1
|
Chen K, Sui C, Wang Z, Liu Z, Qi L, Li X. Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study. Transl Oncol 2025; 52:102260. [PMID: 39752907 PMCID: PMC11754828 DOI: 10.1016/j.tranon.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Though several clinicopathological features are identified as prognostic indicators, potentially prognostic radiomic models are expected to preoperatively and noninvasively predict survival for HCC. Traditional radiomic models are lacking in a consideration for intratumoral regional heterogeneity. The study aimed to establish and validate the predictive power of multiple habitat radiomic models in predicting prognosis of hepatocellular carcinoma (HCC). METHODS A total of 232 HCC patients were retrospectively included, including a training/validation cohort and two external testing cohorts from 4 centers. For habitat radiomics, intratumoral habitat partitioning based on CT images was first performed by using Otsu thresholding method. Second, a total of 350 habitat radiomic models were constructed to select the optimal model. Then, both ROC curve analyses and Kaplan-Meier survival curve analyses were applied to assess the predictive performances. Ultimately, an immune status profiling was conducted based on bioinformatic analyses and multiplex immunohistochemistry (mIHC) assays to reveal the potential mechanisms. RESULTS A total of 4 habitats were segmented, and the corresponding habitat radiomic models were constructed based on each habitat and an integration of all the four habitats. Generally, habitat radiomic models outperformed traditional radiomic models in stratifying prognosis for HCC. The habitat radiomic model based on the segmented habitat 4 involving decision tree (DT) screening and random forest (RF) classifier was identified as the optimal model with an AUCmean of 0.806. Distinct resting natural killer (NK) cell infiltrations significantly contributed to the prognosis stratification of HCC by the optimal habitat radiomic model. CONCLUSIONS The habitat radiomic model based on CT images was potentially predictive of overall survival for HCC, with a superiority over the traditional radiomic model. The prognostic power of the habitat radiomic model was partly attributed to the distinct immune status captured in the CT images.
Collapse
Affiliation(s)
- Kun Chen
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ziyang Wang
- Department of Nuclear medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin 300304, China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
2
|
Chen Z, Fan D, Hang T, Yue X. RASGRF2 as a potential pathogenic gene mediating the progression of alcoholic hepatitis to alcohol-related cirrhosis and hepatocellular carcinoma. Discov Oncol 2025; 16:97. [PMID: 39875737 PMCID: PMC11775371 DOI: 10.1007/s12672-025-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND AND AIMS Alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC) are common liver diseases. Chronic inflammation caused by AH can progress to alcoholic cirrhosis (AC) and eventually HCC. METHODS This study sought to ascertain potential shared genes between AH and HCC through the utilization of multiple transcriptome databases. Employing an immune infiltration analysis, and calculating the correlation between shared genes and immune infiltration results, in conjunction with independent bulk transcriptome validation sets, led to the identification of core shared genes. Subsequently, single-cell transcriptome data, clinical sample immunohistochemistry experiments, and overexpressed core shared genes in HepG2 cells were employed to validate the core shared genes of AH and HCC. RESULTS Through the bulk transcriptome discovery sets of AH and HCC, 206 potential shared genes were identified. After screening with two machine learning algorithms, five shared genes remained. Combining the results of the immune infiltration and bulk transcriptome results from an independent validation cohort, the core shared gene was determined to be RASGRF2. Single-cell data further demonstrated that RASGRF2 and its downstream genes were highly expressed in AH, AC, and HCC tissues. Spatial transcriptome data indicated that RASGRF2 was highly expressed in HCC tumor tissues. Compared with the paracancerous tissues, the RASGRF2 gene was significantly overexpressed in HCC tissues. Overexpression of RASGRF2 in HepG2 cells resulted in significantly enhanced migration, invasion, and proliferation abilities. CONCLUSION RASGRF2 serve as a pathogenic gene that mediates the progression of AH to AC and potentially to HCC.
Collapse
Affiliation(s)
- Zhengyuan Chen
- Nanjing University of Chinese Medicine, Nanjing, 210032, China
| | - Danfeng Fan
- Nanjing University of Chinese Medicine, Nanjing, 210032, China
| | - Tianyi Hang
- Nanjing University of Chinese Medicine, Nanjing, 210032, China
| | - Xiaoqing Yue
- Nanjing University of Chinese Medicine, Nanjing, 210032, China.
- Yucheng People's Hospital, Shandong, 251200, China.
| |
Collapse
|
3
|
Sibai M, Cervilla S, Grases D, Musulen E, Lazcano R, Mo CK, Davalos V, Fortian A, Bernat A, Romeo M, Tokheim C, Barretina J, Lazar AJ, Ding L, Grande E, Real FX, Esteller M, Bailey MH, Porta-Pardo E. The spatial landscape of cancer hallmarks reveals patterns of tumor ecological dynamics and drug sensitivity. Cell Rep 2025; 44:115229. [PMID: 39864059 DOI: 10.1016/j.celrep.2024.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/15/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Tumors are complex ecosystems of interacting cell types. The concept of cancer hallmarks distills this complexity into underlying principles that govern tumor growth. Here, we explore the spatial distribution of cancer hallmarks across 63 primary untreated tumors from 10 cancer types using spatial transcriptomics. We show that hallmark activity is spatially organized, with the cancer compartment contributing to the activity of seven out of 13 hallmarks, while the tumor microenvironment (TME) contributes to the activity of the rest. Additionally, we discover that genomic distance between tumor subclones correlates with differences in hallmark activity, even leading to clone-hallmark specialization. Finally, we demonstrate interdependent relationships between hallmarks at the junctions of TME and cancer compartments and how they relate to sensitivity to different neoadjuvant treatments in 33 bladder cancer patients from the DUTRENEO trial. In conclusion, our findings may improve our understanding of tumor ecology and help identify new drug biomarkers.
Collapse
Affiliation(s)
- Mustafa Sibai
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Sergi Cervilla
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Daniela Grases
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Eva Musulen
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Department of Pathology, Hospital Universitari General de Catalunya Grupo-QuirónSalud, Sant Cugat del Vallès, Spain
| | - Rossana Lazcano
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chia-Kuei Mo
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Arola Fortian
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Adrià Bernat
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Margarita Romeo
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jordi Barretina
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Alexander J Lazar
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Enrique Grande
- Medical Oncology Department. MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Francisco X Real
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Matthew H Bailey
- Department of Biology and Simmons Center for Cancer Research, Brigham Young University, Provo, UT, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain.
| |
Collapse
|
4
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
5
|
Liu X, Tang G, Chen Y, Li Y, Li H, Wang X. SpatialDeX Is a Reference-Free Method for Cell-Type Deconvolution of Spatial Transcriptomics Data in Solid Tumors. Cancer Res 2025; 85:171-182. [PMID: 39387817 DOI: 10.1158/0008-5472.can-24-1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The rapid development of spatial transcriptomics (ST) technologies has enabled transcriptome-wide profiling of gene expression in tissue sections. Despite the emergence of single-cell resolution platforms, most ST sequencing studies still operate at a multicell resolution. Consequently, deconvolution of cell identities within the spatial spots has become imperative for characterizing cell-type-specific spatial organization. To this end, we developed Spatial Deconvolution Explorer (SpatialDeX), a regression model-based method for estimating cell-type proportions in tumor ST spots. SpatialDeX exhibited comparable performance to reference-based methods and outperformed other reference-free methods with simulated ST data. Using experimental ST data, SpatialDeX demonstrated superior performance compared with both reference-based and reference-free approaches. Additionally, a pan-cancer clustering analysis on tumor spots identified by SpatialDeX unveiled distinct tumor progression mechanisms both within and across diverse cancer types. Overall, SpatialDeX is a valuable tool for unraveling the spatial cellular organization of tissues from ST data without requiring single-cell RNA-seq references. Significance: The development of a reference-free method for deconvolving the identity of cells in spatial transcriptomics datasets enables exploration of tumor architecture to gain deeper insights into the dynamics of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gongyu Tang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | - Yuhao Chen
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yuanxiang Li
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hua Li
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
6
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
7
|
Zheng BW, Guo W. Multi-omics analysis unveils the role of inflammatory cancer-associated fibroblasts in chordoma progression. J Pathol 2025; 265:69-83. [PMID: 39611243 DOI: 10.1002/path.6369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 11/30/2024]
Abstract
Cancer-associated fibroblasts (CAFs) constitute the primary cellular component of the stroma in chordomas, characterized by an abundance of mucinous stromal elements, potentially facilitating their initiation and progression; however, this inference has yet to be fully confirmed. In this study, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), bulk RNA-seq, multiplexed quantitative immunofluorescence (QIF), and in vivo and in vitro experiments were performed to determine the heterogeneity, spatial distribution, and clinical significance of CAFs in chordoma. ScRNA-seq was performed on 87,693 single cells derived from seven tumor samples and four control nucleus pulposus samples. A distinct CAF cluster distinguished by the upregulated expression of inflammatory genes and enriched functionality in activating inflammation-associated cells was identified. Pseudotime trajectory and cell communication analyses suggested that this inflammatory CAF (iCAF) subset originated from normal fibroblasts and interacted extensively with tumors and various other cell types. By integrating the scRNA-seq results with ST, the presence of iCAF in chordoma tissue was further confirmed, indicating their positioning at a distance from the tumor cells. Bulk RNA-seq data analysis from 126 patients revealed a correlation between iCAF signature scores, chordoma invasiveness, and poor prognosis. QIF validation involving an additional 116 patients found that although iCAFs were not in close proximity to tumor cells compared with other CAF subsets, their density correlated with malignant tumor phenotypes and adverse outcomes. In vivo and in vitro experiments further confirmed that iCAFs accelerate the malignant progression of chordomas. These findings could provide insights into the development of novel therapeutic strategies. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bo-Wen Zheng
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Peking University, Beijing, PR China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, PR China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People's Hospital, Peking University, Beijing, PR China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, PR China
| |
Collapse
|
8
|
Zhang X, Zou W, Li Z, Yu Z, Yu S, Lin Z, Wu F, Liu P, Hu M, Liu R, Gao Y. The heterogeneity of cellular metabolism in the tumour microenvironment of hepatocellular carcinoma with portal vein tumour thrombus. Cell Prolif 2025; 58:e13738. [PMID: 39189673 PMCID: PMC11693549 DOI: 10.1111/cpr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Given the growing interest in the metabolic heterogeneity of hepatocellular carcinoma (HCC) and portal vein tumour thrombus (PVTT). This study comprehensively analysed the metabolic heterogeneity of HCC, PVTT, and normal liver samples using multi-omics combinations. A single-cell RNA sequencing dataset encompassing six major cell types was obtained for integrated analysis. The optimal subtypes were identified using cluster stratification and validated using spatial transcriptomics and fluorescent multiplex immunohistochemistry. Then, a combined index based meta-cluster was calculated to verify its prognostic significance using multi-omics data from public cohorts. Our study first depicted the metabolic heterogeneity landscape of non-malignant cells in HCC and PVTT at multiomics levels. The optimal subtypes interpret the metabolic characteristics of PVTT formation and development. The combined index provided effective predictions of prognosis and immunotherapy responses. Patients with a higher combined index had a relatively poor prognosis (p <0.001). We also found metabolism of polyamines was a key metabolic pathway involved in conversion of metabolic heterogeneity in HCC and PVTT, and identified ODC1 was significantly higher expressed in PVTT compared to normal tissue (p =0.03). Our findings revealed both consistency and heterogeneity in the metabolism of non-malignant cells in HCC and PVTT. The risk stratification based on cancer-associated fibroblasts and myeloid cells conduce to predict prognosis and guide treatment. This offers new directions for understanding disease development and immunotherapy responses.
