Gao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Shan Cong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhigang Zhao
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
33
|
Qin Y, Zhang W, Wang F, Li J, Ye J, Sheng X, Li C, Liang X, Liu P, Wang X, Zheng X, Ren Y, Xu C, Zhang Z. Extraordinary p–d Hybridization Interaction in Heterostructural Pd‐PdSe Nanosheets Boosts C−C Bond Cleavage of Ethylene Glycol Electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchen Qin
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Wenlong Zhang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Fengqi Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - JunJun Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces college of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 P. R. China
| | - Xia Sheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Chenxi Li
- College of Life Science Chongqing Normal University Chongqing 401331 P. R. China
| | - Xiaoyu Liang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Pei Liu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xiaopeng Wang
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Xin Zheng
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Yunlai Ren
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Cuilian Xu
- College of sciences Henan Agricultural University Zhengzhou 450000 P. R. China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
34
|
|
35
|
Huo J, Wei H, Fu L, Zhao C, He C. Highly active Fe36Co44 bimetallic nanoclusters catalysts for hydrolysis of ammonia borane: The first-principles study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Ge Y, Wang X, Chen B, Huang Z, Shi Z, Huang B, Liu J, Wang G, Chen Y, Li L, Lu S, Luo Q, Yun Q, Zhang H. Preparation of fcc-2H-fcc Heterophase Pd@Ir Nanostructures for High-Performance Electrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107399. [PMID: 34719800 DOI: 10.1002/adma.202107399] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
With the development of phase engineering of nanomaterials (PEN), construction of noble-metal heterostructures with unconventional crystal phases, including heterophases, has been proposed as an attractive approach toward the rational design of highly efficient catalysts. However, it still remains challenging to realize the controlled preparation of such unconventional-phase noble-metal heterostructures and explore their crystal-phase-dependent applications. Here, various Pd@Ir core-shell nanostructures are synthesized with unconventional fcc-2H-fcc heterophase (2H: hexagonal close-packed; fcc: face-centered cubic) through a wet-chemical seeded method. As a result, heterophase Pd66 @Ir34 nanoparticles, Pd45 @Ir55 multibranched nanodendrites, and Pd68 @Ir22 Co10 trimetallic nanoparticles are obtained via the phase-selective epitaxial growth of fcc-2H-fcc-heterophase Ir-based nanostructures on 2H-Pd seeds. Importantly, the heterophase Pd45 @Ir55 nanodendrites exhibit excellent catalytic performance toward electrochemical hydrogen evolution reaction (HER) under acidic conditions. An overpotential of only 11.0 mV is required to achieve a current density of 10 mA cm-2 on Pd45 @Ir55 nanodendrites, which is lower than those of the conventional fcc-Pd47 @Ir53 counterparts, commercial Ir/C and Pt/C. This work not only demonstrates an appealing route to synthesize novel heterophase nanomaterials for promising applications in the emerging field of PEN, but also highlights the significant role of the crystal phase in determining their catalytic properties.
Collapse
Affiliation(s)
- Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
37
|
Zhou M, Liu J, Ling C, Ge Y, Chen B, Tan C, Fan Z, Huang J, Chen J, Liu Z, Huang Z, Ge J, Cheng H, Chen Y, Dai L, Yin P, Zhang X, Yun Q, Wang J, Zhang H. Synthesis of Pd 3 Sn and PdCuSn Nanorods with L1 2 Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106115. [PMID: 34601769 DOI: 10.1002/adma.202106115] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The crystal phase of nanomaterials is one of the key parameters determining their physicochemical properties and performance in various applications. However, it still remains a great challenge to synthesize nanomaterials with different crystal phases while maintaining the same composition, size, and morphology. Here, a facile, one-pot, wet-chemical method is reported to synthesize Pd3 Sn nanorods with comparable size and morphology but different crystal phases, that is, an ordered intermetallic and a disordered alloy with L12 and face-centered cubic (fcc) phases, respectively. The crystal phase of the as-synthesized Pd3 Sn nanorods is easily tuned by altering the types of tin precursors and solvents. Moreover, the approach can also be used to synthesize ternary PdCuSn nanorods with the L12 crystal phase. When used as electrocatalysts, the L12 Pd3 Sn nanorods exhibit superior electrocatalytic performance toward the ethanol oxidation reaction (EOR) compared to their fcc counterpart. Impressively, compared to the L12 Pd3 Sn nanorods, the ternary L12 PdCuSn nanorods exhibit more enhanced electrocatalytic performance toward the EOR, yielding a high mass current density up to 6.22 A mgPd -1 , which is superior to the commercial Pd/C catalyst and among the best reported Pd-based EOR electrocatalysts.
