1
|
Álvarez-Cuervo J, Obst M, Dixit S, Carini G, F Tresguerres-Mata AI, Lanza C, Terán-García E, Álvarez-Pérez G, Álvarez-Tomillo LF, Diaz-Granados K, Kowalski R, Senerath AS, Mueller NS, Herrer L, De Teresa JM, Wasserroth S, Klopf JM, Beechem T, Wolf M, Eng LM, Folland TG, Tarazaga Martín-Luengo A, Martín-Sánchez J, Kehr SC, Nikitin AY, Caldwell JD, Alonso-González P, Paarmann A. Unidirectional ray polaritons in twisted asymmetric stacks. Nat Commun 2024; 15:9042. [PMID: 39426947 PMCID: PMC11490623 DOI: 10.1038/s41467-024-52750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024] Open
Abstract
The vast repository of van der Waals (vdW) materials supporting polaritons offers numerous possibilities to tailor electromagnetic waves at the nanoscale. The development of twistoptics-the modulation of the optical properties by twisting stacks of vdW materials-enables directional propagation of phonon polaritons (PhPs) along a single spatial direction, known as canalization. Here we demonstrate a complementary type of directional propagation of polaritons by reporting the visualization of unidirectional ray polaritons (URPs). They arise naturally in twisted hyperbolic stacks with very different thicknesses of their constituents, demonstrated for homostructures of α -MoO3 and heterostructures of α -MoO3 and β -Ga2O3. Importantly, their ray-like propagation, characterized by large momenta and constant phase, is tunable by both the twist angle and the illumination frequency. Apart from their fundamental importance, our findings introduce twisted asymmetric stacks as efficient platforms for nanoscale directional polariton propagation, opening the door for applications in nanoimaging, (bio)-sensing, or polaritonic thermal management.
Collapse
Affiliation(s)
- J Álvarez-Cuervo
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - M Obst
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany
- Würzburg-Dresden Cluster of Excellence-EXC 2147 (ct.qmat), Dresden, Germany
| | - S Dixit
- Vanderbilt University, Nashville, TN, USA
| | - G Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - A I F Tresguerres-Mata
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - C Lanza
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - E Terán-García
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - G Álvarez-Pérez
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Italy
| | - L F Álvarez-Tomillo
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | | | - R Kowalski
- Vanderbilt University, Nashville, TN, USA
| | | | - N S Mueller
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - L Herrer
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - J M De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - S Wasserroth
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - J M Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - T Beechem
- Purdue University and Birck Nanotechnology Center, West Lafayette, IN, USA
| | - M Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - L M Eng
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany
- Würzburg-Dresden Cluster of Excellence-EXC 2147 (ct.qmat), Dresden, Germany
| | | | - A Tarazaga Martín-Luengo
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - J Martín-Sánchez
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain
| | - S C Kehr
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany.
- Würzburg-Dresden Cluster of Excellence-EXC 2147 (ct.qmat), Dresden, Germany.
| | - A Y Nikitin
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | | | - P Alonso-González
- Department of Physics, University of Oviedo, Oviedo, Spain.
- Center of Research on Nanomaterials and Nanotechnology (CINN), CSIC-Universidad de Oviedo, El Entrego, Spain.
| | - A Paarmann
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
| |
Collapse
|
2
|
Wu Y, Liu J, Yu W, Zhang T, Mu H, Si G, Cui Z, Lin S, Zheng B, Qiu CW, Chen H, Ou Q. Monolithically Structured van der Waals Materials for Volume-Polariton Refraction and Focusing. ACS NANO 2024; 18:17065-17074. [PMID: 38885193 DOI: 10.1021/acsnano.4c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Polaritons, hybrid light and matter waves, offer a platform for subwavelength on-chip light manipulation. Recent works on planar refraction and focusing of polaritons all rely on heterogeneous components with different refractive indices. A fundamental question, thus, arises whether it is possible to configure two-dimensional monolithic polariton lenses based on a single medium. Here, we design and fabricate a type of monolithic polariton lens by directly sculpting an individual hyperbolic van der Waals crystal. The in-plane polariton focusing through sculptured step-terraces is triggered by geometry-induced symmetry breaking of momentum matching in polariton refractions. We show that the monolithic polariton lenses can be robustly tuned by the rise of van der Waals terraces and their curvatures, achieving a subwavelength focusing resolution down to 10% of the free-space light wavelength. Fusing with transformation optics, monolithic polariton lenses with gradient effective refractive indices, such as Luneburg lenses and Maxwell's fisheye lenses, are expected by sculpting polaritonic structures with gradually varied depths. Our results bear potential in planar subwavelength lenses, integrated optical circuits, and photonic chips.
