1
|
Cong S, Chen J, Xie M, Deng Z, Chen C, Liu R, Duan J, Zhu X, Li Z, Cheng Y, Huang W, McCulloch I, Yue W. Single ambipolar OECT-based inverter with volatility and nonvolatility on demand. SCIENCE ADVANCES 2024; 10:eadq9405. [PMID: 39383214 PMCID: PMC11463256 DOI: 10.1126/sciadv.adq9405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Organic electrochemical transistor (OECT)-based inverter introduces new prospects for energy-efficient brain-inspired artificial intelligence devices. Here, we report single-component OECT-based inverters by incorporating ambipolar p(gDPP-V). Notably, p(gDPP-V) shows state-of-the-art ambipolar OECT performances in both conventional (p/n-type mode transconductance of 29/25 S cm-1) and vertical (transconductance of 297.2/292.4 μS μm-2 under p/n operation) device architectures. Especially, the resulting highly stable vertical OECT-based inverter shows a high voltage gain of 105 V V-1 under a low driving voltage of 0.8 V. The inverter exhibits undiscovered voltage-regulated dual mode: volatile receptor and nonvolatile synapse. Moreover, applications of physiology signal recording and demonstrations of NAND/NOR logic circuits are investigated within the volatile feature, while neuromorphic simulations with a convolutional neural network and image memorizing capabilities are explored under the nonvolatile behavior. The ambipolar OECT-based inverter, capable of both volatile and nonvolatile operations, provides possibilities for the applications of reconfigurable complementary logic circuits in novel neuromorphic computing paradigms.
Collapse
Affiliation(s)
- Shengyu Cong
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Ziyi Deng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Iain McCulloch
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Xu S, Xia F, Li Z, Xu M, Hu B, Feng H, Wang X. Wafer-level heterogeneous integration of electrochemical devices and semiconductors for a monolithic chip. Natl Sci Rev 2024; 11:nwae049. [PMID: 39301075 PMCID: PMC11409884 DOI: 10.1093/nsr/nwae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 09/22/2024] Open
Abstract
Micro-scale electrochemical devices, despite their wide applications and unique potential to achieve 'More than Moore's law', face significant limitations in constructing functional chips due to their inability to integrate with semiconductors. In this study, we propose an electrochemical gating effect and material work function matching criteria, and thus establish the first heterogeneous integration theory for electrochemical devices and semiconductors. Accordingly, we create a novel 3D integration architecture and CMOS-compatible fabrication methodology, including optimizing individual devices, electron/ionic isolation, interconnection, and encapsulation. As a demonstration, we integrate electrochemical micro supercapacitors with a P-N junction diode rectifier bridge circuit and successfully obtain the first monolithic rectifier-filter chip, which shows a revolutionary volume reduction of 98% compared to non-integrateable commercial products. The chip can provide a stable output with a tiny ripple factor of 0.23% in typical conditions, surpassing the requirements of most applications by more than one order of magnitude. More importantly, all the processes are suitable for mass production in standard foundries, allowing ubiquitous applications of electrochemistry in integrated electronics.
Collapse
Affiliation(s)
- Sixing Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 430001, China
| | - Fan Xia
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Zhangshanhao Li
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Minghao Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Bingmeng Hu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Haizhao Feng
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| | - Xiaohong Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Wu X, He Q, Zhou Z, Tam TLD, Tang C, Lin M, Moser M, Griggs S, Marks A, Chen S, Xu J, McCulloch I, Leong WL. Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308823. [PMID: 38531078 DOI: 10.1002/adma.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um-2 and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teck Lip Dexter Tam
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Cindy Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Yu S, Sun X, Liu J, Li S. OECT - Inspired electrical detection. Talanta 2024; 275:126180. [PMID: 38703480 DOI: 10.1016/j.talanta.2024.126180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Organic Electrochemical Transistors (OECTs) are integral in detecting human bioelectric signals, attributing their significance to distinct electrochemical properties, the utilization of soft materials, compact dimensions, and pronounced biocompatibility. This review traverses the technological evolution of OECT, highlighting its profound impact on non-invasive detection methodologies within the biomedicalfield. Four sensor types rooted in OECT technology were introduced: Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyography (EMG), and Electrooculography (EOG), which hold promise for integration into wearable detection systems. The fundamental detection principles, material compositions, and functional attributes of these sensors are examined. Additionally, the performance metrics and delineates viable optimization strategies for assorted physiological electrical detection sensors are discussed. The overarching goal of this review is to foster deeper insights into the generation, propagation, and modulation of electrophysiological signals, thereby advancing the application and development of OECT in medical sciences.