Collapse
Affiliation(s)
- Xiu‐Ping Zhang
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Wen‐Bo Zou
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
- Department of General SurgeryNo.924 Hospital of PLA Joint Logistic Support ForceGuilinChina
| | - Zhen‐Qi Li
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Ze‐Tao Yu
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Shao‐Bo Yu
- Department of Clinical LaboratorySir Run Run Shaw Hospital of Zhejiang University School of MedicineZhejiangHangzhouChina
| | - Zhao‐Yi Lin
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Fei‐Fan Wu
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Peng‐Jiong Liu
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Ming‐Gen Hu
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
| | - Rong Liu
- Faculty of Hepato‐Biliary‐Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General HospitalMedical School of Chinese PLABeijingChina
- The First Clinical Medical SchoolLanzhou UniversityLanzhouChina
- Harbin Institute of TechnologyHarbinChina
| | - Yu‐Zhen Gao
- Department of Clinical LaboratorySir Run Run Shaw Hospital of Zhejiang University School of MedicineZhejiangHangzhouChina
| |
Collapse
|
9
|
Huang B, Chen Y, Yuan S. Application of Spatial Transcriptomics in Digestive System Tumors. Biomolecules 2024; 15:21. [PMID: 39858416 PMCID: PMC11761220 DOI: 10.3390/biom15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research. This review also discusses the importance of combining spatial transcriptomics with single-cell RNA sequencing (scRNA-seq), artificial intelligence, and machine learning in digestive system cancer research.
Collapse
Affiliation(s)
- Bowen Huang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| | - Yingjia Chen
- Health Science Center, Peking University, Beijing 100191, China
| | - Shuqiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| |
Collapse
|
10
|
Feng C, Wang Y, Song W, Liu T, Mo H, Liu H, Wu S, Qin Z, Wang Z, Tao Y, He L, Tang S, Xie Y, Wang Q, Li T. Spatially-resolved analyses of muscle invasive bladder cancer microenvironment unveil a distinct fibroblast cluster associated with prognosis. Front Immunol 2024; 15:1522582. [PMID: 39759522 PMCID: PMC11695344 DOI: 10.3389/fimmu.2024.1522582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance. Methods In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples. We focused on three primary parameters: tumor (T), leading-edge (L), and nontumor (N). Cell gating was performed using the Cytobank platform. We calculated the Euclidean distances between cells to determine cellular interactions and performed single-cell RNA sequencing (scRNA-seq) to explore the molecular characteristics and mechanisms underlying specific fibroblast (FB) clusters. scRNA-seq combined with spatial transcriptomics (ST) facilitated the identification of ligand-receptor (L-R) pairs that mediate interactions between specific FB clusters and endothelial cells. Machine learning algorithms were used to construct a prognostic gene signature. Results The microenvironments in the N, L, and T regions of MIBC exhibited spatial heterogeneity and regional diversity in their components. A distinct FB cluster located in the L region-identified as S3-is strongly associated with poor prognosis. IMC analyses demonstrated a close spatial association between S3 and endothelial cells, with S3-positive tumors exhibiting increased blood vessel density and altered vascular morphology. The expression of vascular endothelial growth factor receptor and active vascular sprouting were significant in S3-positive tumors. scRNA-seq and ST analyses indicated that the genes upregulated in S3 were associated with angiogenesis. NOTCH1-JAG2 signaling pathway was identified as a significant L-R pair specific to S3 and endothelial cell interactions. Further analysis indicated that YAP1 was a potential regulator of S3. Machine learning algorithms and Gene Set Variation Analysis were used to establish an S3-related gene signature that was associated with the poor prognosis of tumors including MIBC, mesothelioma, glioblastoma multiforme, lower-grade glioma, stomach adenocarcinoma, uveal melanoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, and lung squamous cell carcinoma. Conclusions We assessed the spatial landscape of the MIBC microenvironment and revealed a specific FB cluster with prognostic potential. These findings offer novel insights into the spatial heterogeneity of the MIBC microenvironment and highlight its clinical significance.
Collapse
Affiliation(s)
- Chao Feng
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaobang Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wuyue Song
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Liu
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Mo
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Liu
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shulin Wu
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zezu Qin
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxing Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Liangyu He
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Tianyu Li
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Long S, Li M, Chen J, Zhong L, Abudulimu A, Zhou L, Liu W, Pan D, Dai G, Fu K, Chen X, Pei Y, Li W. Spatial patterns and MRI-based radiomic prediction of high peritumoral tertiary lymphoid structure density in hepatocellular carcinoma: a multicenter study. J Immunother Cancer 2024; 12:e009879. [PMID: 39675785 DOI: 10.1136/jitc-2024-009879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with cancer prognosis and therapeutic response. However, the immunological pattern of a high peritumoral TLS (pTLS) density and its clinical potential in hepatocellular carcinoma (HCC) remain poor. This study aimed to elucidate biological differences related to pTLS density and develop a radiomic classifier for predicting pTLS density in HCC, offering new insights for clinical diagnosis and treatment. METHODS Spatial transcriptomics (n=4) and RNA sequencing data (n=952) were used to identify critical regulators of pTLS density and evaluate their prognostic significance in HCC. Baseline MRI images from 660 patients with HCC who had undergone surgery treatment between October 2015 and January 2023 were retrospectively recruited for model development and validation. This included training (n=307) and temporal validation (n=76) cohorts from Xiangya Hospital, and external validation cohorts from three independent hospitals (n=277). Radiomic features were extracted from intratumoral and peritumoral regions of interest and analyzed using machine learning algorithms to develop a predictive classifier. The classifier's performance was evaluated using the area under the curve (AUC), with prognostic and predictive value assessed across four independent cohorts and in a dual-center outcome cohort of 41 patients who received immunotherapy. RESULTS Patients with HCC and a high pTLS density experienced prolonged median overall survival (p<0.05) and favorable immunotherapy response (p=0.03). Moreover, immune infiltration by mature B cells was observed in the high pTLS density region. Spatial pseudotime analysis and immunohistochemistry staining revealed that expansion of pTLS in HCC was associated with elevated CXCL9 and CXCL10 co-expression. We developed an optimal radiomic-based classifier with excellent discrimination for predicting pTLS density, achieving an AUC of 0.91 (95% CI 0.87, 0.94) in the external validation cohort. This classifier also exhibited promising stratification ability in terms of overall survival (p<0.01), relapse-free survival (p<0.05), and immunotherapy response (p<0.05). CONCLUSION We identified key regulators of pTLS density in patients with HCC and proposed a non-invasive radiomic classifier capable of assisting in stratification for prognosis and treatment.
