1
|
Kim S, Kwon O, Kim S, Jang S, Yu S, Lee CH, Choi YY, Cho SY, Kim KC, Yu C, Kim DW, Cho JH. Modulating synaptic plasticity with metal-organic framework for information-filterable artificial retina. Nat Commun 2025; 16:162. [PMID: 39746970 PMCID: PMC11696553 DOI: 10.1038/s41467-024-55173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Neuroprosthetics equipped with artificial synapses hold promise to address some most intricate medical problems, such as human sensory disorders. Yet, it is necessitated and of paramount importance for neuroprosthetics to be able to differentiate significant and insignificant signals. Here, we present an information-filterable artificial retina system that integrates artificial synapses with a signal-integration device for signal perception and processing with attention. The synaptic weight modulation is rendered through metal-organic framework (MOF) layers, where distinct short-term and long-term properties are predominantly determined by MOF's pore diameter and functionality. Specifically, four types of isoreticular Zr-based MOFs that share Zr6O4(OH)4 secondary building units have been systematically examined. It is demonstrated that small pore diameters enhance short-term properties, while large pores, which are characterized by increased ion affinity, sustain long-term properties. Moreover, we demonstrated a 6 × 6 pixel artificial retina by incorporating both short-term and long-term artificial synapses with a signal-integration device. Signal summation by the signal-integration device enables attention-based information processing. The information-filterable artificial retina system developed here emulates human perception processes and holds promise in the fields of neuroprosthetics and advanced artificial intelligence.
Collapse
Affiliation(s)
- Seongchan Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Seonkwon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Choong Hoo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Soo Young Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Cunjiang Yu
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Gozzi N, Chee L, Odermatt I, Kikkert S, Preatoni G, Valle G, Pfender N, Beuschlein F, Wenderoth N, Zipser C, Raspopovic S. Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy. Nat Commun 2024; 15:10840. [PMID: 39738088 DOI: 10.1038/s41467-024-55152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown. We designed a wearable sensory neuroprosthesis (NeuroStep) providing targeted neurostimulation of the undamaged nerve portion and assessed its functionality in 14 PN participants. Our system partially restored lost sensations in all participants through a purposely calibrated neurostimulation, despite PN nerves being less sensitive than healthy nerves (N = 22). Participants improved cadence and functional gait and reported a decrease of neuropathic pain after one day. Restored sensations activated cortical patterns resembling naturally located foot sensations. NeuroStep restores real-time intuitive sensations in PN participants, holding potential to enhance functional and health outcomes while advancing effective non-invasive neuromodulation.
Collapse
Affiliation(s)
- Noemi Gozzi
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lauren Chee
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Odermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Greta Preatoni
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Giacomo Valle
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Carl Zipser
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Graczyk E, Hutchison B, Valle G, Bjanes D, Gates D, Raspopovic S, Gaunt R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J Neurosci 2024; 44:e1237242024. [PMID: 39358021 PMCID: PMC11450537 DOI: 10.1523/jneurosci.1237-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Somatosensory neuroprostheses restore, replace, or enhance tactile and proprioceptive feedback for people with sensory impairments due to neurological disorders or injury. Somatosensory neuroprostheses typically couple sensor inputs from a wearable device, prosthesis, robotic device, or virtual reality system with electrical stimulation applied to the somatosensory nervous system via noninvasive or implanted interfaces. While prior research has mainly focused on technology development and proof-of-concept studies, recent acceleration of clinical studies in this area demonstrates the translational potential of somatosensory neuroprosthetic systems. In this review, we provide an overview of neurostimulation approaches currently undergoing human testing and summarize recent clinical findings on the perceptual, functional, and psychological impact of somatosensory neuroprostheses. We also cover current work toward the development of advanced stimulation paradigms to produce more natural and informative sensory feedback. Finally, we provide our perspective on the remaining challenges that need to be addressed prior to translation of somatosensory neuroprostheses.
Collapse
Affiliation(s)
- Emily Graczyk
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Brianna Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Giacomo Valle
- Department of Electrical Engineering, Chalmers University of Technology, Goteborg 41296, Sweden
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - David Bjanes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125
| | - Deanna Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zurich, Zurich 8092, Switzerland
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
4
|
Ding K, Rakhshan M, Paredes-Acuña N, Cheng G, Thakor NV. Sensory integration for neuroprostheses: from functional benefits to neural correlates. Med Biol Eng Comput 2024; 62:2939-2960. [PMID: 38760597 DOI: 10.1007/s11517-024-03118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
In the field of sensory neuroprostheses, one ultimate goal is for individuals to perceive artificial somatosensory information and use the prosthesis with high complexity that resembles an intact system. To this end, research has shown that stimulation-elicited somatosensory information improves prosthesis perception and task performance. While studies strive to achieve sensory integration, a crucial phenomenon that entails naturalistic interaction with the environment, this topic has not been commensurately reviewed. Therefore, here we present a perspective for understanding sensory integration in neuroprostheses. First, we review the engineering aspects and functional outcomes in sensory neuroprosthesis studies. In this context, we summarize studies that have suggested sensory integration. We focus on how they have used stimulation-elicited percepts to maximize and improve the reliability of somatosensory information. Next, we review studies that have suggested multisensory integration. These works have demonstrated that congruent and simultaneous multisensory inputs provided cognitive benefits such that an individual experiences a greater sense of authority over prosthesis movements (i.e., agency) and perceives the prosthesis as part of their own (i.e., ownership). Thereafter, we present the theoretical and neuroscience framework of sensory integration. We investigate how behavioral models and neural recordings have been applied in the context of sensory integration. Sensory integration models developed from intact-limb individuals have led the way to sensory neuroprosthesis studies to demonstrate multisensory integration. Neural recordings have been used to show how multisensory inputs are processed across cortical areas. Lastly, we discuss some ongoing research and challenges in achieving and understanding sensory integration in sensory neuroprostheses. Resolving these challenges would help to develop future strategies to improve the sensory feedback of a neuroprosthetic system.