Collapse
Affiliation(s)
- Yingjie Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- International Joint Innovation Centre, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Jingying Liu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Department of Materials Science and Engineering, Monash University, VIC, Clayton 3800, Australia
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Tan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Australia
| | - Zhenyang Cui
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- International Joint Innovation Centre, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523000, China
| | - Bin Zheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- International Joint Innovation Centre, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Hongsheng Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- International Joint Innovation Centre, Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Department of Materials Science and Engineering, Monash University, VIC, Clayton 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Australia
| |
Collapse
|
3
|
Han C, Fan S, Li C, Chen LQ, Yang T, Qiu CW. Nonlocal Acoustic Moiré Hyperbolic Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311350. [PMID: 38221798 DOI: 10.1002/adma.202311350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The discovery of the topological transition in twisted bilayer (tBL) materials has attracted considerable attention in nano-optics. In the analogue of acoustics, however, no such topological transition has been found due to the inherent nondirectional scalar property of acoustic pressure. In this work, by using a theory-based nonlocal anisotropic design, the in-plane acoustic pressure is transformed into a spatially distributed vector field using twisted multilayer metasurfaces. So-called "acoustic magic angle"-related acoustic phenomena occur, such as nonlocal polariton hybridization and the topological Lifshitz transition. The dispersion becomes flat at the acoustic magic angle, enabling polarized excitations to propagate in a single direction. Moreover, the acoustic topological transition (from hyperbolic to elliptic dispersion) is experimentally observed for the first time as the twist angle continuously changes. This unique characteristic facilitates low-loss tunable polariton hybridization at the subwavelength scale. A twisted trilayer acoustic metasurface is also experimentally demonstrated, and more possibilities for manipulating acoustic waves are found. These discoveries not only enrich the concepts of moiré physics and topological acoustics but also provide a complete framework of theory and methodologies for explaining the phenomena that are observed.
Collapse
Affiliation(s)
- Chenglin Han
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Shida Fan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Changyou Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Li-Qun Chen
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Tianzhi Yang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
4
|
Fu R, Qu Y, Xue M, Liu X, Chen S, Zhao Y, Chen R, Li B, Weng H, Liu Q, Dai Q, Chen J. Manipulating hyperbolic transient plasmons in a layered semiconductor. Nat Commun 2024; 15:709. [PMID: 38267417 PMCID: PMC10808201 DOI: 10.1038/s41467-024-44971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Anisotropic materials with oppositely signed dielectric tensors support hyperbolic polaritons, displaying enhanced electromagnetic localization and directional energy flow. However, the most reported hyperbolic phonon polaritons are difficult to apply for active electro-optical modulations and optoelectronic devices. Here, we report a dynamic topological plasmonic dispersion transition in black phosphorus via photo-induced carrier injection, i.e., transforming the iso-frequency contour from a pristine ellipsoid to a non-equilibrium hyperboloid. Our work also demonstrates the peculiar transient plasmonic properties of the studied layered semiconductor, such as the ultrafast transition, low propagation losses, efficient optical emission from the black phosphorus's edges, and the characterization of different transient plasmon modes. Our results may be relevant for the development of future optoelectronic applications.
Collapse
Affiliation(s)
- Rao Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yusong Qu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology & School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Xinghui Liu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Shengyao Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin, 300457, China
| | - Yongqian Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Runkun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Boxuan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongming Weng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Qian Liu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology & School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin, 300457, China.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology & School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
5
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
6
|
Chen S, Wu X, Fu C. Comparative analysis of two models for phonon polaritons in van der Waals materials: 2D and 3D. NANOSCALE 2023; 15:17889-17898. [PMID: 37889109 DOI: 10.1039/d3nr03879c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Phonon polaritons with ultralow losses and high confinement in extremely anisotropic media have opened up new avenues for manipulating the flow of light at the nanoscale. Recent advances in var der Waals (vdW) materials reveal unprecedented dispersion characteristics of polaritons using a two-dimensional (2D) model, treating the slab as a surface without thickness. However, the difference between the 2D and three-dimensional (3D) models of hyperbolic polaritons remains largely unexplored. Herein, we compare the polaritonic difference between these two models for biaxial vdW slabs. In addition, we demonstrate that the fundamental mode in slab configuration corresponds to the polaritonic mode in surface sheet and higher-order modes vanish in the latter configuration. In particular, we reveal that the difference in in-plane polaritons along the [100] and [001] crystal directions between the two models is associated with the inverse of the dielectric function along these two directions. For example, we compare the near-field radiative heat transfer (NFRHT) between two vdW slabs based on these two models. It is found that when the attenuation length of the higher-order hyperbolic mode is less than the gap distance, the enhancement achieved using the 3D model comes from only the fundamental mode, resulting in a negligible difference between these two models. Therefore, our findings may help to understand in-plane anisotropic polaritons and provide guidance for the application of the 2D model in the analysis of vdW materials.