Collapse
Affiliation(s)
- Shichao Long
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Mengsi Li
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Linhui Zhong
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Aerzuguli Abudulimu
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lan Zhou
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenguang Liu
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Deng Pan
- Department of Nuclear Medicine, Hainan Cancer Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ganmian Dai
- Department of Radiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kai Fu
- Institute of Molecular Precision Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiong Chen
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yigang Pei
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenzheng Li
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024; 42:2064-2081.e19. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Kang Q, Yin X, Wu Z, Zheng A, Feng L, Ma X, Li L. Integrated Single-Cell and Spatial Transcriptome Reveal Metabolic Gene SLC16A3 as a Key Regulator of Immune Suppression in Hepatocellular Carcinoma. J Cell Mol Med 2024; 28:e70272. [PMID: 39656344 PMCID: PMC11629820 DOI: 10.1111/jcmm.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers, usually diagnosed at an advanced stage. Metabolic reprogramming plays a significant role in HCC progression, probably related to immune evasion, yet the key gene is unclear. In this study, six metabolism-related genes with prognostic implications were screened. Correlation analysis between the key genes and immune cell subtypes was conducted, and a prominent gene strongly associated with immunosuppression, SLC16A3, was identified. Overexpression of SLC16A3 is associated with the loss of T-cell function and might lead to the upregulation of several immunosuppressive proteins. Gene function enrichment analysis showed genes correlated with SLC16A3 primarily involved in cell adhesion. Single-cell analysis showed that the SLC16A3 gene was mainly expressed in macrophages, especially some tumour-promoting macrophages. Further analysis of spatial transcriptome data indicated that SLC16A3 was enriched at the tumour invasion front. The mIHC revealed that patients with high SLC16A3 expression exhibited significantly reduced infiltration of GZMB+ cells. And SLC16A3 inhibitors significantly suppressed the proliferation of HCC, while simultaneously enhancing T-cell cytotoxicity and reducing exhaustion. These results reveal the phenomenon of immune escape mediated by metabolic reprogramming and suggest that SLC16A3 may serve as a novel target for intervention.
Collapse
Affiliation(s)
- Qianlong Kang
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Aiping Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lusi Feng
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Li Li
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Huo Y, Wang J, Liu C, Wang J, Wang C, Guo W, Yuan Z, Guo T, Gu J, Li X. CancerSRT: a spatially resolved transcriptomics database for human cancers. J Genet Genomics 2024; 51:1505-1508. [PMID: 39277030 DOI: 10.1016/j.jgg.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Yuying Huo
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiakang Wang
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chengcheng Liu
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jinxia Wang
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chen Wang
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Tiantian Guo
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
15
|
Jiang L, Xu QY, Zhou YC, Xu J, Fan JG. Spatial Transcriptomics Reveals the Transcriptomic Signatures in a Mouse Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2341-2355. [PMID: 39222909 DOI: 10.1016/j.ajpath.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is considered the progressive form of metabolic dysfunction-associated steatotic liver disease, which is the leading cause of chronic liver disease in children. However, the pathogenesis of pediatric MASH remains poorly understood because of the lack of animal models. In this study, a mouse model of pediatric MASH was developed and its hepatic transcriptomic profile was characterized using spatial transcriptomics technology. C57BL/6J mice were fed a Western diet (WD) along with weekly injections of carbon tetrachloride (CCl4) from the age of 3 weeks and lasting up to 8 weeks. After 5 weeks of feeding, WD + CCl4-treated mice showed significant liver injury without the development of insulin resistance. Histologically, WD + CCl4 induced key features of type 2 MASH, the most common type observed in children, characterized by liver steatosis, portal inflammation, and portal fibrosis. Spatial transcriptomics analysis of liver tissues indicated that cluster 0 in the mouse from the WD + CCl4 group was enriched in pathways associated with lipid metabolism. Further investigation revealed that cytochrome p450 2E1 was the top marker gene of cluster 0, and its expression was increased in the periportal area of mice from the WD + CCl4 group. These findings suggest that this mouse model of pediatric MASH mirrors the histologic features of human MASH, and the up-regulation of cytochrome p450 2E1 may be linked to the disease pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Qing-Yang Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Lehrich BM, Tao J, Liu S, Hirsch TZ, Yasaka TM, Cao C, Delgado ER, Guan X, Lu S, Pan L, Liu Y, Singh S, Poddar M, Bell A, Singhi AD, Zucman-Rossi J, Wang Y, Monga SP. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep 2024; 6:101186. [PMID: 39583094 PMCID: PMC11582745 DOI: 10.1016/j.jhepr.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Patients with β-catenin (encoded by CTNNB1)-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict CTNNB1-mutational status in patients with HCC for future application in personalized medicine treatment regimens. Methods Co-expression of mutant-Nrf2 and hMet ± mutant-β-catenin in murine livers in mice led to HCC development. The MBGS was derived using bulk RNA-seq and intersectional transcriptomic analysis of β-catenin-mutated and non-mutated HCC models. Integrated RNA/whole-exome-sequencing and spatial transcriptomic data from multiple cohorts of patients with HCC was assessed to address the ability of MBGS to detect CTNNB1 mutation, the tumor immune microenvironment, and/or predict therapeutic responses. Results Bulk RNA-seq comparing HCC specimens in mutant β-catenin-Nrf2, β-catenin-Met and β-catenin-Nrf2-Met to Nrf2-Met HCC model yielded 95 common upregulated genes. In The Cancer Genome Atlas (TCGA)-LIHC dataset, differential gene expression analysis with false discovery rate (FDR) = 0.05 and log2(fold change) >1.5 on the 95 common genes comparing CTNNB1-mutated vs. wild-type patients narrowed the gene panel to a 13-gene MBGS. MBGS predicted CTNNB1-mutations in TCGA (n = 374) and French (n = 398) patient cohorts with AUCs of 0.90 and 0.94, respectively. Additionally, a higher MBGS expression score was associated with lack of significant improvement in overall survival or progression-free survival in the atezolizumab-bevacizumab arm vs. the sorafenib arm in the IMbrave150 cohort. MBGS performed comparable or superior to other CTNNB1-mutant classifiers. MBGS overlapped with Hoshida S3, Boyault G5/G6, and Chiang CTNNB1 subclass tumors in TCGA and in HCC spatial transcriptomic datasets visually depicting these tumors to be situated in an immune excluded tumor microenvironment. Conclusions MBGS will aid in patient stratification to guide precision medicine therapeutics for CTNNB1-mutated HCC subclass as a companion diagnostic, as anti-β-catenin therapies become available. Impact and implications As precision medicine for liver cancer treatment becomes a reality, diagnostic tools are needed to help classify patients into groups for the best treatment choices. We have developed a molecular signature that could serve as a companion diagnostic and uses bulk or spatial transcriptomic data to identify a unique subclass of liver tumors. This subgroup of liver cancer patients derive limited benefit from the current standard of care and are expected to benefit from specialized directed therapies that are on the horizon.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan R. Delgado
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Shan Lu
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Long Pan
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Ma D, Wei P, Liu H, Hao J, Chen Z, Chu Y, Li Z, Shi W, Yuan Z, Cheng Q, Gao J, Zhu J, Li Z. Multi-omics-driven discovery of invasive patterns and treatment strategies in CA19-9 positive intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:1031. [PMID: 39548460 PMCID: PMC11568536 DOI: 10.1186/s12967-024-05854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with a poor prognosis, predominantly CA19-9 positive. High CA19-9 levels correlate with increased aggressiveness and worse outcomes. This study employs multi-omics analysis to reveal molecular features and identify therapeutic targets of CA19-9 positive ICC, aiming to support individualized treatment. METHODS Data from seven clinical cohorts, two whole-exome sequencing cohorts, six RNA sequencing/microarray cohorts, one proteomic cohort, 20 single-cell RNA sequencing samples, and one spatial transcriptome sample were analyzed. Key findings were validated on tissue microarrays from 52 ICC samples. RESULTS CA19-9 positive ICC exhibited poorer OS (median 24.1 v.s. 51.5 months) and RFS (median 11.7 v.s. 28.2 months) compared to negative group (all P < 0.05). Genomic analysis revealed a higher KRAS mutation frequency in the positive group and a greater prevalence of IDH1/2 mutations in the negative group (all P < 0.05). Transcriptomic analysis indicated upregulated glycolysis pathways in CA19-9 positive ICC. Single-cell analysis identified specific glycolysis-related cell subclusters associated with poor prognosis, including Epi_SLC2A1, CAF_VEGFA, and Mph_SPP1. Higher hypoxia in the CA19-9 positive group led to metabolic reprogramming and promoted these cells' formation. These cells formed interactive communities promoting epithelial-mesenchymal transition (EMT) and angiogenesis. Drug sensitivity analysis identified six potential therapeutic drugs. CONCLUSIONS This study systematically elucidated the clinical, genomic, transcriptomic, and immune features of CA19-9 positive ICC. It reveals glycolysis-associated cellular communities and their cancer-promoting mechanisms, enhancing our understanding of ICC and laying the groundwork for individualized therapeutic strategies.
Collapse
Affiliation(s)
- Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Yingming Chu
- Peking University First Hospital, Beijing, 100191, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Wenzai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China
| | - Zhigao Yuan
- Department of General Surgery, Civil Aviation General Hospital, Beijing, 100123, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
18
|
Ye J, Lin Y, Liao Z, Gao X, Lu C, Lu L, Huang J, Huang X, Huang S, Yu H, Bai T, Chen J, Wang X, Xie M, Luo M, Zhang J, Wu F, Wu G, Ma L, Xiang B, Li L, Li Y, Luo X, Liang R. Single cell-spatial transcriptomics and bulk multi-omics analysis of heterogeneity and ecosystems in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:262. [PMID: 39548284 PMCID: PMC11568154 DOI: 10.1038/s41698-024-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
This study profiled global single cell-spatial-bulk transcriptome landscapes of hepatocellular carcinoma (HCC) ecosystem from six HCC cases and a non-carcinoma liver control donor. We discovered that intratumoral heterogeneity mainly derived from HCC cells diversity and pervaded the genome-transcriptome-proteome-metabolome network. HCC cells are the core driving force of taming tumor-associated macrophages (TAMs) with pro-tumorigenic phenotypes for favor its dominant growth. Remarkably, M1-types TAMs had been characterized by disturbance of metabolism, poor antigen-presentation and immune-killing abilities. Besides, we found simultaneous cirrhotic and HCC lesions in an individual patient shared common origin and displayed parallel clone evolution via driving disparate immune reprograms for better environmental adaptation. Moreover, endothelial cells exhibited phenotypically conserved but executed differential functions in a space-dependent manner. Further, the spatiotemporal traits of rapid recurrence niche genes were identified and validated by immunohistochemistry. Our data unravels the great significance of HCC cells in shaping vibrant tumor ecosystems corresponding to clinical scenarios.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiling Liao
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyan Zhang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China.