Collapse
Affiliation(s)
- Shixin Yu
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Xiaojun Sun
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingjing Liu
- School of Automation Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
7
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
9
|
Enrico A, Buchmann S, De Ferrari F, Lin Y, Wang Y, Yue W, Mårtensson G, Stemme G, Hamedi MM, Niklaus F, Herland A, Zeglio E. Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307042. [PMID: 38225700 PMCID: PMC11251563 DOI: 10.1002/advs.202307042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.
Collapse
Affiliation(s)
- Alessandro Enrico
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Synthetic Physiology labDepartment of Civil Engineering and ArchitectureUniversity of PaviaVia Ferrata 3Pavia27100Italy
| | - Sebastian Buchmann
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Fabio De Ferrari
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Yunfan Lin
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Yazhou Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Wan Yue
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Gustaf Mårtensson
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Mycronic ABNytorpsvägen 9Täby183 53Sweden
| | - Göran Stemme
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Frank Niklaus
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Anna Herland
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Erica Zeglio
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Materials and Environmental ChemistryStockholm UniversityStockholm114 18Sweden
| |
Collapse
|
10
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
11
|
Wu R, Ji X, Ma Q, Paulsen BD, Tropp J, Rivnay J. Direct quantification of ion composition and mobility in organic mixed ionic-electronic conductors. SCIENCE ADVANCES 2024; 10:eadn8628. [PMID: 38657078 PMCID: PMC11042751 DOI: 10.1126/sciadv.adn8628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Ion transport in organic mixed ionic-electronic conductors (OMIECs) is crucial due to its direct impact on device response time and operating mechanisms but is often assessed indirectly or necessitates extra assumptions. Operando x-ray fluorescence (XRF) is a powerful, direct probe for elemental characterization of bulk OMIECs and was used to directly quantify ion composition and mobility in a model OMIEC, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS), during device operation. The first cycle revealed slow electrowetting and cation-proton exchange. Subsequent cycles showed rapid response with minor cation fluctuation (~5%). Comparison with optical-tracked electrochromic fronts revealed mesoscale structure-dependent proton transport. The calculated effective ion mobility demonstrated thickness-dependent behavior, emphasizing an interfacial ion transport pathway with a higher mobile ion density. The decoupling of interfacial effects on bulk ion mobility and the decoupling of cation and proton migration elucidate ion transport in conventional and emerging OMIEC-based devices and has broader implications for other ionic conductors writ large.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qing Ma
- DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, IL 60208, USA
| | - Bryan D. Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua Tropp
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Material Science and Engineering, Northwestern University, Evanston, IL 60611, USA
| |
Collapse
|
12
|
Lai Y, Cheng J, Xie M, Chen J, Zhu G, Huang W, Feng LW. Precisely Patterned Channels in a Vertical Organic Electrochemical Transistor with a Diazirine Photo-Crosslinker. Angew Chem Int Ed Engl 2024; 63:e202401773. [PMID: 38429971 DOI: 10.1002/anie.202401773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Organic electrochemical transistors (OECTs) rely on both efficient ionic doping/de-doping process and carrier transport in the mixed ionic-electronic channel under the modulation of gate bias. Moreover, channels that hold photopatterning capability are highly desired to minimize parasitic capacitance and simplify the fabrication process/cost. However, yielding photo-patternable channels with both precise/robust patterning capability and controllable ionic-electronic coupling is still challenging. Herein, double-end trifluoromethyl diazirines (DtFDA) with different chain lengths are introduced in the OECT channel to act as both photo-crosslinker and medium to regulate ionic-electronic transport. Specifically, high-resolution patterns with a minimum line width/gap of 2 μm are realized in p(g2T-T) or Homo-gDPP based channels by introducing DtFDA. Maximum transconductances of 68.6 mS and 81.6 mS, current on/off ratio of 106 and 107 (under a drain voltage of only ±0.1 V), are achieved in p- and n-type vertical OECTs (vOECTs), respectively, along with current densities exceeding 1 kA cm-2 and good cycling stability of more than 100,000 cycles (2000 seconds). This work provides a new and facile strategy for the fabrication of vOECT channels with high resolution and high performance via the introduction of a simple and efficient crosslinker.