Collapse
Affiliation(s)
- Shuo Chen
- LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Xiaohu Wu
- Shandong Institute of Advanced Technology, Jinan 250100, China.
| | - Ceji Fu
- LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Zhao Y, Li G, Yao Y, Chen J, Xue M, Bao L, Jin K, Ge C, Chen J. Tunable heterostructural prism for planar polaritonic switch. Sci Bull (Beijing) 2023; 68:1757-1763. [PMID: 37507260 DOI: 10.1016/j.scib.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The study of phonon polaritons in van der Waals materials at the nanoscale has gained significant attention in recent years due to its potential applications in nanophotonics. The unique properties of these materials, such as their ability to support sub-diffraction imaging, sensing, and hyperlenses, have made them a promising avenue for the development of new techniques in the field. Despite these advancements, there still exists a challenge in achieving dynamically reversible manipulation of phonon polaritons in these materials due to their insulating properties. In this study, we present experimental results on the reversible manipulation of anisotropic phonon polaritons in α-MoO3 on top of a VO2 film, a phase-change material known for its dramatic changes in dielectric properties between its insulating and metallic states. Our findings demonstrate that the engineered VO2 film enables a switch in the propagation of polaritons in the mid-infrared region by modifying the dielectric properties of the film through temperature changes. Our results represent a promising approach to effectively control the flow of light energy at the nanoscale and offer the potential for the design and fabrication of integrated, flat sub-diffraction polaritonic devices. This study adds to the growing body of work in the field of nanophotonics and highlights the importance of considering phase-change materials for the development of new techniques in this field.
Collapse
Affiliation(s)
- Yongqian Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyu Yao
- Department of Physics, National University of Singapore, Singapore 117550, Singapore
| | - Jiancui Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Bao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan 523808, China.
| |
Collapse
|
8
|
Wang C, Xie Y, Ma J, Hu G, Xing Q, Huang S, Song C, Wang F, Lei Y, Zhang J, Mu L, Zhang T, Huang Y, Qiu CW, Yao Y, Yan H. Twist-Angle and Thickness-Ratio Tuning of Plasmon Polaritons in Twisted Bilayer van der Waals Films. NANO LETTERS 2023; 23:6907-6913. [PMID: 37494570 DOI: 10.1021/acs.nanolett.3c01472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.
Collapse
Affiliation(s)
- Chong Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuangang Xie
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Junwei Ma
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiaoxia Xing
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chaoyu Song
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Fanjie Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yuchen Lei
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jiasheng Zhang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Lei Mu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Tan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Xie Y, Wang C, Fei F, Li Y, Xing Q, Huang S, Lei Y, Zhang J, Mu L, Dai Y, Song F, Yan H. Tunable optical topological transitions of plasmon polaritons in WTe 2 van der Waals films. LIGHT, SCIENCE & APPLICATIONS 2023; 12:193. [PMID: 37553359 PMCID: PMC10409815 DOI: 10.1038/s41377-023-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions, which avoid the nano-structuring to achieve hyperbolicity, can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare, but experimentally revealed recently in WTe2 van der Waals thin films. Different from phonon polaritons, hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions, which promise good intrinsic tunability. However, tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo doping and temperature. The optical topological transition energy is tuned over a wide range, with frequencies ranging from 429 cm-1 (23.3 microns) for pure WTe2 to 270 cm-1 (37.0 microns) at the 50% Mo-doping level at 10 K. Moreover, the temperature-induced blueshift of the optical topological transition energy is also revealed, enabling active and reversible tuning. Surprisingly, the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence, accurately manifesting its topology, which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering, such as canaling, focusing, and routing, and pave the way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.
Collapse
Affiliation(s)
- Yuangang Xie
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Chong Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, 210093, Nanjing, China.
- Atom Manufacturing Institute (AMI), 211805, Nanjing, China.
