1
|
Xue J, Chen Z, Dang K, Wu L, Ji H, Chen C, Zhang Y, Zhao J. The plasmonic effect of Cu on tuning CO 2 reduction activity and selectivity. Phys Chem Chem Phys 2024; 26:2915-2925. [PMID: 38186081 DOI: 10.1039/d3cp05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Copper (Cu) has been widely used for catalyzing the CO2 reduction reaction (CO2RR), but the plasmonic effect of Cu has rarely been explored for tuning the activity and selectivity of the CO2RR. Herein, we conducted a quantitative analysis on the plasmon-generated photopotential (Ehv) of a Cu nanowire array (NA) photocathode and found that Ehv exclusively reduced the apparent activation energy (Ea) of reducing CO2 to CO without affecting the competitive hydrogen evolution reaction (HER). As a result, the CO production rate was enhanced by 52.6% under plasmon excitation when compared with that under dark conditions. On further incorporation with a polycrystalline Si photovoltaic device, the Cu NA photocathode exhibits good stability in terms of photocurrent and syngas production (CO : H2 = 2 : 1) within 10 h. This work validates the crucial role of the plasmonic effect of Cu on modulating the activity and selectivity of the CO2RR.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenlin Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Jin H, Herran M, Cortés E, Lischner J. Theory of Hot-Carrier Generation in Bimetallic Plasmonic Catalysts. ACS PHOTONICS 2023; 10:3629-3636. [PMID: 37869558 PMCID: PMC10588455 DOI: 10.1021/acsphotonics.3c00715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 10/24/2023]
Abstract
Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation rates of different Au-Pd nanoarchitectures. In particular, we study spherical core-shell nanoparticles with a Au core and a Pd shell as well as antenna-reactor systems consisting of a large Au nanoparticle that acts as an antenna and a smaller Pd satellite nanoparticle separated by a gap. In addition, we investigate an antenna-reactor system in which the satellite is a core-shell nanoparticle. Hot-carrier generation rates are obtained from an atomistic quantum-mechanical modeling technique which combines a solution of Maxwell's equation with a tight-binding description of the nanoparticle electronic structure. We find that antenna-reactor systems exhibit significantly higher hot-carrier generation rates in the catalytic material than the core-shell system as a result of strong electric field enhancements associated with the gap between the antenna and the satellite. For these systems, we also study the dependence of the hot-carrier generation rate on the size of the gap, the radius of the antenna nanoparticle, and the direction of light polarization. Overall, we find a strong correlation between the calculated hot-carrier generation rates and the experimentally measured chemical activity for the different Au-Pd photocatalysts. Our insights pave the way toward a microscopic understanding of hot-carrier generation in heterogeneous nanostructures for photocatalysis and other energy-conversion applications.
Collapse
Affiliation(s)
- Hanwen Jin
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Matias Herran
- Nanoinstitute
Munich Faculty of Physics, Ludwigs-Maximilians-Universität
München, 80539 Munich, Germany
| | - Emiliano Cortés
- Nanoinstitute
Munich Faculty of Physics, Ludwigs-Maximilians-Universität
München, 80539 Munich, Germany
| | - Johannes Lischner
- Department
of Materials and the Thomas Young Centre for Theory and Simulation
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Zhang Y, Mascaretti L, Melchionna M, Henrotte O, Kment Š, Fornasiero P, Naldoni A. Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H 2O 2 Electrosynthesis. ACS Catal 2023; 13:10205-10216. [PMID: 37560189 PMCID: PMC10407842 DOI: 10.1021/acscatal.3c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Indexed: 08/11/2023]
Abstract
Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN-1 h-1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.
