1
|
Craffey M, Wagner PJ, Watkins DK, Darroch SAF, Lyons SK. Co-occurrence structure of late Ediacaran communities and influence of emerging ecosystem engineers. Proc Biol Sci 2024; 291:20242029. [PMID: 39657805 PMCID: PMC11631414 DOI: 10.1098/rspb.2024.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Understanding the roles of habitat filtering, dispersal limitations and biotic interactions in shaping the organization of animal communities is a central research goal in ecology. Attempts to extend these approaches into deep time have the potential to illuminate the role of these processes over key intervals in evolutionary history. The Ediacaran marks one such interval, recording the first macroscopic benthic communities and a stepwise intensification in animal ecosystem engineering. Here, we use taxonomic co-occurrence analysis to evaluate how community structure shifted through the late Ediacaran and the role of different community assembly processes in driving these changes. We find that community structure shifted significantly throughout the Ediacaran, with the most dramatic shift occurring at the White Sea-Nama boundary (approx. 550 Ma) characterized by a split between older, more enigmatic taxonomic groups (the 'Ediacara-type' fauna) and more recognizable ('Cambrian-type') metazoans. While ecosystem engineering via bioturbation is implicated in this shift, dispersal limitations also played apart in separating biota types. We hypothesize that bioturbation acted as a local habitat filter in the late Ediacaran, selecting against genera adapted to microbial mat ecosystems. Ecosystem engineering regime shifts in the Ediacaran may thus have had a large impact on the development of subsequent metazoan communities.
Collapse
Affiliation(s)
- M. Craffey
- School of Biological Sciences, Manter Hall 402, University of Nebraska, Lincoln, NE68588, USA
| | - P. J. Wagner
- Department of Earth and Atmospheric Sciences, 126 Bessey Hall, University of Nebraska, Lincoln, NE68588, USA
| | - David K. Watkins
- Department of Earth and Atmospheric Sciences, 126 Bessey Hall, University of Nebraska, Lincoln, NE68588, USA
| | - S. A. F Darroch
- Senckenberg Museum of Natural History, Frankfurt60325, Germany
| | - S. K. Lyons
- School of Biological Sciences, Manter Hall 402, University of Nebraska, Lincoln, NE68588, USA
| |
Collapse
|
2
|
Carlisle E, Yin Z, Pisani D, Donoghue PCJ. Ediacaran origin and Ediacaran-Cambrian diversification of Metazoa. SCIENCE ADVANCES 2024; 10:eadp7161. [PMID: 39536100 PMCID: PMC11559618 DOI: 10.1126/sciadv.adp7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The timescale of animal diversification has been a focus of debate over how evolutionary history should be calibrated to geologic time. Molecular clock analyses have invariably estimated a Cryogenian or Tonian origin of animals while unequivocal animal fossils first occur in the Ediacaran. However, redating of key Ediacaran biotas and the discovery of several Ediacaran crown-Metazoa prompt recalibration of molecular clock analyses. We present revised fossil calibrations and use them in molecular clock analyses estimating the timescale of metazoan evolutionary history. Integrating across uncertainties including phylogenetic relationships, clock model, and calibration strategy, we estimate Metazoa to have originated in the early Ediacaran, Eumetazoa in the middle Ediacaran, and Bilateria in the upper Ediacaran, with many crown-phyla originating across the Ediacaran-Cambrian interval or elsewise fully within the Cambrian. These results are in much closer accord with the fossil record, coinciding with marine oxygenation, but they reject a literal reading of the fossil record.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- CAS Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
McIlroy D, Pasinetti G, Pérez-Pinedo D, McKean C, Dufour SC, Matthews JJ, Menon LR, Nicholls R, Taylor RS. The Palaeobiology of Two Crown Group Cnidarians: Haootia quadriformis and Mamsetia manunis gen. et sp. nov. from the Ediacaran of Newfoundland, Canada. Life (Basel) 2024; 14:1096. [PMID: 39337880 PMCID: PMC11432848 DOI: 10.3390/life14091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The Ediacaran of eastern Newfoundland preserves the world's oldest known eumetazoan body fossils, as well as the earliest known record of fossilized muscular tissue. Re-examination of the holotype of the eight-armed Haootia quadriformis in terms of its morphology, the arrangement of its muscle filament bundles, and hitherto undescribed aspects of its anatomy support its interpretation as a crown staurozoan. We also document several new fossils preserving muscle tissue with a different muscular architecture to Haootia, but with only four arms. This new material allows us to describe a new crown group staurozoan, Mamsetia manunis gen. et sp. nov. This work confirms the presence of crown group medusozoan cnidarians of the Staurozoa in the Ediacaran of Newfoundland circa 565 Ma.