| | - Yuqi Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, 100081, Beijing, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Qiaoxia Xing
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Yuchen Lei
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Jiasheng Zhang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Lei Mu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Yaomin Dai
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 211805, Nanjing, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, 210093, Nanjing, China
- Atom Manufacturing Institute (AMI), 211805, Nanjing, China
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
10
|
Lv J, Wu Y, Liu J, Gong Y, Si G, Hu G, Zhang Q, Zhang Y, Tang JX, Fuhrer MS, Chen H, Maier SA, Qiu CW, Ou Q. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat Commun 2023; 14:3894. [PMID: 37393303 DOI: 10.1038/s41467-023-39543-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/17/2023] [Indexed: 07/03/2023] Open
Abstract
Photonic crystals (PhCs) are a kind of artificial structures that can mold the flow of light at will. Polaritonic crystals (PoCs) made from polaritonic media offer a promising route to controlling nano-light at the subwavelength scale. Conventional bulk PhCs and recent van der Waals PoCs mainly show highly symmetric excitation of Bloch modes that closely rely on lattice orders. Here, we experimentally demonstrate a type of hyperbolic PoCs with configurable and low-symmetry deep-subwavelength Bloch modes that are robust against lattice rearrangement in certain directions. This is achieved by periodically perforating a natural crystal α-MoO3 that hosts in-plane hyperbolic phonon polaritons. The mode excitation and symmetry are controlled by the momentum matching between reciprocal lattice vectors and hyperbolic dispersions. We show that the Bloch modes and Bragg resonances of hyperbolic PoCs can be tuned through lattice scales and orientations while exhibiting robust properties immune to lattice rearrangement in the hyperbolic forbidden directions. Our findings provide insights into the physics of hyperbolic PoCs and expand the categories of PhCs, with potential applications in waveguiding, energy transfer, biosensing and quantum nano-optics.
Collapse
Affiliation(s)
- Jiangtao Lv
- College of Information Science and Engineering, Northeastern University, Shenyang, 110004, China
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Yingjie Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Jingying Liu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Youning Gong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, VIC, Australia
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yupeng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Michael S Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Hongsheng Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Stefan A Maier
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Lu G, Pan Z, Gubbin CR, Kowalski RA, De Liberato S, Li D, Caldwell JD. Launching and Manipulation of Higher-Order In-Plane Hyperbolic Phonon Polaritons in Low-Dimensional Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300301. [PMID: 36892954 DOI: 10.1002/adma.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Indexed: 06/02/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low-loss, highly confined light propagation at subwavelength scales with out-of-plane or in-plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher-order modes that offer stronger wavelength compression, especially for in-plane HPhPs. In this work, the experimental observation of higher-order in-plane HPhP modes stimulated on a 3C-SiC nanowire (NW)/α-MoO3 heterostructure is reported where leveraging both the low-dimensionality and low-loss nature of the polar NWs, higher-order HPhPs modes within 2D α-MoO3 crystal are launched by the 1D 3C-SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher-order modes are determined. In addition, by altering the geometric orientation between the 3C-SiC NW and α-MoO3 crystal, the manipulation of higher-order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep-subwavelength scales for a range of IR applications including sensing, nano-imaging, and on-chip photonics.
Collapse
Affiliation(s)
- Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Christopher R Gubbin
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ryan A Kowalski
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, 37212, USA
| | - Simone De Liberato
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
12
|
He M, Hoogendoorn L, Dixit S, Pan Z, Lu G, Diaz-Granados K, Li D, Caldwell JD. Guided Polaritons along the Forbidden Direction in MoO 3 with Geometrical Confinement. NANO LETTERS 2023. [PMID: 37235534 DOI: 10.1021/acs.nanolett.3c00892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly anisotropic materials show great promise for spatial control and the manipulation of polaritons. In-plane hyperbolic phonon polaritons (HPhPs) supported by α-phase molybdenum trioxide (MoO3) allow for wave propagation with a high directionality due to the hyperbola-shaped isofrequency contour (IFC). However, the IFC prohibits propagations along the [001] axis, hindering information or energy flow. Here, we illustrate a novel approach to manipulating the HPhP propagation direction. We experimentally demonstrate that geometrical confinement in the [100] axis can guide HPhPs along the forbidden direction with phase velocity becoming negative. We further developed an analytical model to provide insights into this transition. Moreover, as the guided HPhPs are formed in-plane, modal profiles were directly imaged to further expand our understanding of the formation of HPhPs. Our work reveals a possibility for manipulating HPhPs and paves the way for promising applications in metamaterials, nanophotonics, and quantum optics based on natural van der Waals materials.