Collapse
Affiliation(s)
- Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Mohsen Rakhshan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32816, USA
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - Natalia Paredes-Acuña
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Gordon Cheng
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Ganesh Kumar N, Chestek CA, Cederna PS, Kung TA. Realizing Upper Extremity Bionic Limbs: Leveraging Neuroprosthetic Control Strategies. Plast Reconstr Surg 2024; 154:713e-724e. [PMID: 37927033 DOI: 10.1097/prs.0000000000011183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
SUMMARY Innovations in prosthetic devices and neuroprosthetic control strategies have opened new frontiers for the treatment and rehabilitation of individuals undergoing amputation. Commercial prosthetic devices are now available with sophisticated electrical and mechanical components that can closely replicate the functions of the human musculoskeletal system. However, to truly recognize the potential of such prosthetic devices and develop the next generation of bionic limbs, a highly reliable prosthetic device control strategy is required. In the past few years, refined surgical techniques have enabled neuroprosthetic control strategies to record efferent motor and stimulate afferent sensory action potentials from a residual limb with extraordinary specificity, signal quality, and long-term stability. As a result, such control strategies are now capable of facilitating intuitive, real-time, and naturalistic prosthetic experiences for patients with amputations. This article summarizes the current state of upper extremity neuroprosthetic devices and discusses the leading control strategies that are critical to the ongoing advancement of prosthetic development and implementation.
Collapse
Affiliation(s)
| | - Cynthia A Chestek
- Department of Biomedical Engineering and Computer Science, University of Michigan
| | - Paul S Cederna
- From the Section of Plastic Surgery, Department of Surgery
| | | |
Collapse
|
6
|
Nanivadekar AC, Bose R, Petersen BA, Okorokova EV, Sarma D, Madonna TJ, Barra B, Farooqui J, Dalrymple AN, Levy I, Helm ER, Miele VJ, Boninger ML, Capogrosso M, Bensmaia SJ, Weber DJ, Fisher LE. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng 2024; 8:992-1003. [PMID: 38097809 PMCID: PMC11404213 DOI: 10.1038/s41551-023-01153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Rohit Bose
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Bailey A Petersen
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Devapratim Sarma
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tyler J Madonna
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatrice Barra
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Juhi Farooqui
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Isaiah Levy
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric R Helm
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Miele
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Douglas J Weber
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Song H, Hsieh TH, Yeon SH, Shu T, Nawrot M, Landis CF, Friedman GN, Israel EA, Gutierrez-Arango S, Carty MJ, Freed LE, Herr HM. Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nat Med 2024; 30:2010-2019. [PMID: 38951635 PMCID: PMC11271427 DOI: 10.1038/s41591-024-02994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/11/2024] [Indexed: 07/03/2024]
Abstract
For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented. To test this hypothesis, we present a neuroprosthetic interface consisting of surgically connected, agonist-antagonist muscles including muscle-sensing electrodes. In a cohort of seven leg amputees, the interface is shown to augment residual muscle afferents by 18% of biologically intact values. Compared with a matched amputee cohort without the afferent augmentation, the maximum neuroprosthetic walking speed is increased by 41%, enabling equivalent peak speeds to persons without leg amputation. Further, this level of afferent augmentation enables biomimetic adaptation to various walking speeds and real-world environments, including slopes, stairs and obstructed pathways. Our results suggest that even a small augmentation of residual muscle afferents restores biomimetic gait under continuous neuromodulation in individuals with leg amputation.
Collapse
Affiliation(s)
- Hyungeun Song
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tsung-Han Hsieh
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seong Ho Yeon
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tony Shu
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Nawrot
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian F Landis
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel N Friedman
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erica A Israel
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha Gutierrez-Arango
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Carty
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Lisa E Freed
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugh M Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Choi HJ, Choi J, Kim GS, Sung Kim H, Ko CY. Asymmetry of peak plantar pressure in transfemoral amputees during indoor and outdoor walking. J Biomech 2024; 170:112177. [PMID: 38838496 DOI: 10.1016/j.jbiomech.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This study investigates the differences in peak plantar pressure between the amputated and intact limbs of transfemoral amputees when walking outdoors. Ten non-amputees (aged 24.4 ± 2.0 years, 176.9 ± 2.5 cm, 72.3 ± 7.9 kg) and six transfemoral amputees (48.5 ± 6.3 years, 173.8 ± 4.2 cm, 82.0 ± 11.9 kg) participated in the study. Over approximately 1.6 km, the participants encountered various obstacles, including stairs, uneven surfaces, hills, and level ground, both indoors and outdoors. Throughout the walking session, the peak plantar pressure in both feet was monitored using wearable insole sensors. For all terrains, the percentage asymmetry was determined. Significant changes in peak plantar pressure asymmetry were found between the intact and amputated limbs, particularly when walking on level ground indoors, uneven terrains, descending stairs, and on steep slopes outdoors (all p < 0.05). These findings highlight the greater peak plantar pressure asymmetry in transfemoral amputees when walking outside. In addition, this study revealed that not all terrains contribute uniformly to this asymmetry.
Collapse
Affiliation(s)
- Hyuk-Jae Choi
- Rehabilitation Engineering Research Institute, Incheon, Republic of Korea.
| | - Junwon Choi
- Department of Biomedical Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Gyoo-Suk Kim
- Rehabilitation Engineering Research Institute, Incheon, Republic of Korea.
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
9
|
Ghiami Rad A, Shahbazi B. A systematic investigation of sensorimotor mechanisms with intelligent prostheses in patients with ankle amputation while walking. J Mech Behav Biomed Mater 2024; 151:106357. [PMID: 38181570 DOI: 10.1016/j.jmbbm.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
It is thought that creating sensorimotor feedback in people with ankle joint amputation can affect motor biomechanics during gait, but there is little evidence or previous research. This study e aim ed to investigate the sensorimotor mechanism of smart prostheses in with ankle amputations while walking. Search in Google Scholar, Scopus, PubMed and Medline databases between April 2017 and February 2023, in addition to a detailed review in specialized clinical and engineering databases, 29 articles were selected based on the inclusion and exclusion criteria. Trials that mainly include; Proprioception, walking process in movement disorders, ankle amputation were included. Qualitative assessments of selected trials using PEDro' scale was used. The review of studies showed that the use of pressure sensors, neural stimulation through encoded algorithms can provide continuous tactile and positional information of the artificial leg in the direction of neural stimulation throughout the entire walking cycle. These findings indicate that restoration of intraneuronal sensory feedback leads to functional and cognitive benefits. With these definitions, different companies and research centers are trying to improve the mechanics of walking, however, movement strategies are unknown despite little research in creating sense and movement in the use of smart prostheses.