Collapse
Affiliation(s)
- D McIlroy
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - G Pasinetti
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - D Pérez-Pinedo
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - C McKean
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - S C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - J J Matthews
- Museum of Natural History, University of Oxford, Oxford OX3 7DQ, UK
| | - L R Menon
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| | | | - R S Taylor
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
4
|
Bowyer FT, Wood RA, Yilales M. Sea level controls on Ediacaran-Cambrian animal radiations. SCIENCE ADVANCES 2024; 10:eado6462. [PMID: 39083611 PMCID: PMC11290527 DOI: 10.1126/sciadv.ado6462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δ13Ccarb) and global redox data [carbonate Uranium isotopes (δ238Ucarb)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks. The temporal distribution of the Avalon assemblage is partly controlled by the temporally and spatially limited record of deep-marine siliciclastic rocks. Each successive rise of metazoan morphogroups that define the Avalon, White Sea, and Cambrian assemblages appears to coincide with global shallow marine oxygenation events at δ13Ccarb maxima, which precede major sea level transgressions. While the record of biodiversity is biased, early metazoan radiations and oxygenation events are linked to major sea level cycles.
Collapse
|
5
|
Stephenson NP, Delahooke KM, Barnes N, Rideout BWT, Kenchington CG, Manica A, Mitchell EG. Morphology shapes community dynamics in early animal ecosystems. Nat Ecol Evol 2024; 8:1238-1247. [PMID: 38867093 PMCID: PMC11239517 DOI: 10.1038/s41559-024-02422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
The driving forces behind the evolution of early metazoans are not well understood, but key insights into their ecology and evolution can be gained through ecological analyses of the in situ, sessile communities of the Avalon assemblage in the Ediacaran (~565 million years ago). Community structure in the Avalon is thought to be underpinned by epifaunal tiering and ecological succession, which we investigate in this study in 18 Avalon communities. Here we found that Avalon communities form four distinctive Community Types irrespective of succession processes, which are instead based on the dominance of morphologically distinct taxa, and that tiering is prevalent in three of these Community Types. Our results are consistent with emergent neutrality, whereby ecologically specialized morphologies evolve as a consequence of neutral (stochastic or reproductive) processes within niches, leading to generalization within the frond-dominated Community Type. Our results provide an ecological signature of the first origination and subsequent loss of disparate morphologies, probably as a consequence of community restructuring in response to ecological innovation. This restructuring led to the survival of non-tiered frondose generalists over tiered specialists, even into the youngest Ediacaran assemblages. Such frondose body plans also survive beyond the Ediacaran-Cambrian transition, perhaps due to the greater resilience afforded to them by their alternative ecological strategies.
Collapse
Affiliation(s)
- Nile P Stephenson
- Department of Zoology, University of Cambridge, Cambridge, UK.
- University Museum of Zoology, University of Cambridge, Cambridge, UK.
| | - Katie M Delahooke
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | | | | | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Mitchell
- Department of Zoology, University of Cambridge, Cambridge, UK
- University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Pérez-Pinedo D, Nicholls R, Neville JM, McIlroy D. Hydrodynamic insights into the paleobiology of the Ediacaran rangeomorph Fractofusus misrai. iScience 2024; 27:110107. [PMID: 38947528 PMCID: PMC11214322 DOI: 10.1016/j.isci.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The Ediacaran of Newfoundland preserves some of the oldest complex macroscopic communities, several of which are dominated by the fractal-like rangeomorph genus Fractofusus. Here we use computational fluid dynamics and a detailed reconstruction of Fractofusus misrai to document for the first time hydrodynamic phenomena associated with this sediment-reclining organism and its rangeomorph elements that are relevant to interpreting feeding strategies, explain the recently documented rheotropic growth oblique to currents, and provide insights into their impact on the Ediacaran seafloor. Obliquely oriented Fractofusus are common, likely representing a compromise between maximized aspect ratio and minimization of drag. Flow patterns on the upper surface of Fractofusus are consistent with the collection of dissolved and finely particulate nutrients, as well as gas exchange. Fractofusus produce a wake downstream, demonstrating that reclining rangeomorphs had potential to modify sedimentation patterns on the ancient seafloor by potentially allowing deposition of fine-grained sediment.
