1
|
Pan J, Liu X, Baca M, Calvière-Tonasso L, Schiavinato S, Chauvey L, Tressières G, Perdereau A, Aury JM, Oliveira PH, Wincker P, Abdykanova A, Arsuaga JL, Bayarsaikhan J, Belinskiy AB, Carbonell E, Davoudi H, Lira Garrido J, Gilbert AS, Hermes T, Warinner C, Kalmykov AA, Lordkipanidze D, Mackiewicz P, Mohaseb AF, Richter K, Sayfullaev N, Shapiro B, Shnaider S, Southon J, Stefaniak K, Summers GD, van Asperen EN, Vanishvili N, Hill EA, Kuznetsov P, Reinhold S, Hansen S, Mashkour M, Berthon R, Taylor WTT, Houle JL, Hekkala E, Popović D, Orlando L. Genome-wide population affinities and signatures of adaptation in hydruntines, sussemiones and Asian wild asses. Mol Ecol 2024; 33:e17527. [PMID: 39279684 DOI: 10.1111/mec.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
The extremely rich palaeontological record of the horse family, also known as equids, has provided many examples of macroevolutionary change over the last ~55 Mya. This family is also one of the most documented at the palaeogenomic level, with hundreds of ancient genomes sequenced. While these data have advanced understanding of the domestication history of horses and donkeys, the palaeogenomic record of other equids remains limited. In this study, we have generated genome-wide data for 25 ancient equid specimens spanning over 44 Ky and spread across Anatolia, the Caucasus, Central Asia and Mongolia. Our dataset includes the genomes from two extinct species, the European wild ass, Equus hydruntinus, and the sussemione Equus ovodovi. We document, for the first time, the presence of sussemiones in Mongolia and their survival around ~3.9 Kya, a finding that should be considered when discussing the timing of the first arrival of the domestic horse in the region. We also identify strong spatial differentiation within the historical ecological range of Asian wild asses, Equus hemionus, and incomplete reproductive isolation in several groups yet considered as different species. Finally, we find common selection signatures at ANTXR2 gene in European, Asian and African wild asses. This locus, which encodes a receptor for bacterial toxins, shows no selection signal in E. ovodovi, but a 5.4-kb deletion within intron 7. Whether such genetic modifications played any role in the sussemione extinction remains unknown.
Collapse
Affiliation(s)
- Jianfei Pan
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Laure Calvière-Tonasso
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Stéphanie Schiavinato
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Loreleï Chauvey
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Gaétan Tressières
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Aude Perdereau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Pedro H Oliveira
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aida Abdykanova
- Anthropology Department, American University of Central Asia, Bishkek, Kyrgyzstan
| | - Juan Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología. Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jamsranjav Bayarsaikhan
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- National Museum of Mongolia, Ulaanbaatar, Mongolia
| | | | - Eudald Carbonell
- Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
- Institut Català de Paleoecologia Humana I Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Jaime Lira Garrido
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| | - Allan S Gilbert
- Department of Sociology and Anthropology, Fordham University, New York, New York, USA
| | - Taylor Hermes
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | | | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Tbilisi, Georgia
- Tbilisi State University Tbilisi I. Chavchavadze Avenue 1, Tbilisi, Georgia
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Azadeh F Mohaseb
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Kristine Richter
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA
| | - Nuritdin Sayfullaev
- Donish Institute of History, Archaeology and Ethnography, Dushanbe, Tajikistan
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Svetlana Shnaider
- International Laboratory "Archaeozoology in Siberia and Central Asia" ZooSCAn, IRL 2013, National Center for Scientific Research - Institute of Archeology and Ethnography SB RAS, Novosibirsk, Russia
| | - John Southon
- Earth System Science Department, University of California, Irvine, California, USA
| | | | - Geoffrey D Summers
- Ecole Nationale Supérieure d'Architecture de Nantes-Mauritius, Pierrefonds, Mauritius
- The Oriental Institute, Chicago University, Chicago, Illinois, USA
| | | | - Nikoloz Vanishvili
- Department of Vertebrate Paleontology, L. Davitashvili Institute of Paleobiology, Georgian National Museum, Tbilisi, Georgia
| | - Eden A Hill
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavel Kuznetsov
- The Museum of Archeology of the Volga Region Samara State University of Social Sciences and Education, Samara, Russia
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Marjan Mashkour
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Berthon
- UMR 7209 'Archéozoologie, Archéobotanique: sociétés, Pratiques et Environnements', CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - William Timothy Treal Taylor
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jean-Luc Houle
- Department of Folk Studies and Anthropology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Evon Hekkala
- Department Biological Sciences, Fordham University, New York, New York, USA
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Davidson R, Williams MP, Roca-Rada X, Kassadjikova K, Tobler R, Fehren-Schmitz L, Llamas B. Allelic bias when performing in-solution enrichment of ancient human DNA. Mol Ecol Resour 2023; 23:1823-1840. [PMID: 37712846 DOI: 10.1111/1755-0998.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
In-solution hybridisation enrichment of genetic variation is a valuable methodology in human paleogenomics. It allows enrichment of endogenous DNA by targeting genetic markers that are comparable between sequencing libraries. Many studies have used the 1240k reagent-which enriches 1,237,207 genome-wide SNPs-since 2015, though access was restricted. In 2021, Twist Biosciences and Daicel Arbor Biosciences independently released commercial kits that enabled all researchers to perform enrichments for the same 1240 k SNPs. We used the Daicel Arbor Biosciences Prime Plus kit to enrich 132 ancient samples from three continents. We identified a systematic assay bias that increases genetic similarity between enriched samples and that cannot be explained by batch effects. We present the impact of the bias on population genetics inferences (e.g. Principal Components Analysis, ƒ-statistics) and genetic relatedness (READ). We compare the Prime Plus bias to that previously reported of the legacy 1240k enrichment assay. In ƒ-statistics, we find that all Prime-Plus-generated data exhibit artefactual excess shared drift, such that within-continent relationships cannot be correctly determined. The bias is more subtle in READ, though interpretation of the results can still be misleading in specific contexts. We expect the bias may affect analyses we have not yet tested. Our observations support previously reported concerns for the integration of different data types in paleogenomics. We also caution that technological solutions to generate 1240k data necessitate a thorough validation process before their adoption in the paleogenomic community.