Collapse
Affiliation(s)
- Amir Ghiami Rad
- Movement Biomechanics, Department of Movement Behavior, Faculty of Sports Sciences, University Of Tabriz, Tabriz, Iran.
| | - Behnam Shahbazi
- Movement Biomechanics, Department of Sports Biomechanics, Faculty of Sports Sciences, Bu- Ali Sina University, Hamadan, Iran.
| |
Collapse
|
10
|
Katic Secerovic N, Balaguer JM, Gorskii O, Pavlova N, Liang L, Ho J, Grigsby E, Gerszten PC, Karal-Ogly D, Bulgin D, Orlov S, Pirondini E, Musienko P, Raspopovic S, Capogrosso M. Neural population dynamics reveals disruption of spinal circuits' responses to proprioceptive input during electrical stimulation of sensory afferents. Cell Rep 2024; 43:113695. [PMID: 38245870 PMCID: PMC10962447 DOI: 10.1016/j.celrep.2024.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intraspinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produce neural trajectories that are disrupted by concurrent cutaneous stimulation. This disruption propagates to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.
Collapse
Affiliation(s)
- Natalija Katic Secerovic
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia; The Mihajlo Pupin Institute, University of Belgrade, 11060 Belgrade, Serbia; Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; National University of Science and Technology "MISIS," 4 Leninskiy Pr., 119049 Moscow, Russia
| | - Natalia Pavlova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dzhina Karal-Ogly
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Dmitry Bulgin
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergei Orlov
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia; Life Improvement by Future Technologies Center "LIFT," 143025 Moscow, Russia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Valle G, Katic Secerovic N, Eggemann D, Gorskii O, Pavlova N, Petrini FM, Cvancara P, Stieglitz T, Musienko P, Bumbasirevic M, Raspopovic S. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat Commun 2024; 15:1151. [PMID: 38378671 PMCID: PMC10879152 DOI: 10.1038/s41467-024-45190-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Artificial communication with the brain through peripheral nerve stimulation shows promising results in individuals with sensorimotor deficits. However, these efforts lack an intuitive and natural sensory experience. In this study, we design and test a biomimetic neurostimulation framework inspired by nature, capable of "writing" physiologically plausible information back into the peripheral nervous system. Starting from an in-silico model of mechanoreceptors, we develop biomimetic stimulation policies. We then experimentally assess them alongside mechanical touch and common linear neuromodulations. Neural responses resulting from biomimetic neuromodulation are consistently transmitted towards dorsal root ganglion and spinal cord of cats, and their spatio-temporal neural dynamics resemble those naturally induced. We implement these paradigms within the bionic device and test it with patients (ClinicalTrials.gov identifier NCT03350061). He we report that biomimetic neurostimulation improves mobility (primary outcome) and reduces mental effort (secondary outcome) compared to traditional approaches. The outcomes of this neuroscience-driven technology, inspired by the human body, may serve as a model for advancing assistive neurotechnologies.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- School of Electrical Engineering, University of Belgrade, 11000, Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11000, Belgrade, Serbia
| | - Dominic Eggemann
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Oleg Gorskii
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory for Neuromodulation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049, Moscow, Russia
| | - Natalia Pavlova
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Paul Cvancara
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Bernstein Center, BrainLinks-BrainTools Center of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Pavel Musienko
- Laboratory for Neuroprosthetics, Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russia
- Sirius University of Science and Technology, Neuroscience Program, Sirius, Russia
- Laboratory for Neurorehabilitation Technologies, Life Improvement by Future Technologies Center "LIFT", Moscow, Russia
| | - Marko Bumbasirevic
- Orthopaedic Surgery Department, School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Kim D, Triolo R, Charkhkar H. Plantar somatosensory restoration enhances gait, speed perception, and motor adaptation. Sci Robot 2023; 8:eadf8997. [PMID: 37820003 DOI: 10.1126/scirobotics.adf8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Lower limb loss is a major insult to the body's nervous and musculoskeletal systems. Despite technological advances in prosthesis design, artificial limbs are not yet integrated into the body's physiological systems. Therefore, lower limb amputees (LLAs) experience lower balance confidence, higher fear of falls, and impaired gait compared with their able-bodied peers (ABs). Previous studies have demonstrated that restored sensations perceived as originating directly from the missing limb via neural interfaces improve balance and performance in certain ambulatory tasks; however, the effects of such evoked sensations on neural circuitries involved in the locomotor activity are not well understood. In this work, we investigated the effects of plantar sensation elicited by peripheral nerve stimulation delivered by multicontact nerve cuff electrodes on gait symmetry and stability, speed perception, and motor adaptation. We found that restored plantar sensation increased stance time and propulsive force on the prosthetic side, improved gait symmetry, and yielded an enhanced perception of prosthetic limb movement. Our results show that the locomotor adaptation among LLAs with plantar sensation became similar to that of ABs. These findings suggest that our peripheral nerve-based approach to elicit plantar sensation directly affects central nervous pathways involved in locomotion and motor adaptation during walking. Our neuroprosthesis provided a unique model to investigate the role of somatosensation in the lower limb during walking and its effects on perceptual recalibration after a locomotor adaptation task. Furthermore, we demonstrated how plantar sensation in LLAs could effectively increase mobility, improve walking dynamics, and possibly reduce fall risks.