Collapse
Affiliation(s)
- Yueping Lai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Jingliang Cheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Jianhua Chen
- Department of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Guichuan Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Bai J, Liu D, Tian X, Wang Y, Cui B, Yang Y, Dai S, Lin W, Zhu J, Wang J, Xu A, Gu Z, Zhang S. Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. SCIENCE ADVANCES 2024; 10:eadl1856. [PMID: 38640241 PMCID: PMC11029813 DOI: 10.1126/sciadv.adl1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.
Collapse
Affiliation(s)
- Jing Bai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yilin Yang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wensheng Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jixiang Zhu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery Systems, Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
14
|
Matrone GM, van Doremaele ERW, Surendran A, Laswick Z, Griggs S, Ye G, McCulloch I, Santoro F, Rivnay J, van de Burgt Y. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways. Nat Commun 2024; 15:2868. [PMID: 38570478 PMCID: PMC10991258 DOI: 10.1038/s41467-024-47226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.
Collapse
Affiliation(s)
- Giovanni Maria Matrone
- Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AJ, Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Eveline R W van Doremaele
- Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AJ, Eindhoven, The Netherlands
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Gang Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, PR China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Institute of Biological Information Processing IBI-3 Bioelectronics, Forschungszentrum Juelich, 52428, Juelich, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Aachen, Germany
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yoeri van de Burgt
- Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AJ, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Kim J, Pankow RM, Cho Y, Duplessis ID, Qin F, Meli D, Daso R, Zheng D, Huang W, Rivnay J, Marks TJ, Facchetti A. Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. NATURE ELECTRONICS 2024; 7:234-243. [PMID: 39155947 PMCID: PMC11326712 DOI: 10.1038/s41928-024-01127-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/18/2024] [Indexed: 08/20/2024]
Abstract
Organic electrochemical transistors (OECTs) can be used to create biosensors, wearable devices and neuromorphic systems. However, restrictions in the micro- and nanopatterning of organic semiconductors, as well as topological irregularities, often limit their use in monolithically integrated circuits. Here we show that the micropatterning of organic semiconductors by electron-beam exposure can be used to create high-density (up to around 7.2 million OECTs per cm2) and mechanically flexible vertical OECT arrays and circuits. The energetic electrons convert the semiconductor exposed area to an electronic insulator while retaining ionic conductivity and topological continuity with the redox-active unexposed areas essential for monolithic integration. The resulting p- and n-type vertical OECT active-matrix arrays exhibit transconductances of 0.08-1.7 S, transient times of less than 100 μs and stable switching properties of more than 100,000 cycles. We also fabricate vertically stacked complementary logic circuits, including NOT, NAND and NOR gates.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Department of Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Robert M Pankow
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Yongjoon Cho
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Isaiah D Duplessis
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Fei Qin
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Rachel Daso
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ding Zheng
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Wei Huang
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Jonathan Rivnay
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
16
|