Collapse
Affiliation(s)
- Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Levi Hoogendoorn
- Research Experience for Undergraduates (REU) program, Vanderbilt Institute for Nanoscale Science and Engineering (VINSE), Vanderbilt University, Nashville, Tennessee 37240, USA
- Integrated Science Program, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Saurabh Dixit
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37240, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
13
|
Ni X, Carini G, Ma W, Renzi EM, Galiffi E, Wasserroth S, Wolf M, Li P, Paarmann A, Alù A. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat Commun 2023; 14:2845. [PMID: 37202412 DOI: 10.1038/s41467-023-38326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Extreme anisotropy in some polaritonic materials enables light propagation with a hyperbolic dispersion, leading to enhanced light-matter interactions and directional transport. However, these features are typically associated with large momenta that make them sensitive to loss and poorly accessible from far-field, being bound to the material interface or volume-confined in thin films. Here, we demonstrate a new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours that are neither elliptical nor hyperbolic. We show that these interface modes are strongly hybridized with propagating bulk states, sustaining directional, long-range, sub-diffractive propagation at the interface. We observe these features using polariton spectroscopy, far-field probing and near-field imaging, revealing their peculiar dispersion, and - despite their leaky nature - long modal lifetime. Our leaky polaritons (LPs) nontrivially merge sub-diffractive polaritonics with diffractive photonics onto a unified platform, unveiling opportunities that stem from the interplay of extreme anisotropic responses and radiation leakage.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Giulia Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Weiliang Ma
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Enrico Maria Renzi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Emanuele Galiffi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Sören Wasserroth
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Peining Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Hubei, 430074, China.
| | | | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Chen K, Komissarenko F, Smirnova D, Vakulenko A, Kiriushechkina S, Volkovskaya I, Guddala S, Menon V, Alù A, Khanikaev AB. Photonic Dirac cavities with spatially varying mass term. SCIENCE ADVANCES 2023; 9:eabq4243. [PMID: 36947629 PMCID: PMC10032596 DOI: 10.1126/sciadv.abq4243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In recent years, photonics has proven itself as an excellent platform for emulation of relativistic phenomena. Here, we show an example of relativistic-like trapping in photonic system that realizes Dirac-like dispersion with spatially inhomogeneous mass term. The modes trapped by such cavities, their energy levels, and corresponding orbitals are then characterized through optical imaging in real and momentum space. The fabricated cavities host a hierarchy of photonic modes with distinct radiation profiles directly analogous to various atomic orbitals endowed with unique characteristics, such as pseudo-particle-hall symmetry and spin degeneracy, and they carry topological charge which gives rise to radiative profiles with angular momentum. We demonstrate that these modes can be directionally excited by pseudo-spin-polarized boundary states. In addition to the fundamental interest in the structure of these pseudo-relativistic orbitals, the proposed system offers a route for designing new types of nanophotonic devices, spin-full resonators and topological light sources compatible with integrated photonics platforms.
Collapse
Affiliation(s)
- Kai Chen
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
- Department of Physics, City College of New York, New York, NY 10031, USA
- Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Filipp Komissarenko
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
| | - Daria Smirnova
- Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| | - Anton Vakulenko
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
| | - Svetlana Kiriushechkina
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
| | - Irina Volkovskaya
- Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| | - Sriram Guddala
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
| | - Vinod Menon
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
| | - Andrea Alù
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
- Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Alexander B. Khanikaev
- Electrical Engineering and Physics, The City College of New York (USA), New York, NY 10031, USA
- Department of Physics, City College of New York, New York, NY 10031, USA
- Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
16
|
Zhao Y, Chen J, Xue M, Chen R, Jia S, Chen J, Bao L, Gao HJ, Chen J. Ultralow-Loss Phonon Polaritons in the Isotope-Enriched α-MoO 3. NANO LETTERS 2022; 22:10208-10215. [PMID: 36343338 DOI: 10.1021/acs.nanolett.2c03742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
α-MoO3, a natural van der Waals (vdWs) material, has received wide attention in nano-optics for supporting highly confined anisotropic phonon polaritons (PhPs) from the mid-infrared to the terahertz region, which opens a new route for manipulating light at the nanoscale. However, its optical loss hinders light manipulation with high efficiency. This work demonstrates that the isotope-enriched Mo element enables ultralow-loss PhPs in the α-MoO3. Raman spectra reveal that the isotope-enriched Mo element in the α-MoO3 allows different optical phonon frequencies by efficiently altering the Reststrahlen band's dispersion. The Mo isotope-enriched α-MoO3 significantly reduces the PhPs' optical loss due to efficient optical coherence, which enhances the propagation length revealed by infrared nanoimaging. These findings suggest that the isotope-enriched α-MoO3 is a new feasible 2D material with an ultralow optical loss for possible high-performance integrated photonics and quantum optics devices.
Collapse
Affiliation(s)
- Yongqian Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancui Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Runkun Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangtong Jia
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jianjun Chen
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lihong Bao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
17
|
Nörenberg T, Álvarez-Pérez G, Obst M, Wehmeier L, Hempel F, Klopf JM, Nikitin AY, Kehr SC, Eng LM, Alonso-González P, de Oliveira TVAG. Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons. ACS NANO 2022; 16:20174-20185. [PMID: 36446407 PMCID: PMC9799068 DOI: 10.1021/acsnano.2c05376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/08/2022] [Indexed: 05/17/2023]
Abstract
Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.