Collapse
Affiliation(s)
- Daekyoo Kim
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
- Department of Physical Education, Korea University, Seoul 02841, Korea
| | - Ronald Triolo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Borda L, Gozzi N, Preatoni G, Valle G, Raspopovic S. Automated calibration of somatosensory stimulation using reinforcement learning. J Neuroeng Rehabil 2023; 20:131. [PMID: 37752607 PMCID: PMC10523674 DOI: 10.1186/s12984-023-01246-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The identification of the electrical stimulation parameters for neuromodulation is a subject-specific and time-consuming procedure that presently mostly relies on the expertise of the user (e.g., clinician, experimenter, bioengineer). Since the parameters of stimulation change over time (due to displacement of electrodes, skin status, etc.), patients undergo recurrent, long calibration sessions, along with visits to the clinics, which are inefficient and expensive. To address this issue, we developed an automatized calibration system based on reinforcement learning (RL) allowing for accurate and efficient identification of the peripheral nerve stimulation parameters for somatosensory neuroprostheses. METHODS We developed an RL algorithm to automatically select neurostimulation parameters for restoring sensory feedback with transcutaneous electrical nerve stimulation (TENS). First, the algorithm was trained offline on a dataset comprising 49 subjects. Then, the neurostimulation was then integrated with a graphical user interface (GUI) to create an intuitive AI-based mapping platform enabling the user to autonomously perform the sensation characterization procedure. We assessed the algorithm against the performance of both experienced and naïve and of a brute force algorithm (BFA), on 15 nerves from five subjects. Then, we validated the AI-based platform on six neuropathic nerves affected by distal sensory loss. RESULTS Our automatized approach demonstrated the ability to find the optimal values of neurostimulation achieving reliable and comfortable elicited sensations. When compared to alternatives, RL outperformed the naïve and BFA, significantly decreasing the time for mapping and the number of delivered stimulation trains, while improving the overall quality. Furthermore, the RL algorithm showed performance comparable to trained experimenters. Finally, we exploited it successfully for eliciting sensory feedback in neuropathic patients. CONCLUSIONS Our findings demonstrated that the AI-based platform based on a RL algorithm can automatically and efficiently calibrate parameters for somatosensory nerve stimulation. This holds promise to avoid experts' employment in similar scenarios, thanks to the merging between AI and neurotech. Our RL algorithm has the potential to be used in other neuromodulation fields requiring a mapping process of the stimulation parameters. TRIAL REGISTRATION ClinicalTrial.gov (Identifier: NCT04217005).
Collapse
Affiliation(s)
- Luigi Borda
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Science and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zurich, Switzerland.
| |
Collapse
|
14
|
Valette R, Gonzalez-Vargas J, Dosen S. The impact of walking on the perception of multichannel electrotactile stimulation in individuals with lower-limb amputation and able-bodied participants. J Neuroeng Rehabil 2023; 20:108. [PMID: 37592336 PMCID: PMC10436512 DOI: 10.1186/s12984-023-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND One of the drawbacks of lower-limb prostheses is that they do not provide explicit somatosensory feedback to their users. Electrotactile stimulation is an attractive technology to restore such feedback because it enables compact solutions with multiple stimulation points. This allows stimulating a larger skin area to provide more information concurrently and modulate parameters spatially as well as in amplitude. However, for effective use, electrotactile stimulation needs to be calibrated and it would be convenient to perform this procedure while the subject is seated. However, amplitude and spatial perception can be affected by motion and/or physical coupling between the residual limb and the socket. In the present study, we therefore evaluated and compared the psychometric properties of multichannel electrotactile stimulation applied to the thigh/residual limb during sitting versus walking. METHODS The comprehensive assessment included the measurement of the sensation and discomfort thresholds (ST & DT), just noticeable difference (JND), number of distinct intervals (NDI), two-point discrimination threshold (2PD), and spatial discrimination performance (SD). The experiment involved 11 able-bodied participants (4 females and 7 males; 29.2 ± 3.8 years), 3 participants with transtibial amputation, and 3 participants with transfemoral amputation. RESULTS In able-bodied participants, the results were consistent for all the measured parameters, and they indicated that both amplitude and spatial perception became worse during walking. More specifically, ST and DT increased significantly during walking vs. sitting (2.90 ± 0.82 mA vs. 2.00 ± 0.52 mA; p < 0.001 for ST and 7.74 ± 0.84 mA vs. 7.21 ± 1.30 mA; p < 0.05 for DT) and likewise for the JND (22.47 ± 12.21% vs. 11.82 ± 5.07%; p < 0.01), while the NDI became lower (6.46 ± 3.47 vs. 11.27 ± 5.18 intervals; p < 0.01). Regarding spatial perception, 2PD was higher during walking (69.78 ± 17.66 mm vs. 57.85 ± 14.87 mm; p < 0.001), while the performance of SD was significantly lower (56.70 ± 10.02% vs. 64.55 ± 9.44%; p < 0.01). For participants with lower-limb amputation, the ST, DT, and performance in the SD assessment followed the trends observed in the able-bodied population. The results for 2PD and JND were however different and subject-specific. CONCLUSION The conducted evaluation demonstrates that electrotactile feedback should be calibrated in the conditions in which it will be used (e.g., during walking). The calibration during sitting, while more convenient, might lead to an overly optimistic (or in some cases pessimistic) estimate of sensitivity. In addition, the results underline that calibration is particularly important in people affected by lower-limb loss to capture the substantial variability in the conditions of the residual limb and prosthesis setup. These insights are important for the implementation of artificial sensory feedback in lower-limb prosthetics applications.