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
19
|
Pan Y, Fei L, Wang S, Chen H, Jiang C, Li H, Wang C, Yang Y, Zhang Q, Chen Y. Integrated analysis of single-cell, spatial and bulk RNA-sequencing identifies a cell-death signature for predicting the outcomes of head and neck cancer. Front Immunol 2024; 15:1487966. [PMID: 39575251 PMCID: PMC11578999 DOI: 10.3389/fimmu.2024.1487966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Background Cell death plays an essential role in carcinogenesis, but its function in the recurrence and postoperative prognosis of head and neck cancer (HNC), which ranks as the 7th most common malignancy globally, remains unclear. Methods Data from five main subtypes of HNC related single-cell RNA sequencing (scRNA-seq) were recruited to establish a single-cell atlas, and the distribution of cell death models (CDMs) across different tissues as well as cell subtypes were analyzed. Bulk RNA-seq from the Cancer Genome Atlas Program (TCGA) dataset was subjected to a machine learning-based integrative procedure for constructing a consensus cell death-related signature risk score (CDRscore) model and validated by external data. The biofunctions including different expression analysis, immune cell infiltration, genomic mutations, enrichment analysis as well as cellchat analysis were compared between the high- and low- risk score groups categorized by this CDRscore model. Finally, samples from laryngeal squamous cell cancer (LSCC) were conducted by spatial transcriptomics (ST) to further validate the results of CDRscore model. Results T cells from HNC patients manifested the highest levels of cell death while HPV infection attenuates malignant cell death based on single-cell atlas. CDMs are positively correlated with the tumor-cell stemness, immune-related score and T cells are infiltrated. A CDRscore model was established based on the transcription of ten cell death prognostic genes (MRPL10, DDX19A, NDFIP1, PCMT1, HPRT1, SLC2A3, EFNB2, HK1, BTG3 and MAP2K7). It functions as an independent prognostic factor for overall survival in HNC and displays stable and powerful performance validated by GSE41613 and GSE65858 datasets. Patients in high CDRscore manifested worse overall survival, more active of epithelial mesenchymal transition, TGF-β-related pathways and hypoxia, higher transcription of T cell exhausted markers, and stronger TP53 mutation. ST from LSCC showed that spots with high-risk scores were colocalized with TGF-β and the proliferating malignant cells, additionally, the risk scores have a negative correlation with TCR signaling but positive association with LAG3 transcription. Conclusion The CDRscore model could be utilized as a powerful prognostic indicator for HNC.
Collapse
Affiliation(s)
- Yue Pan
- Institute of Immunology, People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Shihua Wang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hua Chen
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Changqing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hong Li
- Chongqing Renpin Otolaryngology Head and Neck Surgery Hospital, Chongqing, China
| | - Changsong Wang
- Department of Pathology, People’s Liberation Army Joint Logistic Support Force 989 Hospital, Luoyang, Henan, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Yongwen Chen
- Institute of Immunology, People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Ma Y, Yi C, Cai N, Chen J. Integration of single-cell and spatial transcriptome sequencing identifies CDKN2A as a senescent biomarker in endothelial cells implicating hepatocellular carcinoma malignancy. J Cancer Res Clin Oncol 2024; 150:487. [PMID: 39503880 PMCID: PMC11541268 DOI: 10.1007/s00432-024-06017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/25/2024] [Indexed: 11/09/2024]
Abstract
PURPOSE Highly complex tumor microenvironment makes hepatocellular carcinoma (HCC) as one of the most malignant tumors worldwide. The role of cellular senescence in HCC has been gradually recognized. The present study aimed to comprehensively elucidate the senescence-related features of HCC in single-cell and spatial dimension. METHODS Single-cell RNA sequencing (scRNA-Seq) data was used to clarify the heterogeneity of senescence-related genes (SRGs) among multiple cell types within HCC. Spatial transcriptome RNA sequencing (stRNA-Seq) data was used for depicting SRGs features in spatial dimension. A prognostic model based on SRGs was constructed by using of bulk sequencing (bulk-Seq) data of HCC. The cell-cell interaction of senescent endothelial cells (ECs) in tumor microenvironment was analyzed. Then, the role of senescent ECs was verified through in vitro and in vivo experiments. RESULTS The level of senescence demonstrated substantial heterogeneity among different cell types within tumor microenvironment of HCC, where ECs exhibited the most prominent senescent phenotype. Senescent ECs activated specific regulatory pathways through communicating with other cell types, with a potential impact on tumor progression. Spatial analysis revealed senescent ECs mainly located in the core region of HCC. The interaction of senescent ECs and immune cells implicated their role in tumor progression and immunotherapeutic response. In addition, CDKN2A was identified as an independent risk factor for HCC prognosis by constructing a prognostic model. Patients with high risk displayed an even worse outcome. The experimental verification indicated senescence of ECs determined by CDKN2A exhibited a secretory phenotype. Furthermore, senescent ECs with CDKN2A overexpression promote the proliferation and migration of HCC. CONCLUSION The present study recognizes the critical effect of senescent ECs defined by CDKN2A in the promotion of tumor progression, which sheds new light on the investigation of ECs senescence in HCC.
Collapse
Affiliation(s)
- Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, P.R. China.
| |
Collapse
|
21
|
Abusaliya A, Kim HH, Vetrivel P, Bhosale PB, Jeong SH, Park MY, Lee SJ, Kim GS. Transcriptome analysis revealed the genes and major pathways involved in prunetrin treated hepatocellular carcinoma cells. Front Pharmacol 2024; 15:1400186. [PMID: 39555097 PMCID: PMC11563786 DOI: 10.3389/fphar.2024.1400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Liver cancer represents a complex and severe ailment that poses tough challenges to global healthcare. Transcriptome sequencing plays a crucial role in enhancing our understanding of cancer biology and accelerating the development of more effective methods for cancer diagnosis and treatment. In the course of our current investigation, we identified a total of 1,149 differentially expressed genes (DEGs), encompassing 499 upregulated and 650 downregulated genes, subsequent to prunetrin (PUR) treatment. Our methodology encompassed gene and pathway enrichment analysis, functional annotation, KEGG pathway assessments, and protein-protein interaction (PPI) analysis of the DEGs. The preeminent genes within the DEGs were found to be associated with apoptotic processes, cell cycle regulation, the PI3k/Akt pathway, the MAPK pathway, and the mTOR pathway. Furthermore, key apoptotic-related genes exhibited close interconnections and cluster analysis found three interacting hub genes namely, TP53, TGFB1 and CASP8. Validation of these genes was achieved through GEPIA and western blotting. Collectively, our findings provide insights into the functional landscape of liver cancer-related genes, shedding light on the molecular mechanisms driving disease progression and highlighting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Preethi Vetrivel
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si Joon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
22
|
Wang S, Greenbaum J, Qiu C, Swerdlow RH, Haeri M, Gong Y, Shen H, Xiao H, Deng H. Gene interactions analysis of brain spatial transcriptome for Alzheimer's disease. Genes Dis 2024; 11:101337. [PMID: 39281834 PMCID: PMC11402150 DOI: 10.1016/j.gendis.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 09/18/2024] Open
Abstract
Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-β accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-β accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-β accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.
Collapse
Affiliation(s)
- Shengran Wang
- Reproductive Medicine Center, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Russell H Swerdlow
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mohammad Haeri
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Cao J, Zheng Z, Sun D, Chen X, Cheng R, Lv T, An Y, Zheng J, Song J, Wu L, Yang C. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat Biotechnol 2024; 42:1735-1746. [PMID: 38228777 DOI: 10.1038/s41587-023-02086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Spatial transcriptomics technologies with high resolution often lack high sensitivity in mRNA detection. Here we report a dendrimeric DNA coordinate barcoding design for spatial RNA sequencing (Decoder-seq), which offers both high sensitivity and high resolution. Decoder-seq combines dendrimeric nanosubstrates with microfluidic coordinate barcoding to generate spatial arrays with a DNA density approximately ten times higher than previously reported methods while maintaining flexibility in resolution. We show that the high RNA capture efficiency of Decoder-seq improved the detection of lowly expressed olfactory receptor (Olfr) genes in mouse olfactory bulbs and contributed to the discovery of a unique layer enrichment pattern for two Olfr genes. The near-cellular resolution provided by Decoder-seq has enabled the construction of a spatial single-cell atlas of the mouse hippocampus, revealing dendrite-enriched mRNAs in neurons. When applying Decoder-seq to human renal cell carcinomas, we dissected the heterogeneous tumor microenvironment across different cancer subtypes and identified spatial gradient-expressed genes related to epithelial-mesenchymal transition with the potential to predict tumor prognosis and progression.