Zhong Y, Nayak PD, Wustoni S, Surgailis J, Parrado Agudelo JZ, Marks A, McCulloch I, Inal S. Ionic Liquid Gated Organic Electrochemical Transistors with Broadened Bandwidth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37997899 DOI: 10.1021/acsami.3c11214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The organic electrochemical transistor (OECT) is a biosignal transducer known for its high amplification but relatively slow operation. Here, we demonstrate that the use of an ionic liquid as the dielectric medium significantly improves the switching speed of a p-type enhancement-mode OECT, regardless of the gate electrode used. The OECT response time with the ionic liquid improves up to ca. 41-fold and 46-fold for the silver/silver chloride (Ag/AgCl) and gold (Au) gates, respectively, compared with devices gated with the phosphate buffered saline (PBS) solution. Notably, the transistor gain remains uncompromised, and its maximum is reached at lower voltages compared to those of PBS-gated devices with Ag/AgCl as the gate electrode. Through ultraviolet-visible spectroscopy and etching X-ray photoelectron spectroscopy characterizations, we reveal that the enhanced bandwidth is associated with the prediffused ionic liquid inside the polymer, leading to a higher doping level compared to PBS. Using the ionic liquid-gated OECTs, we successfully detect electrocardiography (ECG) signals, which exhibit a complete waveform with well-distinguished features and a stable signal baseline. By integrating nonaqueous electrolytes that enhance the device bandwidth, we unlock the potential of enhancement-mode OECTs for physiological signal acquisition and other real-time biosignal monitoring applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Prem D Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Jessica Z Parrado Agudelo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TF, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center, BESE, KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
17
|
Wu HY, Huang JD, Jeong SY, Liu T, Wu Z, van der Pol T, Wang Q, Stoeckel MA, Li Q, Fahlman M, Tu D, Woo HY, Yang CY, Fabiano S. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. MATERIALS HORIZONS 2023; 10:4213-4223. [PMID: 37477499 DOI: 10.1039/d3mh00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in μC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tom van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| |
Collapse
|
18
|
Ji X, Lin X, Rivnay J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat Commun 2023; 14:1665. [PMID: 36966131 PMCID: PMC10039935 DOI: 10.1038/s41467-023-37402-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Electrochemical aptamer-based sensors are typically deployed as individual, passive, surface-functionalized electrodes, but they exhibit limited sensitivity especially when the area of the electrode is reduced for miniaturization purposes. We demonstrate that organic electrochemical transistors (electrolyte gated transistors with volumetric gating) can serve as on-site amplifiers to improve the sensitivity of electrochemical aptamer-based sensors. By monolithically integrating an Au working/sensing electrode, on-chip Ag/AgCl reference electrode, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) counter electrode - also serving as the channel of an organic electrochemical transistor- we can simultaneously perform testing of organic electrochemical transistors and traditional electroanalytical measurement on electrochemical aptamer-based sensors including cyclic voltammetry and square-wave voltammetry. This device can directly amplify the current from the electrochemical aptamer-based sensor via the in-plane current modulation in the counter electrode/transistor channel. The integrated sensor can sense transforming growth factor beta 1 with 3 to 4 orders of magnitude enhancement in sensitivity compared to that in an electrochemical aptamer-based sensor (292 μA/dec vs. 85 nA/dec). This approach is believed to be universal, and can be applied to a wide range of tethered electrochemical reporter-based sensors to enhance sensitivity, aiding in sensor miniaturization and easing the burden on backend signal processing.