Collapse
Affiliation(s)
- Tobias Nörenberg
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Gonzalo Álvarez-Pérez
- Department of Physics, University
of Oviedo, Oviedo 33006, Spain
- Center of Research
on Nanomaterials and Nanotechnology CINN (CSIC−Universidad
de Oviedo), El Entrego 33940, Spain
| | - Maximilian Obst
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
| | - Lukas Wehmeier
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Franz Hempel
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Collaborative Research
Center 1415, Technische Universität
Dresden, Dresden 01069, Germany
| | - J. Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Alexey Y. Nikitin
- Donostia International
Physics Center (DIPC), Donostia-San
Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Susanne C. Kehr
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
| | - Lukas M. Eng
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Collaborative Research
Center 1415, Technische Universität
Dresden, Dresden 01069, Germany
| | - Pablo Alonso-González
- Department of Physics, University
of Oviedo, Oviedo 33006, Spain
- Center of Research
on Nanomaterials and Nanotechnology CINN (CSIC−Universidad
de Oviedo), El Entrego 33940, Spain
| | - Thales V. A. G. de Oliveira
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| |
Collapse
|
18
|
Jia G, Luo J, Wang H, Ma Q, Liu Q, Dai H, Asgari R. Two-dimensional natural hyperbolic materials: from polaritons modulation to applications. NANOSCALE 2022; 14:17096-17118. [PMID: 36382501 DOI: 10.1039/d2nr04181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Natural hyperbolic materials (HMs) in two dimensions (2D) have an extraordinarily high anisotropy and a hyperbolic dispersion relation. Some of them can even sustain hyperbolic polaritons with great directional propagation and light compression to deeply sub-wavelength scales due to their inherent anisotropy. Herein, the anisotropic optical features of 2D natural HMs are reviewed. Four hyperbolic polaritons (i.e., phonon polaritons, plasmon polaritons, exciton polaritons, and shear polaritons) as well as their generation mechanism are discussed in detail. The natural merits of 2D HMs hold promise for practical quantum photonic applications such as valley quantum interference, mid-infrared polarizers, spontaneous emission enhancement, near-field thermal radiation, and a new generation of optoelectronic components, among others. The conclusion of these analyses outlines existing issues and potential interesting directions for 2D natural HMs. These findings could spur more interest in anisotropic 2D atomic crystals in the future, as well as the quick generation of natural HMs for new applications.
Collapse
Affiliation(s)
- Guangyi Jia
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Jinxuan Luo
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Huaiwen Wang
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, P. R. China
| | - Qiaoyun Ma
- School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China.
| | - Qinggang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, P. R. China.
| | - Reza Asgari
- School of Physics, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5531, Iran.
| |
Collapse
|
19
|
Hou T, Chen H. Criterion for photonic topological transition in two-dimensional heterostructures. OPTICS LETTERS 2022; 47:5433-5436. [PMID: 36240382 DOI: 10.1364/ol.474505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The anisotropic van der Waals material α-MoO3 has recently attracted considerable attention because of the ability to support ellipse and hyperbolic phonon polaritons with extreme field confinement and long lifetimes, which can be used in topological transition and transformation polaritonics. However, the dispersion theory of some phonon polaritons in complex heterojunctions often requires tedious computation, which makes it difficult to simply judge and analyze the physical process of the photonic topological transition. Here we obtain the equivalent permittivity distribution of two-dimensional (2D) heterostructures by the effective medium theory and analyze the rotation-induced topological transitions and stack-dependent topological transitions of phonon polaritons. Unlike the previous discussion, we can predict the topological transition points by a parameter ɛx/y(i.e., the permittivity ratio along the in-plane crystal axis of the equivalent medium) and design precisely the phonon polaritons in the stacked materials by controlling the equivalent permittivity after simple calculation. The feasibility of the effective medium theory is verified based on the 2D approximation model and the non-2D approximation model under the limit of an ultrathin slab. Meanwhile, we compare the field distributions and dispersions of the 2D heterostructures and the corresponding equivalent structure. The simulation suggests that the elliptic/hyperbolic responses of the stacked materials depend on the sign of ɛx/y. The new, to the best of our knowledge, method not only provides an easier and clearer criterion for the study of photonic topological transition in anisotropic polaritons, but also shows great potential in designing some multilayer 2D heterostructures.