Collapse
Affiliation(s)
- Romain Valette
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
15
|
Wang C, He T, Zhou H, Zhang Z, Lee C. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 2023; 9:17. [PMID: 37528436 PMCID: PMC10394931 DOI: 10.1186/s42234-023-00118-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
The fourth industrial revolution has led to the development and application of health monitoring sensors that are characterized by digitalization and intelligence. These sensors have extensive applications in medical care, personal health management, elderly care, sports, and other fields, providing people with more convenient and real-time health services. However, these sensors face limitations such as noise and drift, difficulty in extracting useful information from large amounts of data, and lack of feedback or control signals. The development of artificial intelligence has provided powerful tools and algorithms for data processing and analysis, enabling intelligent health monitoring, and achieving high-precision predictions and decisions. By integrating the Internet of Things, artificial intelligence, and health monitoring sensors, it becomes possible to realize a closed-loop system with the functions of real-time monitoring, data collection, online analysis, diagnosis, and treatment recommendations. This review focuses on the development of healthcare artificial sensors enhanced by intelligent technologies from the aspects of materials, device structure, system integration, and application scenarios. Specifically, this review first introduces the great advances in wearable sensors for monitoring respiration rate, heart rate, pulse, sweat, and tears; implantable sensors for cardiovascular care, nerve signal acquisition, and neurotransmitter monitoring; soft wearable electronics for precise therapy. Then, the recent advances in volatile organic compound detection are highlighted. Next, the current developments of human-machine interfaces, AI-enhanced multimode sensors, and AI-enhanced self-sustainable systems are reviewed. Last, a perspective on future directions for further research development is also provided. In summary, the fusion of artificial intelligence and artificial sensors will provide more intelligent, convenient, and secure services for next-generation healthcare and biomedical applications.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
16
|
Ciotti F, Cimolato A, Valle G, Raspopovic S. Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization. PLoS Comput Biol 2023; 19:e1011184. [PMID: 37228174 DOI: 10.1371/journal.pcbi.1011184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Peripheral nerve stimulation is being investigated as a therapeutic tool in several clinical scenarios. However, the adopted devices have restricted ability to obtain desired outcomes with tolerable off-target effects. Recent promising solutions are not yet employed in clinical practice due to complex required surgeries, lack of long-term stability, and implant invasiveness. Here, we aimed to design a neural interface to address these issues, specifically dimensioned for pudendal and sacral nerves to potentially target sexual, bladder, or bowel dysfunctions. We designed the adaptable intrafascicular radial electrode (AIR) through realistic computational models. They account for detailed human anatomy, inhomogeneous anisotropic conductance, following the trajectories of axons along curving and branching fascicles, and detailed biophysics of axons. The model was validated against available experimental data. Thanks to computationally efficient geometry-based selectivity estimations we informed the electrode design, optimizing its dimensions to obtain the highest selectivity while maintaining low invasiveness. We then compared the AIR with state-of-the-art electrodes, namely InterStim leads, multipolar cuffs and transversal intrafascicular multichannel electrodes (TIME). AIR, comprising a flexible substrate, surface active sites, and radially inserted intrafascicular needles, is designed to be implanted in a few standard steps, potentially enabling fast implants. It holds potential for repeatable stimulation outcomes thanks to its radial structural symmetry. When compared in-silico, AIR consistently outperformed cuff electrodes and InterStim leads in terms of recruitment threshold and stimulation selectivity. AIR performed similarly or better than a TIME, with quantified less invasiveness. Finally, we showed how AIR can adapt to different nerve sizes and varying shapes while maintaining high selectivity. The AIR electrode shows the potential to fill a clinical need for an effective peripheral nerve interface. Its high predicted performance in all the identified requirements was enabled by a model-based approach, readily applicable for the optimization of electrode parameters in any peripheral nerve stimulation scenario.
Collapse
Affiliation(s)
- Federico Ciotti
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Andrea Cimolato
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Giacomo Valle
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Stanisa Raspopovic
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Cimolato A, Ciotti F, Kljajić J, Valle G, Raspopovic S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023; 26:106248. [PMID: 36923003 PMCID: PMC10009292 DOI: 10.1016/j.isci.2023.106248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Peripheral nerve stimulation in amputees achieved the restoration of touch, but not proprioception, which is critical in locomotion. A plausible reason is the lack of means to artificially replicate the complex activity of proprioceptors. To uncover this, we coupled neuromuscular models from ten subjects and nerve histologies from two implanted amputees to develop ProprioStim: a framework to encode proprioception by electrical evoking neural activity in close agreement with natural proprioceptive activity. We demonstrated its feasibility through non-invasive stimulation on seven healthy subjects comparing it with standard linear charge encoding. Results showed that ProprioStim multichannel stimulation was felt more natural, and hold promises for increasing accuracy in knee angle tracking, especially in future implantable solutions. Additionally, we quantified the importance of realistic 3D-nerve models against extruded models previously adopted for further design and validation of novel neurostimulation encoding strategies. ProprioStim provides clear guidelines for the development of neurostimulation policies restoring natural proprioception.
Collapse
Affiliation(s)
- Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Rehab Technologies Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Federico Ciotti
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Jelena Kljajić
- Institute Mihajlo Pupin, Belgrade, 11060, Serbia
- School of Electrical Engineering, University of Belgrade, Belgrade, 11120, Serbia
| | - Giacomo Valle
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
18
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
19
|
Kruppa C, Benner S, Brinkemper A, Aach M, Reimertz C, Schildhauer TA. [New technologies and robotics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:9-18. [PMID: 36515725 DOI: 10.1007/s00113-022-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery "core business" of rehabilitation after fractures and other joint injuries.For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of "sentient" prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.
Collapse
Affiliation(s)
- Christiane Kruppa
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Sebastian Benner
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Alexis Brinkemper
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Mirko Aach
- Chirurgische Klinik und Poliklinik, Abteilung für Rückenmarkverletzte, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Christoph Reimertz
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Thomas A Schildhauer
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
20
|
Krauskopf T, Lauck T, Meyer B, Klein L, Mueller M, Kubosch J, Herget G, von Tscharner V, Ernst J, Stieglitz T, Pasluosta C. Neuromuscular adaptations after osseointegration of a bone-anchored prosthesis in a unilateral transfemoral amputee - a case study. Ann Med 2023; 55:2255206. [PMID: 37677026 PMCID: PMC10486294 DOI: 10.1080/07853890.2023.2255206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE Many individuals with a lower limb amputation experience problems with the fitting of the socket of their prosthesis, leading to dissatisfaction or device rejection. Osseointegration (OI)- the implantation of a shaft directly interfacing with the remaining bone- is an alternative for these patients. In this observational study, we investigated how bone anchoring influences neuromuscular parameters during balance control in a patient with a unilateral transfemoral amputation. MATERIAL AND METHODS Center of pressure (CoP) and electromyography (EMG) signals from muscles controlling the hip and the ankle of the intact leg were recorded during quiet standing six months before and one and a half years after this patient underwent an OI surgery. Results were compared to a control group of nine able-bodied individuals. RESULTS Muscle co-activation and EMG intensity decreased after bone anchoring, approaching the levels of able-bodied individuals. Muscle co-activation controlling the ankle decreased in the high-frequency range, and the EMG intensity spectrum decreased in the lower-frequency range for all muscles when vision was allowed. With eyes closed, the ankle extensor muscle showed an increased EMG intensity in the high-frequency range post-surgery. CoP length increased in the mediolateral direction of the amputated leg. CONCLUSIONS These findings point to shifts in the patient's neuromuscular profile towards the one of able-bodied individuals.