Collapse
Affiliation(s)
- Daniel Pérez-Pinedo
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| | | | - Jenna M. Neville
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| | - Duncan McIlroy
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| |
Collapse
|
7
|
Wang X, Liu AG, Chen Z, Wu C, Liu Y, Wan B, Pang K, Zhou C, Yuan X, Xiao S. A late-Ediacaran crown-group sponge animal. Nature 2024; 630:905-911. [PMID: 38839967 DOI: 10.1038/s41586-024-07520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Sponges are the most basal metazoan phylum1 and may have played important roles in modulating the redox architecture of Neoproterozoic oceans2. Although molecular clocks predict that sponges diverged in the Neoproterozoic era3,4, their fossils have not been unequivocally demonstrated before the Cambrian period5-8, possibly because Precambrian sponges were aspiculate and non-biomineralized9. Here we describe a late-Ediacaran fossil, Helicolocellus cantori gen. et sp. nov., from the Dengying Formation (around 551-539 million years ago) of South China. This fossil is reconstructed as a large, stemmed benthic organism with a goblet-shaped body more than 0.4 m in height, with a body wall consisting of at least three orders of nested grids defined by quadrate fields, resembling a Cantor dust fractal pattern. The resulting lattice is interpreted as an organic skeleton comprising orthogonally arranged cruciform elements, architecturally similar to some hexactinellid sponges, although the latter are built with biomineralized spicules. A Bayesian phylogenetic analysis resolves H. cantori as a crown-group sponge related to the Hexactinellida. H. cantori confirms that sponges diverged and existed in the Precambrian as non-biomineralizing animals with an organic skeleton. Considering that siliceous biomineralization may have evolved independently among sponge classes10-13, we question the validity of biomineralized spicules as a necessary criterion for the identification of Precambrian sponge fossils.
Collapse
Affiliation(s)
- Xiaopeng Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Alexander G Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Zhe Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxi Wu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yarong Liu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Nanjing, Nanjing, China
| | - Xunlai Yuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Shuhai Xiao
- Department of Geosciences and Global Change Centre, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Sun W, Yin Z, Liu P, Zhu M, Donoghue P. Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans. Proc Biol Sci 2024; 291:20240101. [PMID: 38808442 DOI: 10.1098/rspb.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.
Collapse
Affiliation(s)
- Weichen Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Pengju Liu
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People's Republic of China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Philip Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Delahooke KM, Liu AG, Stephenson NP, Mitchell EG. 'Conga lines' of Ediacaran fronds: insights into the reproductive biology of early metazoans. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231601. [PMID: 39076788 PMCID: PMC11286166 DOI: 10.1098/rsos.231601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 07/31/2024]
Abstract
Late Ediacaran strata from Newfoundland, Canada (~574-560 Ma) document near-census palaeocommunities of some of the earliest metazoans. Such preservation enables reproductive strategies to be inferred from the spatial distribution of populations of fossilized benthic organisms, previously revealing the existence of both propagule and stoloniferous reproductive modes among Ediacaran frondose taxa. Here, we describe 'conga lines': linear arrangements of more than three closely spaced fossil specimens. We calculate probabilistic models of point maps of 13 fossil-bearing bedding surfaces and show that four surfaces contain conga lines that are not the result of chance alignments. We then test whether these features could result from passive pelagic propagules settling in the lee of an existing frond, using computational fluid dynamics and discrete phase modelling. Under Ediacaran palaeoenvironmental conditions, preferential leeside settlement at the spatial scale of the conga lines is unlikely. We therefore conclude that these features are novel and do not reflect previously described reproductive strategies employed by Ediacaran organisms, suggesting the use of mixed reproductive strategies in the earliest animals. Such strategies enabled Ediacaran frondose taxa to act as reproductive generalists and may be an important facet of early metazoan evolution.