Collapse
|
20
|
Liu Y, Ouyang C, Xu Q, Ma J, Li Y, Han J, Zhang W. Magnetic moiré effects and two types of topological transition in a twisted-bilayer hyperbolic metasurface with double-split ring arrays. OPTICS EXPRESS 2022; 30:36552-36563. [PMID: 36258581 DOI: 10.1364/oe.471911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Moiré configurations have recently attracted much attention due to their ability to enhance photonic responses and manipulate surface waves in the subwavelength ranges. However, previous studies have usually been focused on natural hyperbolic materials with limitations on patterning procedures, controlling rotation angles, and merely manipulating electric surface plasmons. Here, we theoretically and numerically investigate a novel magnetic moiré hyperbolic metasurface in the terahertz region, which enables two types of topological transition and a plethora of unusual magnetic moiré effects (magnetic surface wave manipulation, dispersion engineering, magic angles, spacer-dependent topological transition, and local field enhancement). This work extends twistronics and moiré physics to the terahertz region and magnetic polaritons, with potential applications in quantum physics, energy transfer, and planarized magnetic plasmonic devices.
Collapse
|
21
|
Hu H, Chen N, Teng H, Yu R, Qu Y, Sun J, Xue M, Hu D, Wu B, Li C, Chen J, Liu M, Sun Z, Liu Y, Li P, Fan S, García de Abajo FJ, Dai Q. Doping-driven topological polaritons in graphene/α-MoO 3 heterostructures. NATURE NANOTECHNOLOGY 2022; 17:940-946. [PMID: 35982316 PMCID: PMC9477736 DOI: 10.1038/s41565-022-01185-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/28/2022] [Indexed: 05/20/2023]
Abstract
Control over charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties of materials. This approach can also be used to induce topological transitions in the optical response of photonic systems. Here we report a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and α-phase molybdenum trioxide. By chemically changing the doping level of graphene, we observed that the topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, when the substrate was changed, the dispersion contour became dominated by flat profiles at the topological transition, thus supporting tunable diffractionless polariton propagation and providing local control over the optical contour topology. We achieved subwavelength focusing of polaritons down to 4.8% of the free-space light wavelength by using a 1.5-μm-wide silica substrate as an in-plane lens. Our findings could lead to on-chip applications in nanoimaging, optical sensing and manipulation of energy transfer at the nanoscale.
Collapse
Grants
- National Key Research and Development Program of China (Grant No. 2020YFB2205701), the National Natural Science Foundation of China (Grant Nos. 51902065, 52172139, 51925203, U2032206, 52072083, and 51972072)
- Beijing Municipal Natural Science Foundation (Grant No. 2202062), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000, XDB30000000).
- Z.P.S. acknowledges the Academy of Finland (Grant Nos. 314810, 333982, 336144, and 336818), The Business Finland (ALDEL), the Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon 2020 research and innovation program (820423, S2QUIP; 965124, FEMTOCHIP), the EU H2020-MSCA-RISE-872049 (IPN-Bio), and the ERC (834742).
- P.N.L acknowledges the National Natural Science Foundation of China (grantno.62075070)
- S.F. acknowledges the support of the U.S. Department of Energy under Grant No. DE-FG02-07ER46426.
- F.J.G.A. acknowledges the ERC (Advanced Grant 789104-eNANO), the Spanish MINECO (SEV2015-0522), and the CAS President’s International Fellowship Initiative (PIFI) for 2021.
Collapse
Affiliation(s)
- Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Na Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hanchao Teng
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Renwen Yu
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, USA.
| | - Yunpeng Qu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Mengfei Xue
- The Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Debo Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianing Chen
- The Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, NY, USA
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shanhui Fan
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Aghamiri NA, Hu G, Fali A, Zhang Z, Li J, Balendhran S, Walia S, Sriram S, Edgar JH, Ramanathan S, Alù A, Abate Y. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat Commun 2022; 13:4511. [PMID: 35922424 PMCID: PMC9349304 DOI: 10.1038/s41467-022-32287-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3 (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications. Phonon polaritons in anisotropic van der Waals materials enable subwavelength confinement and controllable flow of light at the nanoscale. Here, the authors exploit correlated perovskite oxide (SmNiO3) substrates with tunable conductivity to obtain real-time modulation and nanoscale reconfiguration of hyperbolic polaritons in hBN and α-MoO3 crystals.