Collapse
Affiliation(s)
- Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Song J, Liu H, Zhao Z, Guo X, Liu CK, Griggs S, Marks A, Zhu Y, Law HKW, McCulloch I, Yan F. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. SCIENCE ADVANCES 2023; 9:eadd9627. [PMID: 36630506 PMCID: PMC9833676 DOI: 10.1126/sciadv.add9627] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical transistors (ECTs) have shown broad applications in bioelectronics and neuromorphic devices due to their high transconductance, low working voltage, and versatile device design. To further improve the device performance, semiconductor materials with both high carrier mobilities and large capacitances in electrolytes are needed. Here, we demonstrate ECTs based on highly oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs). The ion-conductive vertical nanopores formed within the 2D c-MOFs films lead to the most convenient ion transfer in the bulk and high volumetric capacitance, endowing the devices with fast speeds and ultrahigh transconductance. Ultraflexible device arrays are successfully used for wearable on-skin recording of electrocardiogram (ECG) signals along different directions, which can provide various waveforms comparable with those of multilead ECG measurement systems for monitoring heart conditions. These results indicate that 2D c-MOFs are excellent semiconductor materials for high-performance ECTs with promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Chun-ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| |
Collapse
|
21
|
Xu YT, Yuan C, Zhou BY, Li Z, Hu J, Lin P, Zhao WW, Chen HY, Xu JJ. Silicon solar cell-enabled organic photoelectrochemical transistor optoelectronics. SCIENCE CHINA MATERIALS 2023; 66:1861-1869. [PMID: 36685049 PMCID: PMC9838416 DOI: 10.1007/s40843-022-2295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/21/2022] [Indexed: 05/20/2023]
Abstract
Organic electrochemical transistors (OECTs) have been increasingly explored for innovative electronic devices. However, they inherently demand two power suppliers, which is unfavorable for the utilization of portable and wearable systems with strict energy requirements. Herein, by assembling a monocrystalline silicon solar cell into the OECT circuit with light as fuel, we demonstrated the possibility of a self-powered and light-modulated operation of organic photoelectrochemical transistor (OPECT) optoelectronics. Exemplified by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based depletion-mode and accumulation-mode OECTs, different light-addressable configurations were constructed, and the corresponding characteristics were systematically studied and compared. Different device behaviors with distinct characteristics could be achieved with the appropriate usage of light stimulation. Toward applications, optologics were designed with various parameters depending on the incident irradiance. Light-controlled OPECT unipolar inverters were further demonstrated and optimized with respect to the power source and resistance. This work features new OPECT optoelectronics combined with proper flexible substrates and solar cells for potential applications in portable and wearable devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40843-022-2295-8.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
22
|
Vertical organic electrochemical transistors for complementary circuits. Nature 2023; 613:496-502. [PMID: 36653571 PMCID: PMC9849123 DOI: 10.1038/s41586-022-05592-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.
Collapse
|
23
|
The effect of residual palladium on the performance of organic electrochemical transistors. Nat Commun 2022; 13:7964. [PMID: 36575179 PMCID: PMC9794802 DOI: 10.1038/s41467-022-35573-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer's molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.
Collapse
|
24
|
Liu Z, Kong J, Qu M, Zhao G, Zhang C. Progress in Data Acquisition of Wearable Sensors. BIOSENSORS 2022; 12:889. [PMID: 36291026 PMCID: PMC9599646 DOI: 10.3390/bios12100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Wearable sensors have demonstrated wide applications from medical treatment, health monitoring to real-time tracking, human-machine interface, smart home, and motion capture because of the capability of in situ and online monitoring. Data acquisition is extremely important for wearable sensors, including modules of probes, signal conditioning, and analog-to-digital conversion. However, signal conditioning, analog-to-digital conversion, and data transmission have received less attention than probes, especially flexible sensing materials, in research on wearable sensors. Here, as a supplement, this paper systematically reviews the recent progress of characteristics, applications, and optimizations of transistor amplifiers and typical filters in signal conditioning, and mainstream analog-to-digital conversion strategies. Moreover, possible research directions on the data acquisition of wearable sensors are discussed at the end of the paper.