Collapse
Affiliation(s)
- Jiao Cao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianpeng Lv
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
24
|
Marsh-Wakefield F, Santhakumar C, Ferguson AL, Ashhurst TM, Shin JS, Guan FH, Shields NJ, Platt BJ, Putri GH, Gupta R, Crawford M, Pulitano C, Sandroussi C, Laurence JM, Liu K, McCaughan GW, Palendira U. Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods. Hepatol Commun 2024; 8:e0540. [PMID: 39761010 PMCID: PMC11495755 DOI: 10.1097/hc9.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors. METHODS A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells. We mapped the immune landscape of tumor, invasive margin, and adjacent nontumor regions across 16 resected tumors comprising 144 regions of interest. X-shift clustering and manual gating were used to characterize cell subsets, and Spectre quantified the spatial environment to identify cellular neighborhoods. Ligand-receptor communication was quantified on 2 single-cell RNA-sequencing data sets and 1 spatial transcriptomic data set. RESULTS We show immune cell densities remain largely consistent across these 3 regions, except for subsets of monocyte-derived macrophages, which are enriched within the tumors. Mapping cellular interactions across these regions in an unbiased manner identifies immune neighborhoods comprised of tissue-resident T cells, dendritic cells, and various macrophage populations around perivascular spaces. Importantly, we identify multiple immune cells within these neighborhoods interacting with VEGFA+ perivascular macrophages. VEGFA was further identified as a ligand for communication between perivascular macrophages and CD34+ endothelial cells. CONCLUSIONS Immune cell neighborhood interactions, but not cell densities, differ between intratumoral and adjacent nontumor regions in HCC. Unique intratumoral immune neighborhoods around the perivascular space point to an altered landscape within tumors. Enrichment of VEGFA+ perivascular macrophages within these tumors could play a key role in angiogenesis and vascular permeability.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cositha Santhakumar
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Angela L. Ferguson
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas M. Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Cytometry Core Research Facility, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joo-Shik Shin
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Fiona H.X. Guan
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nicholas J. Shields
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry J. Platt
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Givanna H. Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruta Gupta
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Jerome M. Laurence
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Ken Liu
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Geoffrey W. McCaughan
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Umaimainthan Palendira
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
25
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Gong D, Arbesfeld-Qiu JM, Perrault E, Bae JW, Hwang WL. Spatial oncology: Translating contextual biology to the clinic. Cancer Cell 2024; 42:1653-1675. [PMID: 39366372 DOI: 10.1016/j.ccell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Microscopic examination of cells in their tissue context has been the driving force behind diagnostic histopathology over the past two centuries. Recently, the rise of advanced molecular biomarkers identified through single cell profiling has increased our understanding of cellular heterogeneity in cancer but have yet to significantly impact clinical care. Spatial technologies integrating molecular profiling with microenvironmental features are poised to bridge this translational gap by providing critical in situ context for understanding cellular interactions and organization. Here, we review how spatial tools have been used to study tumor ecosystems and their clinical applications. We detail findings in cell-cell interactions, microenvironment composition, and tissue remodeling for immune evasion and therapeutic resistance. Additionally, we highlight the emerging role of multi-omic spatial profiling for characterizing clinically relevant features including perineural invasion, tertiary lymphoid structures, and the tumor-stroma interface. Finally, we explore strategies for clinical integration and their augmentation of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Dennis Gong
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanna M Arbesfeld-Qiu
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ella Perrault
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jung Woo Bae
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William L Hwang
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Chen X, Wu P, Liu Z, Li T, Wu J, Zeng Z, Guo W, Xiong W. Tertiary lymphoid structures and their therapeutic implications in cancer. Cell Oncol (Dordr) 2024; 47:1579-1592. [PMID: 39133439 DOI: 10.1007/s13402-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/13/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates formed by the structured accumulation of immune cells such as B cells and T cells in non-lymphoid tissues induced by infection, inflammation, and tumors. They play a crucial role in the immune response, particularly in association with tumor development, where they primarily exert anti-tumor immune functions during tumorigenesis. Current research suggests that TLSs inhibit tumor growth by facilitating immune cell infiltration and are correlated with favorable prognosis in various solid tumors, serving as an indicator of immunotherapy effectiveness to some extent. Therefore, TLSs hold great promise as a valuable biomarker. Most importantly, immunotherapies aimed to prompting TLSs formation are anticipated to be potent adjuncts to current cancer treatment. This review focuses on the formation process of TLSs and their potential applications in cancer therapy.
Collapse
Affiliation(s)
- Xun Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Zhu Y, Zhang P, Huo X, Ling Y, Lv X, Lin S, Song H. Single-cell and spatial transcriptomics reveal apelin/APJ pathway's role in microvessel formation and tumour progression in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e70152. [PMID: 39434201 PMCID: PMC11493554 DOI: 10.1111/jcmm.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The apelin receptor (APJ) is a key player in tumour angiogenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of the apelin/APJ pathway in HCC using a multi-omics approach and identify potential therapeutic biomarkers. Differentially expressed genes related to the apelin/APJ axis were identified from bulk transcriptomics to reveal HCC-associated disparities. Single-cell and spatial transcriptomics were used to localize and analyse the function of these genes. Machine learning models were constructed to predict outcomes based on apelin/APJ expression, and experimental validation was conducted to explore the pathway's impact on HCC angiogenesis. Single cell analysis revealed an overexpression of APJ/Aplin in the endothelium. The stemness of endothelial cell (EC) with high apelin/APJ was enhanced, as well as the expression of TGFb, oxidative stresses and PI3K/AKT pathway genes. Spatial transcriptomics confirmed that EC populations with high APJ scores were enriched within the tumour. Machine learning models showed high prognostic accuracy. High APJ expression was linked to worse outcomes (p = 0.001), and AUC values were high (1 year, 3 year, 5 year) (0.95, 0.97, 0.98). Immune suppression and non-responsiveness of immune therapy were also seen in high-risk groups. The experimental validation showed that silencing apelin reduced angiogenesis (p < 0.05), endothelial proliferation, decreased expression of ANG2, KLF2, VEGFA and lower ERK1/2 phosphorylation. Apelin may serve as a potential therapeutic target in HCC, given its role in promoting tumour angiogenesis and poor patient outcomes.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Humans
- Apelin Receptors/metabolism
- Apelin Receptors/genetics
- Apelin/genetics
- Apelin/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Single-Cell Analysis
- Signal Transduction
- Microvessels/pathology
- Microvessels/metabolism
- Gene Expression Profiling
- Disease Progression
- Prognosis
- Cell Line, Tumor
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Male
Collapse
Affiliation(s)
- Yongfu Zhu
- The First Department of OncologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of Dr. Hu Guojun Specialist ClinicThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Pengcheng Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research DepartmentThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yi Ling
- The First Clinical Medical CollegeAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Xiang Lv
- Department of OncologyShanghai Traditional Chinese Medicine HospitalShanghaiChina
| | - Shengyou Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Hang Song
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| |
Collapse
|
29
|
Qiu X, Zhou T, Li S, Wu J, Tang J, Ma G, Yang S, Hu J, Wang K, Shen S, Wang H, Chen L. Spatial single-cell protein landscape reveals vimentin high macrophages as immune-suppressive in the microenvironment of hepatocellular carcinoma. NATURE CANCER 2024; 5:1557-1578. [PMID: 39327501 DOI: 10.1038/s43018-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
Tumor microenvironment heterogeneity in hepatocellular carcinoma (HCC) on a spatial single-cell resolution is unclear. Here, we conducted co-detection by indexing to profile the spatial heterogeneity of 401 HCC samples with 36 biomarkers. By parsing the spatial tumor ecosystem of liver cancer, we identified spatial patterns with distinct prognosis and genomic and molecular features, and unveiled the progressive role of vimentin (VIM)high macrophages. Integration analysis with eight independent cohorts demonstrated that the spatial co-occurrence of VIMhigh macrophages and regulatory T cells promotes tumor progression and favors immunotherapy. Functional studies further demonstrated that VIMhigh macrophages enhance the immune-suppressive activity of regulatory T cells by mechanistically increasing the secretion of interleukin-1β. Our data provide deep insights into the heterogeneity of tumor microenvironment architecture and unveil the critical role of VIMhigh macrophages during HCC progression, which holds potential for personalized cancer prevention and drug discovery and reinforces the need to resolve spatial-informed features for cancer treatment.
Collapse
Affiliation(s)
- Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Tao Zhou
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shuai Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guosheng Ma
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Hu
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyun Shen
- National Center for Liver Cancer, Shanghai, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| | - Lei Chen
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Liver Cancer, Shanghai, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| |
Collapse
|
30
|
Liang Y, Bu Q, You W, Zhang R, Xu Z, Gan X, Zhou J, Qiao L, Huang T, Lu L. Single-cell analysis reveals hypoxia-induced immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167276. [PMID: 38844114 DOI: 10.1016/j.bbadis.2024.167276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The role of hypoxia in the tumor microenvironment of intrahepatic cholangiocarcinoma (iCCA) remains unclear. Here, we generated a comprehensive atlas of the entire tumor microenvironment and delineated the multifaceted cell-cell interactions to decipher hypoxia-induced pro-tumor immune suppression. We discovered hypoxia is significantly associated with iCCA progression via the activation of HIF1A expression. Moreover, hypoxia-dependent PPARγ-mediated fatty acid oxidation in APOE+ TAMs promoted M2 macrophage polarization by activating the HIF1A-PPARG-CD36 axis. These polarized APOE+ TAMs recruited Treg cell infiltration via the CCL3-CCR5 pair to form an immunosuppressive microenvironment. APOE+ TAMs tended to co-localize spatially with Treg cells in the malignant tissue based on spatial transcriptome data and immunofluorescence analysis results. We identified tumor-reactive CXCL13+ CD8-PreTex with specific high expression of ENTPD1 and ITGAE, which acted as precursors of CD8-Tex and had higher cytotoxicity, lower exhaustion, and more vigorous proliferation. Consequently, CXCL13+ CD8-PreTex functioned as a positive regulator of antitumor immunity by expressing the pro-inflammatory cytokines IFNG and TNF, associated with a better survival outcome. Our study reveals the mechanisms involved in hypoxia-induced immunosuppression and suggests that targeting precursor-exhausted CXCL13+CD8+ T cells might provide a pratical immunotherapeutic approach.