Collapse
Affiliation(s)
| | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Nile P. Stephenson
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G. Mitchell
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Sierra NC, Gold DA. The evolution of cnidarian stinging cells supports a Precambrian radiation of animal predators. Evol Dev 2024; 26:e12469. [PMID: 38236185 DOI: 10.1111/ede.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Cnidarians-the phylum including sea anemones, corals, jellyfish, and hydroids-are one of the oldest groups of predatory animals. Nearly all cnidarians are carnivores that use stinging cells called cnidocytes to ensnare and/or envenom their prey. However, there is considerable diversity in cnidocyte form and function. Tracing the evolutionary history of cnidocytes may therefore provide a proxy for early animal feeding strategies. In this study, we generated a time-calibrated molecular clock of cnidarians and performed ancestral state reconstruction on 12 cnidocyte types to test the hypothesis that the original cnidocyte was involved in prey capture. We conclude that the first cnidarians had only the simplest and least specialized cnidocyte type (the isorhiza) which was just as likely to be used for adhesion and/or defense as the capture of prey. A rapid diversification of specialized cnidocytes occurred through the Ediacaran (~654-574 million years ago), with major subgroups developing unique sets of cnidocytes to match their distinct feeding styles. These results are robust to changes in the molecular clock model, and are consistent with growing evidence for an Ediacaran diversification of animals. Our work also provides insight into the evolution of this complex cell type, suggesting that convergence of forms is rare, with the mastigophore being an interesting counterexample.
Collapse
Affiliation(s)
- Noémie C Sierra
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Integrative Genetics and Genomics, University of California, Davis, Davis, California, USA
| |
Collapse
|
11
|
Zhao M, Mussini G, Li Y, Tang F, Vickers-Rich P, Li M, Chen A. A putative triradial macrofossil from the Ediacaran Jiangchuan Biota. iScience 2024; 27:108823. [PMID: 38303714 PMCID: PMC10831930 DOI: 10.1016/j.isci.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The late Ediacaran Jiangchuan biota, from the Dengying Formation in eastern Yunnan, is well-known for its diverse macroalgal fossils, opening a window onto eukaryotic-dominated ecosystems from the late Neoproterozoic of South China. Although multiple lines of evidence suggest that metazoans had already evolved by the late Ediacaran, animal fossils have not yet been formally described from this locality. Here, we report a putative disc-shaped macrofossil from the Jiangchuan biota, Lobodiscus tribrachialis gen. et sp. nov. This specimen shows the triradial symmetry characteristic of trilobozoans, a group of Ediacaran macrofossils previously documented in Australia and Russia. Lobodiscus could record the youngest known occurrence of trilobozoans, strengthening taxonomic and ecological continuities between the Ediacaran "White Sea" and "Nama" assemblages. Our findings may expand the known paleogeographical distribution of trilobozoans and provide data for Ediacaran biostratigraphic correlations across the Yangtze block and globally, helping to track the diversification of early metazoan-grade organisms.
Collapse
Affiliation(s)
- Mingsheng Zhao
- College of Paleontology, Shenyang Normal University, Shenyang 110034, China
| | - Giovanni Mussini
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Yulan Li
- 111 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Guiyang 550081, China
| | - Feng Tang
- Key Laboratory for Stratigraphy and Palaeontology, MNRC, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Patricia Vickers-Rich
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
- Department of Chemistry, Chemistry and Resources precinct, Curtin University, Perth, WA 6845, Australia
| | - Ming Li
- Key Laboratory for Stratigraphy and Palaeontology, MNRC, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Ailin Chen
- Research Center of Paleobiology, Yuxi Normal University, Yuxi 653100, China
| |
Collapse
|
12
|
Mussini G, Dunn FS. Decline and fall of the Ediacarans: late-Neoproterozoic extinctions and the rise of the modern biosphere. Biol Rev Camb Philos Soc 2024; 99:110-130. [PMID: 37667585 DOI: 10.1111/brv.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The end-Neoproterozoic transition marked a gradual but permanent shift between distinct configurations of Earth's biosphere. This interval witnessed the demise of the enigmatic Ediacaran Biota, ushering in the structured trophic webs and disparate animal body plans of Phanerozoic ecosystems. However, little consensus exists on the reality, drivers, and macroevolutionary implications of end-Neoproterozoic extinctions. Here we evaluate potential drivers of late-Neoproterozoic turnover by addressing recent findings on Ediacaran geochronology, the persistence of classical Ediacaran macrobionts into the Cambrian, and the existence of Ediacaran crown-group eumetazoans. Despite renewed interest in the possibility of Phanerozoic-style 'mass extinctions' in the latest Neoproterozoic, our synthesis of the available evidence does not support extinction models based on episodic geochemical triggers, nor does it validate simple ecological interpretations centred on direct competitive displacement. Instead, we argue that the protracted and indirect effects of early bilaterian innovations, including escalations in sediment engineering, predation, and the largely understudied impacts of reef-building, may best account for the temporal structure and possible selectivity of late-Neoproterozoic extinctions. We integrate these processes into a generalised model of early eumetazoan-dominated ecologies, charting the disruption of spatial and temporal isotropy on the Ediacaran benthos as a consequence of diversifying macrofaunal interactions. Given the nature of resource distribution in Ediacaran ecologies, the continuities among Ediacaran and Cambrian faunas, and the convergent origins of ecologically disruptive innovations among bilaterians we suggest that the rise of Phanerozoic-type biotas may have been unstoppable.