Collapse
|
25
|
Wu X, Tam TLD, Chen S, Salim T, Zhao X, Zhou Z, Lin M, Xu J, Loo YL, Leong WL. All-Polymer Bulk-Heterojunction Organic Electrochemical Transistors with Balanced Ionic and Electronic Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206118. [PMID: 36008368 DOI: 10.1002/adma.202206118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of organic electrochemical transistor (OECTs)-based circuits brings new opportunities for next-generation integrated bioelectronics. The all-polymer bulk-heterojunction (BHJ) offers an attractive, inexpensive alternative to achieve efficient ambipolar OECTs, and building blocks of logic circuits constructed from them, but have not been investigated to date. Here, the first all-polymer BHJ-based OECTs are reported, consisting of a blend of new p-type ladder conjugated polymer and a state-of-the-art n-type ladder polymer. The whole ladder-type polymer BHJ also proves that side chains are not necessary for good ion transport. Instead, the polymer nanostructures play a critical role in the ion penetration and transportation and thus in the device performance. It also provides a facile strategy and simplifies the fabrication process, forgoing the need to pattern multiple active layers. In addition, the development of complementary metal-oxide-semiconductor (CMOS)-like OECTs allows the pursuit of advanced functional logic circuitry, including inverters and NAND gates, as well as for amplifying electrophysiology signals. This work opens a new approach to the design of new materials for OECTs and will contribute to the development of organic heterojunctions for ambipolar OECTs toward high-performing logic circuits.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teck Lip Dexter Tam
- Institute of Sustainability for Chemical, Engineering and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaoming Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemical, Engineering and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Stein E, Nahor O, Stolov M, Freger V, Petruta IM, McCulloch I, Frey GL. Ambipolar blend-based organic electrochemical transistors and inverters. Nat Commun 2022; 13:5548. [PMID: 36137998 PMCID: PMC9500051 DOI: 10.1038/s41467-022-33264-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
CMOS-like circuits in bioelectronics translate biological to electronic signals using organic electrochemical transistors (OECTs) based on organic mixed ionic-electronic conductors (OMIECs). Ambipolar OECTs can reduce the complexity of circuit fabrication, and in bioelectronics have the major advantage of detecting both cations and anions in one device, which further expands the prospects for diagnosis and sensing. Ambipolar OMIECs however, are scarce, limited by intricate materials design and complex synthesis. Here we demonstrate that judicious selection of p- and n-type materials for blend-based OMIECs offers a simple and tunable approach for the fabrication of ambipolar OECTs and corresponding circuits. These OECTs show high transconductance and excellent stability over multiple alternating polarity cycles, with ON/OFF ratios exceeding 103 and high gains in corresponding inverters. This work presents a simple and versatile new paradigm for the fabrication of ambipolar OMIECs and circuits with little constraints on materials design and synthesis and numerous possibilities for tunability and optimization towards higher performing bioelectronic applications. Ambipolar organic electrochemical transistors simplify bioelectronics circuitry but are challenging due to complicated material design and synthesis. Here, the authors demonstrate that p- and n-type blends offer a simple and tuneable approach for the fabrication of ambipolar devices and circuits.