Collapse
Affiliation(s)
- Yuan Liang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojie Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Liver Transplantation, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
31
|
Xie M, Lin X, Bao X, Liang Y, Deng H, Song J, Ma X, Zhang X, Yao J, Pan L, Xue X. Tertiary Lymphoid Structure in Tumor Microenvironment and Immunotherapy of Lung Cancer. Arch Bronconeumol 2024; 60 Suppl 2:S77-S85. [PMID: 39174437 DOI: 10.1016/j.arbres.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024]
Abstract
Immune checkpoint inhibitors have opened an era of lung cancer therapy. However, a notable disparity exists in the efficacy of immunotherapy among individual patients. The tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregation that appears under pathological conditions and is the primary site of action for anti-tumor immunity. It is commonly reported that the presence of TLS within the tumor microenvironment (TME) relates to a favorable clinical prognosis and an excellent response to immunotherapy in lung cancer patients. A thorough understanding of TLS and its dynamic changes in TME has become an attractive focus for optimizing immunotherapy strategies for lung cancer. In this review, we comprehensively generalize the composition, formation, mechanism, detection methods of TLS, and summarize the role of TLS in lung cancer immunotherapy. Finally, induction of TLS is also discussed, which may provide more effective therapeutic strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Hui Deng
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| |
Collapse
|
32
|
Lu C, Pankaj A, Raabe M, Nawrocki C, Liu A, Xu N, Patel BK, Emmett MJ, Coley AK, Ferrone CR, Deshpande V, Bhan I, Hoshida Y, Ting DT, Aryee MJ, Franses JW. HCC spatial transcriptomic profiling reveals significant and potentially targetable cancer-endothelial interactions. Hepatol Commun 2024; 8:e0533. [PMID: 39330965 PMCID: PMC11441860 DOI: 10.1097/hc9.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND HCC is a highly vascular tumor, and many effective drug regimens target the tumor blood vessels. Prior bulk HCC subtyping data used bulk transcriptomes, which contained a mixture of parenchymal and stromal contributions. METHODS We utilized computational deconvolution and cell-cell interaction analyses to cell type-specific (tumor-enriched and vessel-enriched) spatial transcriptomic data collected from 41 resected HCC tissue specimens. RESULTS We report that the prior Hoshida bulk transcriptional subtyping schema is driven largely by an endothelial fraction, show an alternative tumor-specific schema has potential prognostic value, and use spatially paired ligand-receptor analyses to identify known and novel (LGALS9 tumor-HAVCR2 vessel) signaling relationships that drive HCC biology in a subtype-specific and potentially targetable manner. CONCLUSIONS Our study leverages spatial gene expression profiling technologies to dissect HCC heterogeneity and identify heterogeneous signaling relationships between cancer cells and their endothelial cells. Future validation and expansion of these findings may validate novel cancer-endothelial cell interactions and related drug targets.
Collapse
Affiliation(s)
- Chenyue Lu
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Amaya Pankaj
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Raabe
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cole Nawrocki
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann Liu
- Division of Biology and Biological Engineering, Department of Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nova Xu
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bidish K Patel
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew J Emmett
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Avril K Coley
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Hospital, Los Angeles, California, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Irun Bhan
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Center, Boston, Massachusetts, USA
| | - Yujin Hoshida
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - David T Ting
- Department of Medicine, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin J Aryee
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph W Franses
- Department of Medicine, Section of Hematology-Oncology, Comprehensive Cancer Center, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
34
|
Bareham B, Dibble M, Parsons M. Defining and modeling dynamic spatial heterogeneity within tumor microenvironments. Curr Opin Cell Biol 2024; 90:102422. [PMID: 39216233 DOI: 10.1016/j.ceb.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Many solid tumors exhibit significant genetic, cellular, and biophysical heterogeneity which dynamically evolves during disease progression and after treatment. This constant flux in cell composition, phenotype, spatial relationships, and tissue properties poses significant challenges in accurately diagnosing and treating patients. Much of the complexity lies in unraveling the molecular changes in different tumor compartments, how they influence one another in space and time and where vulnerabilities exist that might be appropriate to target therapeutically. Recent advances in spatial profiling tools and technologies are enabling new insight into the underlying biology of complex tumors, creating a greater understanding of the intricate relationship between cell types, states, and the microenvironment. Here we reflect on some recent discoveries in this area, where the key knowledge and technology gaps lie, and the advancements in spatial measurements and in vitro models for the study of spatial intratumoral heterogeneity.
Collapse
Affiliation(s)
- Bethany Bareham
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Matthew Dibble
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
35
|
Zhang Y, Yu B, Ming W, Zhou X, Wang J, Chen D. SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data. SCIENCE ADVANCES 2024; 10:eadp4942. [PMID: 39331720 PMCID: PMC11430467 DOI: 10.1126/sciadv.adp4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
Tumor tissues exhibit a complex spatial architecture within the tumor microenvironment (TME). Spatially resolved transcriptomics (SRT) is promising for unveiling the spatial structures of the TME at both cellular and molecular levels, but identifying pathology-relevant spatial domains remains challenging. Here, we introduce SpaTopic, a statistical learning framework that harmonizes spot clustering and cell-type deconvolution by integrating single-cell transcriptomics and SRT data. Through topic modeling, SpaTopic stratifies the TME into spatial domains with coherent cellular organization, facilitating refined annotation of the spatial architecture with improved performance. We assess SpaTopic across various tumor types and show accurate prediction of tertiary lymphoid structures and tumor boundaries. Moreover, marker genes derived from SpaTopic are transferrable and can be applied to mark spatial domains in other datasets. In addition, SpaTopic enables quantitative comparison and functional characterization of spatial domains across SRT datasets. Overall, SpaTopic presents an innovative analytical framework for exploring, comparing, and interpreting tumor SRT data.
Collapse
Affiliation(s)
- Yuelei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bianjiong Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenxuan Ming
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaolong Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dijun Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, Zhang Y, Shen Z. Spatial transcriptomics reveals tumor-derived SPP1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med 2024; 22:840. [PMID: 39267037 PMCID: PMC11391636 DOI: 10.1186/s12967-024-05613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
37
|
Zhang L, Tao L, Tian D, Li D. Editorial: Immunometabolism and tumor microenvironment in hepatocellular carcinoma. Front Oncol 2024; 14:1483397. [PMID: 39319056 PMCID: PMC11419957 DOI: 10.3389/fonc.2024.1483397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Affiliation(s)
- Luyun Zhang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Key Medical Laboratory for Molecular Immunology of Digestive Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lianyuan Tao
- Department of Hepatobiliary Pancreatic Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Provincial Key Medical Laboratory for Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongxiao Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Henan Key Medical Laboratory for Molecular Immunology of Digestive Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Wang J, Liang Y, Xue A, Xiao J, Zhao X, Cao S, Li P, Dong J, Li Y, Xu Z, Yang L. Intratumoral CXCL13 + CD160 + CD8 + T cells promote the formation of tertiary lymphoid structures to enhance the efficacy of immunotherapy in advanced gastric cancer. J Immunother Cancer 2024; 12:e009603. [PMID: 39244216 PMCID: PMC11381742 DOI: 10.1136/jitc-2024-009603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Stage IV gastric cancer is a highly heterogeneous and lethal tumor with few therapeutic strategies. The combination of programmed cell death protein 1 inhibitors and chemotherapy is currently the standard frontline treatment regimen for advanced gastric cancer. Nevertheless, it remains a great challenge to screen the beneficiaries of immunochemotherapy and expand indications for this treatment regimen. METHODS We conducted a pathological assessment to ascertain the importance of tertiary lymphoid structures based on the tissue samples collected from patients with stage IV gastric cancer (n=15) both prior to and following immunochemotherapy treatment. Additionally, we used spatial (n=10) and single-cell transcriptional analysis (n=97) to investigate the key regulators of tertiary lymphoid structures (TLSs). Multiplex immunofluorescence and image analysis (n=34) were performed to explore the association between tumor-infiltrating CXCL13+ CD160+ CD8+ T cells and TLSs. The relationship between CXCL13+ CD160+ CD8+ T cells and the responsiveness to immunotherapy was also evaluated by multiplex immunofluorescence and image analysis approaches (n=15). Furthermore, we explored the intrinsic characteristics of CXCL13+ CD160+ CD8+ T cells through various experimental techniques, including quantitative reverse transcription-PCR, western blot, and flow cytometry. RESULTS We found that responders exhibited higher levels of TLSs and CXCL13+ CD160+ CD8+ T cells in biopsy tissues prior to immunochemotherapy compared with non-responders. Following conversion therapy, responders also had a higher percentage of mature TLSs and a higher number of CXCL13+ CD160+ CD8+ T cells in surgical resections. Moreover, we discovered that vitamin B6 in CD160+ CD8+ T cells could reduce the ubiquitination modification of HIF-1α by MDM2, thereby attenuating the degradation of HIF-1α. Consequently, this led to the transcriptional upregulation of CXCL13 expression, facilitating the recruitment of CXCR5+ B cells and the formation of TLSs. CONCLUSION The number and maturity of TLSs, along with the extent of CXCL13+ CD160+ CD8+ T-cell infiltration, might function as potential indicators for assessing the effectiveness of immunotherapy in treating gastric malignancies. Furthermore, our research suggests that vitamin B6 could enhance the secretion of CXCL13 by CD160+ CD8+ T cells by reducing the degradation of HIF-1α. Additionally, we demonstrate that vitamin B6 supplementation or targeting pyridoxal kinase could substantially improve the efficacy of immunotherapies for gastric cancer.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Liang
- Southeast University, Nanjing, Jiangsu, China
| | - Ao Xue
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Zhao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuqing Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiacheng Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Lee Y, Hwang Y, Kim M, Jeon H, Joo S, Fang S, Kim JW. DGAT2 Plays a Crucial Role to Control ESRRA-PROX1 Transcriptional Network to Maintain Hepatic Mitochondrial Sustainability. Diabetes Metab J 2024; 48:901-914. [PMID: 38644620 PMCID: PMC11449812 DOI: 10.4093/dmj.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 04/23/2024] Open
Abstract
BACKGRUOUND Diacylglycerol O-acyltransferase 2 (DGAT2) synthesizes triacylglycerol (TG) from diacylglycerol; therefore, DGAT2 is considered as a therapeutic target for steatosis. However, the consequence of inhibiting DGAT2 is not fully investigated due to side effects including lethality and lipotoxicity. In this article, we observed the role of DGAT2 in hepatocarcinoma. METHODS The role of DGAT2 is analyzed via loss-of-function assay. DGAT2 knockdown (KD) and inhibitor treatment on HepG2 cell line was analyzed. Cumulative analysis of cell metabolism with bioinformatic data were assessed, and further compared with different cohorts of liver cancer patients and non-alcoholic fatty liver disease (NAFLD) patients to elucidate how DGAT2 is regulating cancer metabolism. RESULTS Mitochondrial function is suppressed in DGAT2 KD HepG2 cell along with the decreased lipid droplets. In the aspect of the cancer, DGAT2 KD upregulates cell proliferation. Analyzing transcriptome of NAFLD and hepatocellular carcinoma (HCC) patients highlights negatively correlating expression patterns of 73 lipid-associated genes including DGAT2. Cancer patients with the lower DGAT2 expression face lower survival rate. DGAT2 KD cell and patients' transcriptome show downregulation in estrogen- related receptor alpha (ESRRA) via integrated system for motif activity response analysis (ISMARA), with increased dimerization with corepressor prospero homeobox 1 (PROX1). CONCLUSION DGAT2 sustains the stability of mitochondria in hepatoma via suppressing ESRRA-PROX1 transcriptional network and hinders HCC from shifting towards glycolytic metabolism, which lowers cell proliferation.