Collapse
Affiliation(s)
- Roberta Davidson
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew P Williams
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Biology Department, The Pennsylvania State University, Pennsylvania, USA
| | - Xavier Roca-Rada
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kalina Kassadjikova
- UCSC Paleogenomics, Department of Anthropology, University of California, California, USA
| | - Raymond Tobler
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, Department of Anthropology, University of California, California, USA
- UCSC Genomics Institute, University of California, California, USA
| | - Bastien Llamas
- The Australian Centre for Ancient DNA and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Salazar L, Burger R, Forst J, Barquera R, Nesbitt J, Calero J, Washburn E, Verano J, Zhu K, Sop K, Kassadjikova K, Ibarra Asencios B, Davidson R, Bradley B, Krause J, Fehren-Schmitz L. Insights into the genetic histories and lifeways of Machu Picchu's occupants. SCIENCE ADVANCES 2023; 9:eadg3377. [PMID: 37494435 PMCID: PMC11318671 DOI: 10.1126/sciadv.adg3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Machu Picchu originally functioned as a palace within the estate of the Inca emperor Pachacuti between ~1420 and 1532 CE. Before this study, little was known about the people who lived and died there, where they came from or how they were related to the inhabitants of the Inca capital of Cusco. We generated genome-wide data for 34 individuals buried at Machu Picchu who are believed to have been retainers or attendants assigned to serve the Inca royal family, as well as 34 individuals from Cusco for comparative purposes. When the ancient DNA results are contextualized using historical and archaeological data, we conclude that the retainer population at Machu Picchu was highly heterogeneous with individuals exhibiting genetic ancestries associated with groups from throughout the Inca Empire and Amazonia. The results suggest a diverse retainer community at Machu Picchu in which people of different genetic backgrounds lived, reproduced, and were interred together.
Collapse
Affiliation(s)
- Lucy Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Richard Burger
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
| | - Janine Forst
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Jason Nesbitt
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Jorge Calero
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Eden Washburn
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Verano
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Kimberly Zhu
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Korey Sop
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kalina Kassadjikova
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bebel Ibarra Asencios
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
- Department of Archaeology, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz 02002, Peru
| | - Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Brenda Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Examination of human osteoarchaeological remains as a feasible source of polar and apolar metabolites to study past conditions. Sci Rep 2023; 13:696. [PMID: 36639564 PMCID: PMC9839756 DOI: 10.1038/s41598-023-27401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Metabolomics is a modern tool that aids in our understanding of the molecular changes in organisms. Archaeological science is a branch of archaeology that explores different archaeological materials using modern analytical tools. Human osteoarchaeological material are a frequent finding in archaeological contexts and have the potential to offer information about previous human populations, which can be illuminating about our current condition. Using a set of samples comprising different skeletal elements and bone structures, here we explore for the first time the possibility of extracting metabolites from osteoarchaeological material. Here, a protocol for extraction and measurement of extracted polar and less-polar/apolar metabolites by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry is presented to measure the molecules separated after a reversed phase and hydrophilic interaction liquid chromatography column. Molecular information was obtained, showing that osteoarchaeological material is a viable source of molecular information for metabolomic studies.
Collapse
|
6
|
Quinoa, potatoes, and llamas fueled emergent social complexity in the Lake Titicaca Basin of the Andes. Proc Natl Acad Sci U S A 2021; 118:2113395118. [PMID: 34845028 DOI: 10.1073/pnas.2113395118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
The Lake Titicaca basin was one of the major centers for cultural development in the ancient world. This lacustrine environment is unique in the high, dry Andean altiplano, and its aquatic and terrestrial resources are thought to have contributed to the florescence of complex societies in this region. Nevertheless, it remains unclear to what extent local aquatic resources, particularly fish, and the introduced crop, maize, which can be grown in regions along the lakeshores, contributed to facilitating sustained food production and population growth, which underpinned increasing social political complexity starting in the Formative Period (1400 BCE to 500 CE) and culminating with the Tiwanaku state (500 to 1100 CE). Here, we present direct dietary evidence from stable isotope analysis of human skeletal remains spanning over two millennia, together with faunal and floral reference materials, to reconstruct foodways and ecological interactions in southern Lake Titicaca over time. Bulk stable isotope analysis, coupled with compound-specific amino acid stable isotope analysis, allows better discrimination between resources consumed across aquatic and terrestrial environments. Together, this evidence demonstrates that human diets predominantly relied on C3 plants, particularly quinoa and tubers, along with terrestrial animals, notably domestic camelids. Surprisingly, fish were not a significant source of animal protein, but a slight increase in C4 plant consumption verifies the increasing importance of maize in the Middle Horizon. These results underscore the primary role of local terrestrial food resources in securing a nutritious diet that allowed for sustained population growth, even in the face of documented climate and political change across these periods.
Collapse
|