Collapse
Affiliation(s)
- Thomas Krauskopf
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Freiburg, Germany
| | - Torben Lauck
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Britta Meyer
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Lukas Klein
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Johanna Kubosch
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Georg Herget
- Department of Orthopaedics and Trauma Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Jennifer Ernst
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Göttingen, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Cristian Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Katic N, Siqueira RK, Cleland L, Strzalkowski N, Bent L, Raspopovic S, Saal H. Modeling foot sole cutaneous afferents: FootSim. iScience 2022; 26:105874. [PMID: 36636355 PMCID: PMC9829801 DOI: 10.1016/j.isci.2022.105874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
While walking and maintaining balance, humans rely on cutaneous feedback from the foot sole. Electrophysiological recordings reveal how this tactile feedback is represented in neural afferent populations, but obtaining them is difficult and limited to stationary conditions. We developed the FootSim model, a realistic replication of mechanoreceptor activation in the lower limb. The model simulates neural spiking responses to arbitrary mechanical stimuli from the combined population of all four types of mechanoreceptors innervating the foot sole. It considers specific mechanics of the foot sole skin tissue, and model internal parameters are fitted using human microneurography recording dataset. FootSim can be exploited for neuroscientific insights, to understand the overall afferent activation in dynamic conditions, and for overcoming the limitation of currently available recording techniques. Furthermore, neuroengineers can use the model as a robust in silico tool for neuroprosthetic applications and for designing biomimetic stimulation patterns starting from the simulated afferent neural responses.
Collapse
Affiliation(s)
- Natalija Katic
- School of Electrical Engineering, University of Belgrade, 11 000 Belgrade, Serbia
- The Mihajlo Pupin Institute, University of Belgrade, 11 060 Belgrade, Serbia
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Rodrigo Kazu Siqueira
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Luke Cleland
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | | | - Leah Bent
- Neurophysiology Lab, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Corresponding author
| | - Hannes Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
- Corresponding author
| |
Collapse
|
22
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
23
|
Cognitive benefits of using non-invasive compared to implantable neural feedback. Sci Rep 2022; 12:16696. [PMID: 36202893 PMCID: PMC9537330 DOI: 10.1038/s41598-022-21057-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
A non-optimal prosthesis integration into an amputee’s body schema suggests some important functional and health consequences after lower limb amputation. These include low perception of a prosthesis as a part of the body, experiencing it as heavier than the natural limb, and cognitively exhausting use for users. Invasive approaches, exploiting the surgical implantation of electrodes in residual nerves, improved prosthesis integration by restoring natural and somatotopic sensory feedback in transfemoral amputees. A non-invasive alternative that avoids surgery would reduce costs and shorten certification time, significantly increasing the adoption of such systems. To explore this possibility, we compared results from a non-invasive, electro-cutaneous stimulation system to outcomes observed with the use of implants in above the knee amputees. This non-invasive solution was tested in transfemoral amputees through evaluation of their ability to perceive and recognize touch intensity and locations, or movements of a prosthesis, and its cognitive integration (through dual task performance and perceived prosthesis weight). While this managed to evoke the perception of different locations on the artificial foot, and closures of the leg, it was less performant than invasive solutions. Non-invasive stimulation induced similar improvements in dual motor and cognitive tasks compared to neural feedback. On the other hand, results demonstrate that remapped, evoked sensations are less informative and intuitive than the neural evoked somatotopic sensations. The device therefore fails to improve prosthesis embodiment together with its associated weight perception. This preliminary evaluation meaningfully highlights the drawbacks of non-invasive systems, but also demonstrates benefits when performing multiple tasks at once. Importantly, the improved dual task performance is consistent with invasive devices, taking steps towards the expedited development of a certified device for widespread use.
Collapse
|
24
|
Valle G, Aiello G, Ciotti F, Cvancara P, Martinovic T, Kravic T, Navarro X, Stieglitz T, Bumbasirevic M, Raspopovic S. Multifaceted understanding of human nerve implants to design optimized electrodes for bioelectronics. Biomaterials 2022; 291:121874. [DOI: 10.1016/j.biomaterials.2022.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
25
|
Cornelio P, Haggard P, Hornbaek K, Georgiou O, Bergström J, Subramanian S, Obrist M. The sense of agency in emerging technologies for human–computer integration: A review. Front Neurosci 2022; 16:949138. [PMID: 36172040 PMCID: PMC9511170 DOI: 10.3389/fnins.2022.949138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Human–computer integration is an emerging area in which the boundary between humans and technology is blurred as users and computers work collaboratively and share agency to execute tasks. The sense of agency (SoA) is an experience that arises by a combination of a voluntary motor action and sensory evidence whether the corresponding body movements have somehow influenced the course of external events. The SoA is not only a key part of our experiences in daily life but also in our interaction with technology as it gives us the feeling of “I did that” as opposed to “the system did that,” thus supporting a feeling of being in control. This feeling becomes critical with human–computer integration, wherein emerging technology directly influences people’s body, their actions, and the resulting outcomes. In this review, we analyse and classify current integration technologies based on what we currently know about agency in the literature, and propose a distinction between body augmentation, action augmentation, and outcome augmentation. For each category, we describe agency considerations and markers of differentiation that illustrate a relationship between assistance level (low, high), agency delegation (human, technology), and integration type (fusion, symbiosis). We conclude with a reflection on the opportunities and challenges of integrating humans with computers, and finalise with an expanded definition of human–computer integration including agency aspects which we consider to be particularly relevant. The aim this review is to provide researchers and practitioners with guidelines to situate their work within the integration research agenda and consider the implications of any technologies on SoA, and thus overall user experience when designing future technology.