Collapse
Affiliation(s)
- Eyal Stein
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Oded Nahor
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Mikhail Stolov
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Viatcheslav Freger
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Iuliana Maria Petruta
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.,Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gitti L Frey
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
27
|
Nguyen-Dang T, Chae S, Chatsirisupachai J, Wakidi H, Promarak V, Visell Y, Nguyen TQ. Dual-Mode Organic Electrochemical Transistors Based on Self-Doped Conjugated Polyelectrolytes for Reconfigurable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200274. [PMID: 35362210 DOI: 10.1002/adma.202200274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Reconfigurable organic logic devices are promising candidates for next generations of efficient computing systems and adaptive electronics. Ideally, such devices would be of simple structure and design, be power efficient, and compatible with high-throughput microfabrication techniques. This work reports an organic reconfigurable logic gate based on novel dual-mode organic electrochemical transistors (OECTs), which employ a self-doped conjugated polyelectrolyte as the active material, which then allows the transistors to operate in both depletion mode and enhancement mode. Furthermore, mode switching is accomplished by simply altering the polarity of the applied gate and drain voltages, which can be done on the fly. In contrast, achieving similar mode-switching functionality with other organic transistors typically requires complex molecular design or multi-device engineering. It in shown that dual-mode functionality is enabled by the concurrent existence of anion doping and cation dedoping of the films. A device physics model that accurately describes the behavior of these transistors is developed. Finally, the utility of these dual-mode transistors for implementing reconfigurable logic by fabricating a logic gate that may be switched between logic gates AND to NOR, and OR to NAND on the fly is demonstrated.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Hiba Wakidi
- Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Yon Visell
- RE Touch Lab, California NanoSystems Institute, Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
28
|
Zhang Y, van Doremaele ERW, Ye G, Stevens T, Song J, Chiechi RC, van de Burgt Y. Adaptive Biosensing and Neuromorphic Classification Based on an Ambipolar Organic Mixed Ionic-Electronic Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200393. [PMID: 35334499 DOI: 10.1002/adma.202200393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are central to bioelectronic applications such as biosensors, health-monitoring devices, and neural interfaces, and have facilitated efficient next-generation brain-inspired computing and biohybrid systems. Despite these examples, smart and adaptive circuits that can locally process and optimize biosignals have not yet been realized. Here, a tunable sensing circuit is shown that can locally modulate biologically relevant signals like electromyograms (EMGs) and electrocardiograms (ECGs), that is based on a complementary logic inverter combined with a neuromorphic memory element, and that is constructed from a single polymer mixed conductor. It is demonstrated that a small neuromorphic array based on this material effects high classification accuracy in heartbeat anomaly detection. This high-performance material allows for straightforward monolithic integration, which reduces fabrication complexity while also achieving high on/off ratios with excellent ambient p- and n-type stability in transistor performance. This material opens a route toward simple and straightforward fabrication and integration of more sophisticated adaptive circuits for future smart bioelectronics.
Collapse
Affiliation(s)
- Yanxi Zhang
- Microsystems, Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - Eveline R W van Doremaele
- Microsystems, Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - Gang Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Tim Stevens
- Microsystems, Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yoeri van de Burgt
- Microsystems, Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
29
|
Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosens Bioelectron 2022; 209:114224. [PMID: 35395586 DOI: 10.1016/j.bios.2022.114224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO2 nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17. Formation of the non-conducting DNA layer from the miRNA-17-oriented HCR could decrease the surface capacitance and increase the corresponding fractional potential drop, shifting the transfer curve horizontally to higher gate voltage and thus producing different drain currents. The OPECT biosensor exhibited a linear relationship with the miRNA-17 concentration on the logarithmic axis in the range from 1 pm. to 10 μm with a detection limit of 1 pm. This work not only represented a generic methodology of miRNA detection, but also provided a universal mechanism for the operation of advanced OPECT bioanalytics.
Collapse
|
30
|
Woo G, Yoo H, Kim T. Hybrid Thin-Film Materials Combinations for Complementary Integration Circuit Implementation. MEMBRANES 2021; 11:membranes11120931. [PMID: 34940431 PMCID: PMC8709032 DOI: 10.3390/membranes11120931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Beyond conventional silicon, emerging semiconductor materials have been actively investigated for the development of integrated circuits (ICs). Considerable effort has been put into implementing complementary circuits using non-silicon emerging materials, such as organic semiconductors, carbon nanotubes, metal oxides, transition metal dichalcogenides, and perovskites. Whereas shortcomings of each candidate semiconductor limit the development of complementary ICs, an approach of hybrid materials is considered as a new solution to the complementary integration process. This article revisits recent advances in hybrid-material combination-based complementary circuits. This review summarizes the strong and weak points of the respective candidates, focusing on their complementary circuit integrations. We also discuss the opportunities and challenges presented by the prospect of hybrid integration.
Collapse
Affiliation(s)
- Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea
- Correspondence: (H.Y.); (T.K.)
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Correspondence: (H.Y.); (T.K.)
| |
Collapse
|