Collapse
Affiliation(s)
- Yu Zhang
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů
27, 78371 Olomouc, Czech Republic
| | - Luca Mascaretti
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů
27, 78371 Olomouc, Czech Republic
| | - Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research
Unit, INSTM-Trieste, Center for Energy, Environment and Transport
Giacomo Ciamician, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů
27, 78371 Olomouc, Czech Republic
| | - Štepan Kment
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů
27, 78371 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre of Energy and Environmental Technologies, VŠB—Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research
Unit, INSTM-Trieste, Center for Energy, Environment and Transport
Giacomo Ciamician, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, 10125 Turin, Italy
| |
Collapse
|
5
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Gargiulo J, Herran M, Violi IL, Sousa-Castillo A, Martinez LP, Ezendam S, Barella M, Giesler H, Grzeschik R, Schlücker S, Maier SA, Stefani FD, Cortés E. Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry. Nat Commun 2023; 14:3813. [PMID: 37369657 DOI: 10.1038/s41467-023-38982-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis. Bimetallic nanoparticles combining plasmonic with catalytic metals are raising increasing interest in artificial photosynthesis and the production of solar fuels. Here, we perform single-particle thermometry measurements to investigate the link between morphology and light-to-heat conversion of colloidal Au/Pd nanoparticles with two different configurations: core-shell and core-satellite. It is observed that the inclusion of Pd as a shell strongly reduces the photothermal response in comparison to the bare cores, while the inclusion of Pd as satellites keeps photothermal properties almost unaffected. These results contribute to a better understanding of energy conversion processes in plasmon-assisted catalysis.
Collapse
Affiliation(s)
- Julian Gargiulo
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Nanosistemas, Universidad Nacional de San Martín, B1650, Buenos Aires, Argentina.
| | - Matias Herran
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Ianina L Violi
- Instituto de Nanosistemas, Universidad Nacional de San Martín, B1650, Buenos Aires, Argentina
| | - Ana Sousa-Castillo
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Simone Ezendam
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Mariano Barella
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Department of Physics, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Helene Giesler
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Roland Grzeschik
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Duisburg-Essen, Germany
| | - Stefan A Maier
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, 3800, Clayton, Australia
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, C1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| |
Collapse
|
7
|
Yang Z, Huang M, Yang R, Sun J, Zhang X, Pan W, Wan C. Near-Infrared Trapping by Surface Plasmons in Randomized Platinum-Ceramic Metamaterial for Thermal Barrier Coatings. SMALL METHODS 2023; 7:e2201691. [PMID: 36932890 DOI: 10.1002/smtd.202201691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/09/2023] [Indexed: 06/09/2023]
Abstract
As the operation temperature of next generation gas turbine is targeted to be 1800 °C toward a higher efficiency and lower carbon emission, the near-infrared (NIR) thermal radiation becomes a major concern for the durability of the metallic turbine blades. Although thermal barrier coatings (TBCs) are applied to provide thermal insulations, they are translucent to the NIR radiation. It is a major challenge for TBCs to achieve optically thick with limited physical thickness (usually < 1 mm) for effectively shielding the NIR radiation damage. Here, an NIR metamaterial is reported, where a Gd2 Zr2 O7 ceramic matrix is randomly dispersed with microscale Pt (0.53 vol%) nanoparticles with a size of 100-500 nm. Attenuated by the Gd2 Zr2 O7 matrix, a broadband NIR extinction is achieved through the red-shifted plasmon resonance frequencies and higher-order multipole resonances of the Pt nanoparticles. A very high absorption coefficient of ≈3 × 104 m-1 , approaching the Rosseland diffusion limit for a typical coating thickness, minimizes the radiative thermal conductivity to ≈10-2 W m-1 K-1 and successfully shields the radiative heat transfer. This work suggests that constructing a conductor/ceramic metamaterial with tunable plasmonics could be a strategy to shield NIR thermal radiation for high temperature applications.