Collapse
Affiliation(s)
- Patricia Cornelio
- Ultraleap Ltd., Bristol, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
- *Correspondence: Patricia Cornelio,
| | - Patrick Haggard
- Department of Computer Science, University College London, London, United Kingdom
| | - Kasper Hornbaek
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Joanna Bergström
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Sriram Subramanian
- Department of Computer Science, University College London, London, United Kingdom
| | - Marianna Obrist
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
26
|
Chee L, Valle G, Marazzi M, Preatoni G, Haufe FL, Xiloyannis M, Riener R, Raspopovic S. Optimally-calibrated non-invasive feedback improves amputees' metabolic consumption, balance and walking confidence. J Neural Eng 2022; 19. [PMID: 35944515 DOI: 10.1088/1741-2552/ac883b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Lower-limb amputees suffer from a variety of health problems, including higher metabolic consumption and low mobility. These conditions are linked to the lack of a natural sensory feedback from their prosthetic device, which forces them to adopt compensatory walking strategies that increase fatigue. Recently, both invasive (i.e. requiring a surgery) and non-invasive approaches have been able to provide artificial sensations via neurostimulation, inducing multiple functional and cognitive benefits. Implants helped to improve patient mobility and significantly reduce their metabolic consumption. A wearable, non-invasive alterative that provides similar useful health benefits, would eliminate the surgery related risks and costs thereby increasing the accessibility and the spreading of such neurotechnologies. APPROACH Here, we present a non-invasive sensory feedback system exploiting an optimally-calibrated (JND-based) electro-cutaneous stimulation to encode intensity-modulated foot-ground and knee angle information personalized to the user's just noticeable perceptual threshold. This device was holistically evaluated in three transfemoral amputees by examination of metabolic consumption while walking outdoors, walking over different inclinations on a treadmill indoors, and balance maintenance in reaction to unexpected perturbation on a treadmill indoors. We then collected spatio-temporal parameters (i.e. gait dynamic and kinematics), and self-reported prosthesis confidence while the patients were walking with and without the sensory feedback. MAIN RESULTS This non-invasive sensory feedback system, encoding different distinctly perceived levels of tactile and knee flexion information, successfully enabled subjects to decrease metabolic consumption while walking and increase prosthesis confidence. Remarkably, more physiological walking strategies and increased stability in response to external perturbations were observed while walking with the sensory feedback. SIGNIFICANCE The health benefits observed with the use of this non-invasive device, previously only observed exploiting invasive technologies, takes an important step towards the development of a practical, non-invasive alternative to restoring sensory feedback in leg amputees.
Collapse
Affiliation(s)
- Lauren Chee
- ETH Zurich, Tannenstrasse 1, Zurich, Zürich, 8092, SWITZERLAND
| | - Giacomo Valle
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, 8092, SWITZERLAND
| | - Michele Marazzi
- ETH Zürich, Tannenstrasse 1, Zurich, Zurich, 8092, SWITZERLAND
| | - Greta Preatoni
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, 8092, SWITZERLAND
| | - Florian L Haufe
- ETH Zürich, Tannenstrasse 1, TAN E5, Zurich, Zurich, 8092, SWITZERLAND
| | | | - Robert Riener
- ETH Zürich, Tannenstrasse 1, TAN E5, Zurich, Zurich, 8092, SWITZERLAND
| | - Stanisa Raspopovic
- ETH Zürich, Tannenstrasse 1, TAN E2, Zurich, Zurich, ZH, 8092, SWITZERLAND
| |
Collapse
|
27
|
Silveira C, Khushaba RN, Brunton E, Nazarpour K. Spatio-temporal feature extraction in sensory electroneurographic signals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210268. [PMID: 35658682 PMCID: PMC9289791 DOI: 10.1098/rsta.2021.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/15/2023]
Abstract
The recording and analysis of peripheral neural signal can provide insight for various prosthetic and bioelectronics medicine applications. However, there are few studies that investigate how informative features can be extracted from population activity electroneurographic (ENG) signals. In this study, five feature extraction frameworks were implemented on sensory ENG datasets and their classification performance was compared. The datasets were collected in acute rat experiments where multi-channel nerve cuffs recorded from the sciatic nerve in response to proprioceptive stimulation of the hindlimb. A novel feature extraction framework, which incorporates spatio-temporal focus and dynamic time warping, achieved classification accuracies above 90% while keeping a low computational cost. This framework outperformed the remaining frameworks tested in this study and has improved the discrimination accuracy of the sensory signals. Thus, this study has extended the tools available to extract features from sensory population activity ENG signals. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- C. Silveira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - R. N. Khushaba
- Australian Center for Field Robotics, The University of Sydney, New South Wales 2006, Australia
| | - E. Brunton
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. Nazarpour
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
28
|
Multisensory Integration in Bionics: Relevance and Perspectives. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022. [DOI: 10.1007/s40141-022-00350-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of review
The goal of the review is to highlight the growing importance of multisensory integration processes connected to bionic limbs and somatosensory feedback restoration.
Recent findings
Restoring quasi-realistic sensations by means of neurostimulation has been shown to provide functional and motor benefits in limb amputees. In the recent past, cognitive processes linked to the artificial sense of touch seemed to play a crucial role for a full prosthesis integration and acceptance.
Summary
Artificial sensory feedback implemented in bionic limbs enhances the cognitive integration of the prosthetic device in amputees. The multisensory experience can be measured and must be considered in the design of novel somatosensory neural prostheses where the goal is to provide a realistic sensory experience to the prosthetic user. The correct integration of these sensory signals will guarantee higher-level cognitive benefits as a better prosthesis embodiment and a reduction of perceived limb distortions.
Collapse
|
29
|
Krauskopf T, Lauck TB, Klein L, Beusterien ML, Mueller M, Von Tscharner V, Mehring C, Herget GW, Stieglitz T, Pasluosta C. Unilateral transfemoral amputees exhibit altered strength and dynamics of muscular co-activation modulated by visual feedback. J Neural Eng 2022; 19. [PMID: 35100571 DOI: 10.1088/1741-2552/ac5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Somatosensory perception is disrupted in patients with a lower limb amputation. This increases the difficulty to maintain balance and leads to the development of neuromuscular adjustments. We investigated how these adjustments are reflected in the co-activation of lower body muscles and are modulated by visual feedback. APPROACH We measured electromyography (EMG) signals of muscles from the trunk (erector spinae and obliquus external), and the lower intact/dominant leg (tibialis anterior and medial gastrocnemius) in eleven unilateral transfemoral amputees and eleven age-matched able-bodied controls during 30 seconds of upright standing with and without visual feedback. Muscle synergies involved in balance control were investigated using wavelet coherence analysis. We focused on 7 frequencies grouped in three frequency bands, a low-frequency band (7.56 and 19.86 Hz) representing more sub-cortical and spinal inputs to the muscles, a mid-frequency band (38.26 and 62.63 Hz) representing more cortical inputs, and a high-frequency band (92.90, 129 and 170.90 Hz) associated with synchronizing motor unit action potentials. Further, the dynamics of changes in intermuscular coupling over time were quantified using the Entropic Half-Life. MAIN RESULTS Amputees exhibited lower coherency values when vision was removed at 7.56 Hz for the muscle pair of the lower leg. At this frequency, the coherency values of the amputee group also differed from controls for the eyes closed condition. Controls and amputees exhibited opposite coherent behaviors with visual feedback at 7.56 Hz. For the eyes open condition at 129 Hz, the coherency values of amputees and controls differed for the muscle pair of the trunk, and at 170.90 Hz for the muscle pair of the lower leg. Amputees exhibited different dynamics of muscle co-activation at the low frequency band when vision was available. SIGNIFICANCE Altogether, these findings point to the development of neuromuscular adaptations reflected in the strength and dynamics of muscular co-activation.