Collapse
Affiliation(s)
- Yoseob Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeonuk Jeon
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seyeon Joo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Xu C, Su R, Lu Z, Song Y, Zhang X, Shu W, Yang Z, Zhuang R, Xu X, Wei X. Heterogeneity of hepatocellular carcinoma that responds differently to combination therapy with TACE and Sorafenib as determined by digital spatial gene expression profiling. Genes Genomics 2024; 46:1045-1058. [PMID: 39078588 DOI: 10.1007/s13258-024-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The combination of Sorafenib and transcatheter arterial chemoembolization (TACE) exhibits limited efficacy in the treatment of certain advanced hepatocellular carcinomas (HCC), and the molecular mechanisms underlying resistance to this combination remain unclear. OBJECTIVE This study aims to underscore the distinctive contribution of GeoMx DSP technology in elucidating the molecular intricacies of HCC resistance to the Sorafenib and TACE combination. METHODS Patients with advanced HCC during the waiting period before liver transplantation were classified into sensitive and resistant groups based on their response to Sorafenib and TACE combination therapy. Employing GeoMx DSP technology for comprehensive gene expression profiling, we identified pivotal molecular targets linked to resistance against combination therapy. RESULTS The investigation scrutinized intra-tumoral and inter-individual variances, unveiling a spectrum of crucial molecular targets, such as PLG, PLVAP, immunoglobulin genes, ORM1, and NR4A1, among others. Additionally, we explored signaling pathways associated with treatment responsiveness, including the PPAR signaling pathway. Notably, we emphasized the significance of the immune microenvironment characterized by heightened SPP1 expression in HCC resistance to combination therapy. In the resistant group, SPP1+ tumor-associated macrophage (TAM) infiltration was notably pronounced (p = 0.037), while T-cell depletion showed a mitigated presence (p = 0.013). CONCLUSION The study reveals intra- and inter-individual heterogeneity in HCC that is differentially responsive to the combination of Sorafenib and TACE, highlighting multiple key molecular targets associated with treatment resistance. The immune microenvironment is important, and in particular, SPP1+ TAM infiltration may play a key role. Meanwhile, the introduction of immunotherapy in patients resistant to combination therapy may lead to positive results.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaobing Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhe Yang
- Shulan (Hangzhou) Hospital, Hangzhou, 310000, China
| | - Runzhou Zhuang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
42
|
Jing SY, Liu D, Feng N, Dong H, Wang HQ, Yan X, Chen XF, Qu MC, Lin P, Yi B, Feng F, Chen L, Wang HY, Li H, He YF. Spatial multiomics reveals a subpopulation of fibroblasts associated with cancer stemness in human hepatocellular carcinoma. Genome Med 2024; 16:98. [PMID: 39138551 PMCID: PMC11320883 DOI: 10.1186/s13073-024-01367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the prominent cell type in the tumor microenvironment (TME), and CAF subsets have been identified in various tumors. However, how CAFs spatially coordinate other cell populations within the liver TME to promote cancer progression remains unclear. METHODS We combined multi-region proteomics (6 patients, 24 samples), 10X Genomics Visium spatial transcriptomics (11 patients, 25 samples), and multiplexed imaging (92 patients, 264 samples) technologies to decipher the expression heterogeneity, functional diversity, spatial distribution, colocalization, and interaction of fibroblasts. The newly identified CAF subpopulation was validated by cells isolated from 5 liver cancer patients and in vitro functional assays. RESULTS We identified a liver CAF subpopulation, marked by the expression of COL1A2, COL4A1, COL4A2, CTGF, and FSTL1, and named F5-CAF. F5-CAF is preferentially located within and around tumor nests and colocalizes with cancer cells with higher stemness in hepatocellular carcinoma (HCC). Multiplexed staining of 92 patients and the bulk transcriptome of 371 patients demonstrated that the abundance of F5-CAFs in HCC was associated with a worse prognosis. Further in vitro experiments showed that F5-CAFs isolated from liver cancer patients can promote the proliferation and stemness of HCC cells. CONCLUSIONS We identified a CAF subpopulation F5-CAF in liver cancer, which is associated with cancer stemness and unfavorable prognosis. Our results provide potential mechanisms by which the CAF subset in the TME promotes the development of liver cancer by supporting the survival of cancer stem cells.
Collapse
Affiliation(s)
- Si-Yu Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Dan Liu
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Na Feng
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, People's Republic of China
| | - He-Qi Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Xu-Feng Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Min-Cheng Qu
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Bin Yi
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China
| | - Lei Chen
- National Center for Liver Cancer and International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, 200438, People's Republic of China.
| | - Hong-Yang Wang
- National Center for Liver Cancer and International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education and Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, People's Republic of China.
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Fei He
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, 201800, People's Republic of China.
| |
Collapse
|
43
|
Long F, Zhong W, Zhao F, Xu Y, Hu X, Jia G, Huang L, Yi K, Wang N, Si H, Wang J, Wang B, Rong Y, Yuan Y, Yuan C, Wang F. DAB2 + macrophages support FAP + fibroblasts in shaping tumor barrier and inducing poor clinical outcomes in liver cancer. Theranostics 2024; 14:4822-4843. [PMID: 39239526 PMCID: PMC11373629 DOI: 10.7150/thno.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the key components of the immune barrier in liver cancer. Therefore, gaining a deeper understanding of the heterogeneity and intercellular communication of CAFs holds utmost importance in boosting immunotherapy effectiveness and improving clinical outcomes. Methods: A comprehensive analysis by combing single-cell, bulk, and spatial transcriptome profiling with multiplexed immunofluorescence was conducted to unravel the complexities of CAFs in liver cancer. Results: Through an integrated approach involving 235 liver cancer scRNA-seq samples encompassing over 1.2 million cells, we found that CAFs were particularly increased in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). FAP + fibroblasts were identified as the dominant subtype of CAFs, and which were mainly involved in extracellular matrix organization and angiogenesis. These CAFs were enriched in the tumor boundary of HCC, but diffusely scattered within ICC. The DAB2 + and SPP1 + tumor-associated macrophages (TAMs) reinforce the function of FAP + CAFs through signals such as TGF-β, PDGF, and ADM. Notably, the interaction between DAB2 + TAMs and FAP + CAFs promoted the formation of immune barrier and correlated with poorer patient survival, non-response to immunotherapy in HCC. High FAP and DAB2 immunohistochemical scores predicted shorter survival and higher serum AFP concentration in a local clinical cohort of 90 HCC patients. Furthermore, this communication pattern might be applicable to other solid malignancies as well. Conclusions: The interaction between DAB2 + TAMs and FAP + CAFs appears crucial in shaping the immune barrier. Strategies aimed at disrupting this communication or inhibiting the functions of FAP + CAFs could potentially enhance immunotherapy effectiveness and improve clinical outcomes.