Collapse
Affiliation(s)
- Zesheng Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Muzhang Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ronggui Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jingbo Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xuefei Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Pan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunlei Wan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Guo Z, Yu G, Zhang Z, Han Y, Guan G, Yang W, Han MY. Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206700. [PMID: 36620937 DOI: 10.1002/adma.202206700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/21/2022] [Indexed: 06/09/2023]
Abstract
The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiguo Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
9
|
Zhu D, Xie J, Yan J, He G, Qiao M. Ultrafast Laser Plasmonic Fabrication of Nanocrystals by Molecule Modulation for Photoresponse Multifunctional Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211983. [PMID: 36988623 DOI: 10.1002/adma.202211983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has attracted wide research attention in constructing functional devices, including integrated circuits, transparent electrodes, and flexible actuators. Bottom-up fabrication is an important approach for functional structure manufacture, however, the controllable fabrication of complex architectures for practical applications has long been a challenge. Here, a novel strategy of laser plasmonic fabrication based on glue molecule modulation is proposed that can assemble metal nanocrystals into interconnected pattern networks. The plasmonic response of nanocrystals is adjustable with molecule modulation, which is a benefit for the effective formation of laser-induced localized oscillating electrons. The further decomposition of molecules and the movement of nanocrystal surface atoms can achieve the coalescence of assembled nanocrystals. It demonstrates that complex architectures can be controllably constructed by molecule level modulation. Through molecule-assisted laser plasmonic fabrication, the functional nanocrystals with enhanced photothermal capacity can be used for information encryption and soft machinery. This work expands the knowledge of bottom-up fabrication and provides a method for designing functional nanocrystals for a wide range of applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiawang Xie
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangzhi He
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Qiao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
11
|
Alanazi AT, Alotaibi A, Alqahtani M, Rice JH. Dichalcogenide and Metal Oxide Semiconductor-Based Composite to Support Plasmonic Catalysis. ACS OMEGA 2023; 8:6318-6324. [PMID: 36844575 PMCID: PMC9947995 DOI: 10.1021/acsomega.2c06337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Nanocomposites comprising plasmon active metal nanostructures and semiconductors have been used to control the charge states in the metal to support catalytic activity. In this context dichalcogenides when combined with metal oxides offer the potential to control charge states in plasmonic nanomaterials. Using a model plasmonic mediated oxidation reaction p-amino thiophenol ↔ p-nitrophenol, we show that through the introduction of transition metal dichalcogenide nanomaterial, reaction outcomes can be influenced, achieved through controlling the occurrence of the reaction intermediate dimercaptoazobenzene by opening new electron transfer routes in a semiconductor-plasmonic system. This study demonstrates the ability to control plasmonic reactions by carefully controlling the choice of semiconductors.
Collapse
Affiliation(s)
- Ahmed T. Alanazi
- School
of Physics, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Aeshah Alotaibi
- School
of Physics, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Mahdi Alqahtani
- King
Abdulaziz City for Science and Technology (KACST), Riyadh 12371, Saudi Arabia
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
12
|
Elias RC, Linic S. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis. J Am Chem Soc 2022; 144:19990-19998. [DOI: 10.1021/jacs.2c08561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel C. Elias
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Acharya A, Lee IS. Designing plasmonically integrated nanoreactors for efficient catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
14
|
Lim J, Kumari N, Mete TB, Kumar A, Lee IS. Magnetic-Plasmonic Multimodular Hollow Nanoreactors for Compartmentalized Orthogonal Tandem Catalysis. NANO LETTERS 2022; 22:6428-6434. [PMID: 35748753 DOI: 10.1021/acs.nanolett.2c01817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In tandem catalytic systems, controlling the reaction steps and side reactions is extremely challenging. Here, we demonstrate a nanoreactor platform comprising magnetic- and plasmonic-coupled catalytic modules that synchronizes reaction steps at unconnected neighboring reaction sites via decoupled nanolocalized energy harvested using distinct antennae reactors while minimizing the interconflicting effects. As was desired, the course of the reaction and product yields can be controlled by a convenient remote operation of alternating magnetic field (AMF) and near-infrared light (NIR). Following this strategy, a tandem reaction involving [Pd]-catalyzed Suzuki-Miyaura C-C cross-coupling and [Pt]-catalyzed aerobic alcohol oxidation enabled an excellent yield of cinnamaldehyde (ca. 95%) by overcoming the risk of side reactions. The customization scope for using different catalytic metals (Pt, Pd, Ru, and Rh) with in situ control over product release through remotely operable benign energy sources opens avenues for designing diverse catalytic schemes for targeted applications.