Collapse
Affiliation(s)
| | - Guangwei Hu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Alireza Fali
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiahan Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | | | - Sumeet Walia
- School of Engineering RMIT University Melbourne, Melbourne, VIC, Australia.,Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia.,ARC Centre of Excellence for Transformative Meta-Optical Systems, RMIT University, Melbourne, VIC, Australia
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yohannes Abate
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Zhang Q, Ou Q, Si G, Hu G, Dong S, Chen Y, Ni J, Zhao C, Fuhrer MS, Yang Y, Alù A, Hillenbrand R, Qiu CW. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. SCIENCE ADVANCES 2022; 8:eabn9774. [PMID: 35905184 PMCID: PMC9337755 DOI: 10.1126/sciadv.abn9774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Advanced control over the excitation of ultraconfined polaritons-hybrid light and matter waves-empowers unique opportunities for many nanophotonic functionalities, e.g., on-chip circuits, quantum information processing, and controlling thermal radiation. Recent work has shown that highly asymmetric polaritons are directly governed by asymmetries in crystal structures. Here, we experimentally demonstrate extremely asymmetric and unidirectional phonon polariton (PhP) excitation via directly patterning high-symmetry orthorhombic van der Waals (vdW) crystal α-MoO3. This phenomenon results from symmetry breaking of momentum matching in polaritonic diffraction in vdW materials. We show that the propagation of PhPs can be versatile and robustly tailored via structural engineering, while PhPs in low-symmetry (e.g., monoclinic and triclinic) crystals are largely restricted by their naturally occurring permittivities. Our work synergizes grating diffraction phenomena with the extreme anisotropy of high-symmetry vdW materials, enabling unexpected control of infrared polaritons along different pathways and opening opportunities for applications ranging from on-chip photonics to directional heat dissipation.
Collapse
Affiliation(s)
- Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Macao Institute of Materials Science and Engineering (MIMSE) , Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Shaohua Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027 China
| | - Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chen Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael S. Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Andrea Alù
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
24
|
Ruta FL, Kim BSY, Sun Z, Rizzo DJ, McLeod AS, Rajendran A, Liu S, Millis AJ, Hone JC, Basov DN. Surface plasmons induce topological transition in graphene/α-MoO 3 heterostructures. Nat Commun 2022; 13:3719. [PMID: 35764651 PMCID: PMC9240047 DOI: 10.1038/s41467-022-31477-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Polaritons in hyperbolic van der Waals materials-where principal axes have permittivities of opposite signs-are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3 heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3 heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.
Collapse
Affiliation(s)
- Francesco L Ruta
- Department of Physics, Columbia University, New York, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | - Brian S Y Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, NY, USA
| | - Daniel J Rizzo
- Department of Physics, Columbia University, New York, NY, USA
| | | | - Anjaly Rajendran
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Zeng Y, Ou Q, Liu L, Zheng C, Wang Z, Gong Y, Liang X, Zhang Y, Hu G, Yang Z, Qiu CW, Bao Q, Chen H, Dai Z. Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. NANO LETTERS 2022; 22:4260-4268. [PMID: 35442697 DOI: 10.1021/acs.nanolett.2c00399] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Here, we report tunable topological transitions in biaxial crystals enabled by interface engineering. We theoretically demonstrate such tailored polaritons at the interface of heterostructures between graphene and α-phase molybdenum trioxide (α-MoO3). The interlayer coupling can be modulated by both the stack of graphene and α-MoO3 and the magnitude of the Fermi level in graphene enabling a dynamic topological transition. More interestingly, we found that the wavefront transition occurs at a constant Fermi level when the thickness of α-MoO3 is tuned. Furthermore, we also experimentally verify the hybrid polaritons in the graphene/α-MoO3 heterostructure with different thicknesses of α-MoO3. The interface engineering offers new insights into optical topological transitions, which may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Lu Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ziyu Wang
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Youning Gong
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiang Liang
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, People's Republic of China
| | - Yupeng Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhilin Yang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Huanyang Chen
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
26
|
Luan Y, Zobeiri H, Wang X, Sutter E, Sutter P, Fei Z. Imaging Anisotropic Waveguide Exciton Polaritons in Tin Sulfide. NANO LETTERS 2022; 22:1497-1503. [PMID: 35133843 DOI: 10.1021/acs.nanolett.1c03833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, novel materials supporting in-plane anisotropic polaritons have attracted a great deal of research interest due to their capability of shaping nanoscale field distributions and controlling nanophotonic energy flows. Here we report a nano-optical imaging study of waveguide exciton polaritons (EPs) in tin sulfide (SnS) in the near-infrared (near-IR) region using scattering-type scanning near-field optical microscopy (s-SNOM). With s-SNOM, we mapped in real space the propagative EPs in SnS, which show sensitive dependence on the excitation energy and sample thickness. Moreover, we found that both the polariton wavelength and propagation length are anisotropic in the sample plane. In particular, in a narrow spectral range from 1.32 to 1.44 eV, the EPs demonstrate quasi-one-dimensional propagation, which is rarely seen in natural polaritonic materials. A further analysis indicates that the observed polariton anisotropy originates from the different optical band gaps and exciton binding energies along the two principal crystal axes of SnS.
Collapse
Affiliation(s)
- Yilong Luan
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, United States
| | - Hamidreza Zobeiri
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xinwei Wang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eli Sutter
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Peter Sutter
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhe Fei
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|