Collapse
Affiliation(s)
- Ming Zhou
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chongyi Ling
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhengqing Liu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710000, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, China
| | - Pengfei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Zhou X, Ma Y, Ge Y, Zhu S, Cui Y, Chen B, Liao L, Yun Q, He Z, Long H, Li L, Huang B, Luo Q, Zhai L, Wang X, Bai L, Wang G, Guan Z, Chen Y, Lee CS, Wang J, Ling C, Shao M, Fan Z, Zhang H. Preparation of Au@Pd Core-Shell Nanorods with fcc-2H- fcc Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. J Am Chem Soc 2021; 144:547-555. [PMID: 34932339 DOI: 10.1021/jacs.1c11313] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Controlled construction of bimetallic nanostructures with a well-defined heterophase is of great significance for developing highly efficient nanocatalysts and investigating the structure-dependent catalytic performance. Here, a wet-chemical synthesis method is used to prepare Au@Pd core-shell nanorods with a unique fcc-2H-fcc heterophase (fcc: face-centered cubic; 2H: hexagonal close-packed with a stacking sequence of "AB"). The obtained fcc-2H-fcc heterophase Au@Pd core-shell nanorods exhibit superior electrocatalytic ethanol oxidation performance with a mass activity as high as 6.82 A mgPd-1, which is 2.44, 6.96, and 6.43 times those of 2H-Pd nanoparticles, fcc-Pd nanoparticles, and commercial Pd/C, respectively. The operando infrared reflection absorption spectroscopy reveals a C2 pathway with fast reaction kinetics for the ethanol oxidation on the prepared heterophase Au@Pd nanorods. Our experimental results together with density functional theory calculations indicate that the enhanced performance of heterophase Au@Pd nanorods can be attributed to the unconventional 2H phase, the 2H/fcc phase boundary, and the lattice expansion of the Pd shell. Moreover, the heterophase Au@Pd nanorods can also serve as an efficient catalyst for the electrochemical oxidation of methanol, ethylene glycol, and glycerol. Our work in the area of phase engineering of nanomaterials (PENs) opens the way for developing high-performance electrocatalysts toward future practical applications.
Collapse
Affiliation(s)
- Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Cui
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Huiwu Long
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Licheng Bai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518057, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
39
|
Ge Y, Wang X, Huang B, Huang Z, Chen B, Ling C, Liu J, Liu G, Zhang J, Wang G, Chen Y, Li L, Liao L, Wang L, Yun Q, Lai Z, Lu S, Luo Q, Wang J, Zheng Z, Zhang H. Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. J Am Chem Soc 2021; 143:17292-17299. [PMID: 34613737 DOI: 10.1021/jacs.1c08973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crystal phase engineering of noble-metal-based alloy nanomaterials paves a new way to the rational synthesis of high-performance catalysts for various applications. However, the controlled preparation of noble-metal-based alloy nanomaterials with unconventional crystal phases still remains a great challenge due to their thermodynamically unstable nature. Herein, we develop a robust and general seeded method to synthesize PdCu alloy nanomaterials with unconventional hexagonal close-packed (hcp, 2H type) phase and also tunable Cu contents. Moreover, galvanic replacement of Cu by Pt can be further conducted to prepare unconventional trimetallic 2H-PdCuPt nanomaterials. Impressively, 2H-Pd67Cu33 nanoparticles possess a high mass activity of 0.87 A mg-1Pd at 0.9 V (vs reversible hydrogen electrode (RHE)) in electrochemical oxygen reduction reaction (ORR) under alkaline condition, which is 2.5 times that of the conventional face-centered cubic (fcc) Pd69Cu31 counterpart, revealing the important role of crystal phase on determining the ORR performance. After the incorporation of Pt, the obtained 2H-Pd71Cu22Pt7 catalyst shows a significantly enhanced mass activity of 1.92 A mg-1Pd+Pt at 0.9 V (vs RHE), which is 19.2 and 8.7 times those of commercial Pt/C and Pd/C, placing it among the best reported Pd-based ORR electrocatalysts under alkaline conditions.
Collapse
Affiliation(s)
- Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guanghua Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Zhang
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, Institution of Textiles and Clothing, Research Institute for Smart Energy, & Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhuangchai Lai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Institution of Textiles and Clothing, Research Institute for Smart Energy, & Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|