Collapse
Affiliation(s)
- Giovanni Mussini
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, Parks Road, University of Oxford, Oxford, OX1 3PW, UK
| |
Collapse
|
13
|
Abstract
The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.
Collapse
Affiliation(s)
- Susannah M Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
| | - Leigh Anne Riedman
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
- Earth Research Institute, University of California at Santa Barbara, Santa Barbara, California, USA;
| |
Collapse
|
14
|
Gibson BM, Schiffbauer JD, Wallace AF, Darroch SAF. The role of iron in the formation of Ediacaran 'death masks'. GEOBIOLOGY 2023; 21:421-434. [PMID: 36843397 DOI: 10.1111/gbi.12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 06/13/2023]
Abstract
The Ediacara biota are an enigmatic group of Neoproterozoic soft-bodied fossils that mark the first major radiation of complex eukaryotic and macroscopic life. These fossils are thought to have been preserved via pyritic "death masks" mediated by seafloor microbial mats, though little about the chemical constraints of this preservational pathway is known, in particular surrounding the role of bioavailable iron in death mask formation and preservational fidelity. In this study, we perform decay experiments on both diploblastic and triploblastic animals under a range of simulated sedimentary iron concentrations, in order to characterize the role of iron in the preservation of Ediacaran organisms. After 28 days of decay, we demonstrate the first convincing "death masks" produced under experimental laboratory conditions composed of iron sulfide and probable oxide veneers. Moreover, our results demonstrate that the abundance of iron in experiments is not the sole control on death mask formation, but also tissue histology and the availability of nucleation sites. This illustrates that Ediacaran preservation via microbial death masks need not be a "perfect storm" of paleoenvironmental porewater and sediment chemistry, but instead can occur under a range of conditions.
Collapse
Affiliation(s)
- Brandt M Gibson
- Department of Earth & Environmental Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - James D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, USA
- X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Adam F Wallace
- Department of Geological Sciences, University of Delaware, Newark, Delaware, USA
| | - Simon A F Darroch
- Department of Earth & Environmental Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Darroch SA, Gutarra S, Masaki H, Olaru A, Gibson BM, Dunn FS, Mitchell EG, Racicot RA, Burzynski G, Rahman IA. The rangeomorph Pectinifrons abyssalis: Hydrodynamic function at the dawn of animal life. iScience 2023; 26:105989. [PMID: 36756377 PMCID: PMC9900436 DOI: 10.1016/j.isci.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Rangeomorphs are among the oldest putative eumetazoans known from the fossil record. Establishing how they fed is thus key to understanding the structure and function of the earliest animal ecosystems. Here, we use computational fluid dynamics to test hypothesized feeding modes for the fence-like rangeomorph Pectinifrons abyssalis, comparing this to the morphologically similar extant carnivorous sponge Chondrocladia lyra. Our results reveal complex patterns of flow around P. abyssalis unlike those previously reconstructed for any other Ediacaran taxon. Comparisons with C. lyra reveal substantial differences between the two organisms, suggesting they converged on a similar fence-like morphology for different functions. We argue that the flow patterns recovered for P. abyssalis do not support either a suspension feeding or osmotrophic feeding habit. Instead, our results indicate that rangeomorph fronds may represent organs adapted for gas exchange. If correct, this interpretation could require a dramatic reinterpretation of the oldest macroscopic animals.
Collapse
Affiliation(s)
- Simon A.F. Darroch
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Evolutionary Studies Institute, Vanderbilt University, Nashville, TN 37235, USA,Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | | | - Hale Masaki
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrei Olaru
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Brandt M. Gibson
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Department of Chemistry and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Frances S. Dunn
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Emily G. Mitchell
- Department of Zoology, Museum of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Rachel A. Racicot
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Evolutionary Studies Institute, Vanderbilt University, Nashville, TN 37235, USA,Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Gregory Burzynski
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA
| | - Imran A. Rahman
- The Natural History Museum, London SW7 5BD, UK,Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK,Corresponding author
| |
Collapse
|
16
|
Griffiths HJ, Whittle RJ, Mitchell EG. Animal survival strategies in Neoproterozoic ice worlds. GLOBAL CHANGE BIOLOGY 2023; 29:10-20. [PMID: 36220153 PMCID: PMC10091762 DOI: 10.1111/gcb.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.