Collapse
Affiliation(s)
- Thomas Krauskopf
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Torben B Lauck
- Laboratory for Biomedical Microtechnology, Department of Microsystem Engineering (IMTEK) , University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Lukas Klein
- Department of Orthopaedics and Trauma Surgery, Medical Center-University of Freiburg, Hugstetter Straße 55, Freiburg, Baden-Württemberg, 79106, GERMANY
| | - Marvin L Beusterien
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Marc Mueller
- Sanitaetshaus Pfaender, Munzinger Straße 5c, Freiburg, 79111, GERMANY
| | | | - Carsten Mehring
- Institute of Biology III & Bernstein Centre , University of Freiburg, Hansastr. 9a, Freiburg im Breisgau, Baden-Württemberg, 79098, GERMANY
| | - Georg W Herget
- Department of Orthopaedics and Trauma Surgery, Medical Center-University of Freiburg, Hugstetter Straße 55, Freiburg, Baden-Württemberg, 79106, GERMANY
| | - Thomas Stieglitz
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cristian Pasluosta
- Laboratory for Biomedical Micro-technology, Department of Microsystem Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 201, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| |
Collapse
|
30
|
Basla C, Chee L, Valle G, Raspopovic S. A non-invasive wearable sensory leg neuroprosthesis: mechanical, electrical and functional validation. J Neural Eng 2021; 19. [PMID: 34915454 DOI: 10.1088/1741-2552/ac43f8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Lower limb amputees suffer from a variety of functional deficits related to the absence of sensory communication between the central nervous system and the lost extremity. Indeed, they experience high risk of falls, asymmetric walking and balance, and low prosthesis embodiment, that significantly decrease their quality of life. Presently, there are no commercially available devices able to provide sensory feedback to leg amputees. Recently, some invasive solutions (i.e. requiring a surgery) have been proposed by different research groups, however a non-invasive effective alternative exploitable in everyday life is still missing. APPROACH To address this need we developed and tested a lightweight, non-invasive, wearable technology (NeuroLegs) providing sensory (i.e. knee angle joint and tactile) feedback to the users through electro-cutaneous stimulation. A user-friendly GUI and mobile App have been developed to easily calibrate and control the system. Standard mechanical and electrical tests were performed to assess the safety and reliability of the technology. MAIN RESULTS No mechanical failures, stable communication among system parts and a long-lasting battery (>23h) were demonstrated. The NeuroLegs system was then verified in terms of accuracy in measuring relevant gait parameters in healthy participants. A high temporal reliability was found when detecting stride features (important for the real-time configuration) with a correct match to the walking cadence, in all assessed walking conditions. The effectiveness of the NeuroLegs system at improving walking of three transfemoral amputees was then verified in movement laboratory tests. Increased temporal gait symmetry and augmented confidence were found. Stepping outside from the lab, Neurolegs was successfully exploited by a transfemoral amputee in CYBATHLON Global Edition 2020 in several challenging situations related to daily-living activities. SIGNIFICANCE Our results demonstrate that the NeuroLegs system provides the user with useful sensory information that can be successfully exploited in different walking conditions of daily life.
Collapse
Affiliation(s)
- Chiara Basla
- ETH Zurich, Tannenstrasse 1, Zurich, Zürich, 8092, SWITZERLAND
| | - Lauren Chee
- ETH Zurich, Tannenstrasse 1, Zurich, Zürich, 8092, SWITZERLAND
| | - Giacomo Valle
- ETH Zürich, Tannenstrasse 1, Zurich, 8092, SWITZERLAND
| | | |
Collapse
|
31
|
Affiliation(s)
- Stanisa Raspopovic
- Neuroengineering Laboratory, Institute for Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
32
|
Karczewski AM, Dingle AM, Poore SO. The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements. Front Neurorobot 2021; 15:711028. [PMID: 34366820 PMCID: PMC8334559 DOI: 10.3389/fnbot.2021.711028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few decades there has been a push to enhance the use of advanced prosthetics within the fields of biomedical engineering, neuroscience, and surgery. Through the development of peripheral neural interfaces and invasive electrodes, an individual's own nervous system can be used to control a prosthesis. With novel improvements in neural recording and signal decoding, this intimate communication has paved the way for bidirectional and intuitive control of prostheses. While various collaborations between engineers and surgeons have led to considerable success with motor control and pain management, it has been significantly more challenging to restore sensation. Many of the existing peripheral neural interfaces have demonstrated success in one of these modalities; however, none are currently able to fully restore limb function. Though this is in part due to the complexity of the human somatosensory system and stability of bioelectronics, the fragmentary and as-yet uncoordinated nature of the neuroprosthetic industry further complicates this advancement. In this review, we provide a comprehensive overview of the current field of neuroprosthetics and explore potential strategies to address its unique challenges. These include exploration of electrodes, surgical techniques, control methods, and prosthetic technology. Additionally, we propose a new approach to optimizing prosthetic limb function and facilitating clinical application by capitalizing on available resources. It is incumbent upon academia and industry to encourage collaboration and utilization of different peripheral neural interfaces in combination with each other to create versatile limbs that not only improve function but quality of life. Despite the rapidly evolving technology, if the field continues to work in divided "silos," we will delay achieving the critical, valuable outcome: creating a prosthetic limb that is right for the patient and positively affects their life.
Collapse
Affiliation(s)
| | - Aaron M. Dingle
- Division of Plastic Surgery, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | | |
Collapse
|