Collapse
Affiliation(s)
- Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Faming Zhao
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huaqi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
44
|
Wei C, Ma Y, Wang M, Wang S, Yu W, Dong S, Deng W, Bie L, Zhang C, Shen W, Xia Q, Luo S, Li N. Tumor-associated macrophage clusters linked to immunotherapy in a pan-cancer census. NPJ Precis Oncol 2024; 8:176. [PMID: 39117688 PMCID: PMC11310399 DOI: 10.1038/s41698-024-00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Transcriptional heterogeneity of tumor-associated macrophages (TAMs) has been investigated in individual cancers, but the extent to which these states transcend tumor types and represent a general feature of cancer remains unclear. We performed pan-cancer single-cell RNA sequencing analysis across nine cancer types and identified distinct monocyte/TAM composition patterns. Using spatial analysis from clinical study tissues, we assessed TAM functions in shaping the tumor microenvironment (TME) and influencing immunotherapy. Two specific TAM clusters (pro-inflammatory and pro-tumor) and four TME subtypes showed distinct immunological features, genomic profiles, immunotherapy responses, and cancer prognosis. Pro-inflammatory TAMs resided in immune-enriched niches with exhausted CD8+ T cells, while pro-tumor TAMs were restricted to niches associated with a T-cell-excluded phenotype and hypoxia. We developed a machine learning model to predict immune checkpoint blockade response by integrating TAMs and clinical data. Our study comprehensively characterizes the common features of TAMs and highlights their interaction with the TME.
Collapse
Affiliation(s)
- Chen Wei
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yijie Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Mengyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Siyi Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenyue Yu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shuailei Dong
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenying Deng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Bie
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chi Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wei Shen
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Suxia Luo
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Ning Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
45
|
Huang H, Wu F, Yu Y, Xu B, Chen D, Huo Y, Li S. Multi-transcriptomics analysis of microvascular invasion-related malignant cells and development of a machine learning-based prognostic model in hepatocellular carcinoma. Front Immunol 2024; 15:1436131. [PMID: 39176099 PMCID: PMC11338809 DOI: 10.3389/fimmu.2024.1436131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Background Microvascular invasion (MVI) stands as a pivotal pathological hallmark of hepatocellular carcinoma (HCC), closely linked to unfavorable prognosis, early recurrence, and metastatic progression. However, the precise mechanistic underpinnings governing its onset and advancement remain elusive. Methods In this research, we downloaded bulk RNA-seq data from the TCGA and HCCDB repositories, single-cell RNA-seq data from the GEO database, and spatial transcriptomics data from the CNCB database. Leveraging the Scissor algorithm, we delineated prognosis-related cell subpopulations and discerned a distinct MVI-related malignant cell subtype. A comprehensive exploration of these malignant cell subpopulations was undertaken through pseudotime analysis and cell-cell communication scrutiny. Furthermore, we engineered a prognostic model grounded in MVI-related genes, employing 101 algorithm combinations integrated by 10 machine-learning algorithms on the TCGA training set. Rigorous evaluation ensued on internal testing sets and external validation sets, employing C-index, calibration curves, and decision curve analysis (DCA). Results Pseudotime analysis indicated that malignant cells, showing a positive correlation with MVI, were primarily concentrated in the early to middle stages of differentiation, correlating with an unfavorable prognosis. Importantly, these cells showed significant enrichment in the MYC pathway and were involved in extensive interactions with diverse cell types via the MIF signaling pathway. The association of malignant cells with the MVI phenotype was corroborated through validation in spatial transcriptomics data. The prognostic model we devised demonstrated exceptional sensitivity and specificity, surpassing the performance of most previously published models. Calibration curves and DCA underscored the clinical utility of this model. Conclusions Through integrated multi-transcriptomics analysis, we delineated MVI-related malignant cells and elucidated their biological functions. This study provided novel insights for managing HCC, with the constructed prognostic model offering valuable support for clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Gao B, Wang Y, Zhang X, Jiang H, Han F, Li C, Lu S. Identification and validation of inflammatory subtypes in intrahepatic cholangiocellular carcinoma. J Transl Med 2024; 22:730. [PMID: 39103879 DOI: 10.1186/s12967-024-05529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Inflammation plays a critical role in tumor development. Inflammatory cell infiltration and inflammatory mediator synthesis cause changes in the tumor microenvironment (TME) in several cancers, especially in intrahepatic cholangiocellular carcinoma (ICC). However, methods to ascertain the inflammatory state of patients using reliable biomarkers are still being explored. METHOD We retrieved the RNA sequencing and somatic mutation analyses results and the clinical characteristics of 244 patients with ICC from published studies. We performed consensus clustering to identify the molecular subtypes associated with inflammation. We compared the prognostic patterns, clinical characteristics, somatic mutation profiles, and immune cell infiltration patterns across inflammatory subtypes. We performed quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) to confirm gene expression. We performed logistic regression analyses to construct a nomogram predicting the inflammatory status of patients with ICC. RESULTS Our results confirmed that ICC can be categorized into an inflammation-high subtype (IHS) and an inflammation-low subtype (ILS). Patients from each group had distinct prognosis, clinical characteristics, and TME composition. Patients with ICC in the IHS group showed poorer prognosis owing to the immunosuppressive microenvironment and high frequency of KRAS and TP53 mutations. Cancer-associated fibroblast (CAF)-derived COLEC11 reduced myeloid inflammatory cell infiltration and attenuated inflammatory responses. The results of qRT-PCR and IHC experiments confirmed that COLEC11 expression levels were significantly reduced in tumor tissues compared to those in paracancerous tissues. Patients with ICC in the IHS group were more likely to respond to treatment with immune checkpoint inhibitors (ICIs) owing to their higher tumor mutational burden (TMB) scores, tumor neoantigen burden (TNB) scores, neoantigen counts, and immune checkpoint expression levels. Finally, we developed a nomogram to effectively predict the inflammatory status of patients with ICC based on their clinical characteristics and inflammatory gene expression levels. We evaluated the calibration, discrimination potential, and clinical utility of the nomogram. CONCLUSION The inflammatory response in IHS is primarily induced by myeloid cells. COLEC11 can reduce the infiltration level of this group of cells, and myeloid inflammatory cells may be a novel target for ICC treatment. We developed a novel nomogram that could effectively predict the inflammatory state of patients with ICC, which will be useful for guiding individualized treatment plans.
Collapse
Affiliation(s)
- Biao Gao
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Yafei Wang
- Nankai University School of Medicine, Nankai University, Tianjin, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xianzhou Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital, Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Hao Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital, Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| | - Shichun Lu
- Nankai University School of Medicine, Nankai University, Tianjin, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| |
Collapse
|
47
|
Guo DZ, Zhang X, Zhang SQ, Zhang SY, Zhang XY, Yan JY, Dong SY, Zhu K, Yang XR, Fan J, Zhou J, Huang A. Single-cell tumor heterogeneity landscape of hepatocellular carcinoma: unraveling the pro-metastatic subtype and its interaction loop with fibroblasts. Mol Cancer 2024; 23:157. [PMID: 39095854 PMCID: PMC11295380 DOI: 10.1186/s12943-024-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-β signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-β-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen-Quan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Yan Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - San-Yuan Dong
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
49
|
Yu Q, Tian R, Jin X, Wu L. DAIS: a method for identifying spatial domains based on density clustering of spatial omics data. J Genet Genomics 2024; 51:884-887. [PMID: 38599516 DOI: 10.1016/j.jgg.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Qichao Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen, Guangdong 518083, China; BGI Research, Chongqing 401329, China
| | - Ru Tian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen, Guangdong 518083, China; BGI Research, Chongqing 401329, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen, Guangdong 518083, China.
| | - Liang Wu
- BGI Research, Shenzhen, Guangdong 518083, China; BGI Research, Chongqing 401329, China.
| |
Collapse
|
50
|
Wang H, Liang Y, Liu Z, Zhang R, Chao J, Wang M, Liu M, Qiao L, Xuan Z, Zhao H, Lu L. POSTN + cancer-associated fibroblasts determine the efficacy of immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e008721. [PMID: 39067872 PMCID: PMC11284881 DOI: 10.1136/jitc-2023-008721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) poses a significant clinical challenge because the long-term benefits of immune checkpoint blockade therapy are limited. A comprehensive understanding of the mechanisms underlying immunotherapy resistance in HCC is imperative for improving patient prognosis. DESIGN In this study, to systematically investigate the characteristics of cancer-associated fibroblast (CAF) subsets and the dynamic communication among the tumor microenvironment (TME) components regulated by CAF subsets, we generated an HCC atlas by compiling single-cell RNA sequencing (scRNA-seq) datasets on 220 samples from six datasets. We combined spatial transcriptomics with scRNA-seq and multiplexed immunofluorescence to identify the specific CAF subsets in the TME that determine the efficacy of immunotherapy in HCC patients. RESULTS Our findings highlight the pivotal role of POSTN+ CAFs as potent immune response barriers at specific tumor locations, as they hinder effective T-cell infiltration and decrease the efficacy of immunotherapy. Additionally, we elucidated the interplay between POSTN+ CAFs and SPP1+ macrophages, whereby the former recruits the latter and triggers increased SPP1 expression via the IL-6/STAT3 signaling pathway. Moreover, we demonstrated a spatial correlation between POSTN+ CAFs and SPP1+ macrophages, revealing an immunosuppressive microenvironment that limits the immunotherapy response. Notably, we found that patients with elevated expression levels of both POSTN+ CAFs and SPP1+ macrophages achieved less therapeutic benefit in an immunotherapy cohort. CONCLUSION Our research elucidates light on the role of a particular subset of CAFs in immunotherapy resistance, emphasizing the potential benefits of targeting specific CAF subpopulations to improve clinical responses to immunotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zheng Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Mingming Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Mu Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Zhengfeng Xuan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|