Collapse
Affiliation(s)
- Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Trimbak B Mete
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Zhang C, Kang Q, Chu M, He L, Chen J. Solar-driven catalytic plastic upcycling. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
17
|
Yim G, Kang S, Chae SY, Chung E, Song TK, Park JH, Yoon C, Min DH, Jang H. Precursor Heterogeneity Driven Mo-Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9987-10000. [PMID: 35176852 DOI: 10.1021/acsami.1c20634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical reactions between homogeneous precursors are typically used to synthesize monodisperse nanoparticles with well-controlled size and morphology. It is difficult to predict the evolved nanostructures when using two heterogeneous precursors. In this study, three types of Mo-Te nanoparticles shaped like leaves, spindles, and rice grains (denoted respectively as nanoleaf, nanospindle, and nanorice) were obtained from dextrose-mediated proton-coupled electron transfer reaction between the solid polyoxomolybdate (POM) and the ionic tellurite anion as precursors. All produced nanoparticles had excellent optical absorption in the ultraviolet(UV)-visible(Vis)-near-infrared(NIR) regions, with only slight deviations among them. After confirming nanoparticles' photothermal conversion and photocatalytic activity at multiple wavelengths, the Mo-Te nanorice was tested as a potential agent for cancer treatment due to its minimum toxicity, excellent colloidal stability, and intrinsic anticancer effect. Excellent treatment efficacy and clearance were confirmed in vitro and in vivo. Due to their photoacoustic imaging capability, the injection of pristine nanoparticles could also realize phototheranostics without using additional drugs, probes, or photosensitizers.
Collapse
Affiliation(s)
- Gyeonghye Yim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Youl Chae
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Euisuk Chung
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University Kimhae, Gimhae 50834, Republic of Korea
- Department of Nanoscience and Engineering, Inje University Kimhae, Gimhae 50834, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
18
|
An H, Cao L, Cheng R, Zhang X, Zhang S, Sun Y, Zhao L, Wang B, Yin Z. Enhancement of Ti 3C 2 MXene on Au@Ag/TiO 2 for the visible-light-driven photoreduction of nitroaromatics. CrystEngComm 2022. [DOI: 10.1039/d1ce01468d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au@Ag/TiO2/Ti3C2 exhibits outstanding photoreduction activity at 0 °C because of the combination of efficient hot carrier generation and separation ability in one system.
Collapse
Affiliation(s)
- Huiqin An
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Lifang Cao
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Ran Cheng
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Xiaoqi Zhang
- Envirogene Technology (Tianjin) Company Limited by Shares, Tianjin 300384, China
| | - Saihui Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yang Sun
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Lizhi Zhao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bing Wang
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Piaskowski J, Ibragimov A, Wendisch FJ, Bourret GR. Selective Enhancement of Surface and Bulk E-Field within Porous AuRh and AuRu Nanorods. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:27661-27670. [PMID: 34970380 PMCID: PMC8713288 DOI: 10.1021/acs.jpcc.1c08699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Indexed: 05/21/2023]
Abstract
A variety of multisegmented nanorods (NRs) composed of dense Au and porous Rh and Ru segments with lengths controlled down to ca. 10 nm are synthesized within porous anodic aluminum oxide membranes. Despite the high Rh and Ru porosity (i.e., ∼40%), the porous metal segments are able to efficiently couple with the longitudinal localized surface plasmon resonance (LSPR) of Au NRs. Finite-difference time-domain simulations show that the LSPR wavelength can be precisely tuned by adjusting the Rh and Ru porosity. Additionally, light absorption inside Rh and Ru segments and the surface electric field (E-field) at Rh and Ru can be independently and selectively enhanced by varying the position of the Rh and Ru segment within the Au NR. The ability to selectively control and decouple the generation of high-energy, surface hot electrons and low-energy, bulk hot electrons within photocatalytic metals such as Rh and Ru makes these bimetallic structures great platforms for fundamental studies in plasmonics and hot-electron science.
Collapse
|
20
|
Zhou B, Ou W, Shen J, Zhao C, Zhong J, Du P, Bian H, Li P, Yang L, Lu J, Li YY. Controlling Plasmon-Aided Reduction of p-Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Binbin Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Weihui Ou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Junda Shen
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Chenghao Zhao
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Jing Zhong
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Peng Du
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Haidong Bian
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518055, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, P. R. China
| | - Yang Yang Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|