Collapse
|
17
|
A diverse Ediacara assemblage survived under low-oxygen conditions. Nat Commun 2022; 13:7306. [PMID: 36435820 PMCID: PMC9701187 DOI: 10.1038/s41467-022-35012-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.
Collapse
|
18
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
19
|
Eden R, Manica A, Mitchell EG. Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period. PLoS Biol 2022; 20:e3001289. [PMID: 35580078 PMCID: PMC9113585 DOI: 10.1371/journal.pbio.3001289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
The first animals appear during the late Ediacaran (572 to 541 Ma); an initial diversity increase was followed reduction in diversity, often interpreted as catastrophic mass extinction. We investigate Ediacaran ecosystem structure changes over this time period using the “Elements of Metacommunity Structure” framework to assess whether this diversity reduction in the Nama was likely caused by an external mass extinction, or internal metacommunity restructuring. The oldest metacommunity was characterised by taxa with wide environmental tolerances, and limited specialisation or intertaxa associations. Structuring increased in the second oldest metacommunity, with groups of taxa sharing synchronous responses to environmental gradients, aggregating into distinct communities. This pattern strengthened in the youngest metacommunity, with communities showing strong environmental segregation and depth structure. Thus, metacommunity structure increased in complexity, with increased specialisation and resulting in competitive exclusion, not a catastrophic environmental disaster, leading to diversity loss in the terminal Ediacaran. These results reveal that the complex eco-evolutionary dynamics associated with Cambrian diversification were established in the Ediacaran. This study shows that the eco-evolutionary dynamics of metazoan diversification known from the Cambrian Period started earlier in the Ediacaran Period with the Avalon assemblage and increased in complexity towards the Phanerozoic as new anatomical innovations appeared, culminating in the “Cambrian Explosion."
Collapse
Affiliation(s)
- Rebecca Eden
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Emily G. Mitchell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Were the First Trace Fossils Really Burrows or Could They Have Been Made by Sediment-Displacive Chemosymbiotic Organisms? Life (Basel) 2022; 12:life12020136. [PMID: 35207424 PMCID: PMC8880172 DOI: 10.3390/life12020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
This review asks some hard questions about what the enigmatic graphoglyptid trace fossils are, documents some of their early fossil record from the Ediacaran–Cambrian transition and explores the idea that they may not have been fossils at all. Most researchers have considered the Graphoglyptida to have had a microbial-farming mode of life similar to that proposed for the fractal Ediacaran Rangeomorpha. This begs the question “What are the Graphoglyptida if not the Rangeomorpha persevering” and if so then “What if…?”. This provocative idea has at its roots some fundamental questions about how to distinguish burrows sensu-stricto from the external molds of endobenthic sediment displacive organisms.
Collapse
|
21
|
Antell GT, Saupe EE. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr Biol 2021; 31:R1237-R1251. [PMID: 34637737 DOI: 10.1016/j.cub.2021.08.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals originated in the oceans and evolved there for hundreds of millions of years before adapting to terrestrial environments. Today, oceans cover more than two-thirds of Earth and generate as much primary production as land. The path from the first macrobiota to modern marine biodiversity involved parallel increases in terrestrial nutrient input, marine primary production, species' abundance, metabolic rates, ecotypic diversity and taxonomic diversity. Bottom-up theories of ecosystem cascades arrange these changes in a causal sequence. At the base of marine food webs, nutrient fluxes and atmosphere-ocean chemistry interact with phytoplankton to regulate production. First-order consumers (e.g., zooplankton) might propagate changes in quantity and quality of phytoplankton to changes in abundance and diversity of larger predators (e.g., nekton). However, many uncertainties remain about the mechanisms and effect size of bottom-up control, particularly in oceans across the entire history of animal life. Here, we review modern and fossil evidence for hypothesized bottom-up pathways, and we assess the ramifications of these processes for four key intervals in marine ecosystems: the Ediacaran-Cambrian (635-485 million years ago), the Ordovician (485-444 million years ago), the Devonian (419-359 million years ago) and the Mesozoic (252-66 million years ago). We advocate for a clear articulation of bottom-up hypotheses to better understand causal relationships and proposed effects, combined with additional ecological experiments, paleontological documentation, isotope geochemistry and geophysical reconstructions. How small-scale ecological change transitions into large-scale evolutionary change remains an outstanding question for empirical and theoretical research.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|