1
|
Wang K, Wang S, Margolis S, Cho JM, Zhu E, Dupuy A, Yin J, Park SK, Magyar CE, Adeyiga OB, Jensen KS, Belperio JA, Passam F, Zhao P, Hsiai TK. Rapid prediction of acute thrombosis via nanoengineered immunosensors with unsupervised clustering for multiple circulating biomarkers. SCIENCE ADVANCES 2024; 10:eadq6778. [PMID: 39661669 PMCID: PMC11633740 DOI: 10.1126/sciadv.adq6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO2 laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody. Using unsupervised clustering based on four biomarker concentrations, we predicted thrombotic events in 49 of 53 patients. The four-biomarker combination yielded an area under the receiver operating characteristic curve (AUC) of 0.95, demonstrating high sensitivity and specificity for acute thrombosis prediction compared to the AUC values for individual biomarkers: CRP (0.773), calprotectin (0.711), sP-selectin (0.683), and D-dimer (0.739). Thus, a nanoengineered multichannel platform with unsupervised clustering provides accurate and efficient methods for predicting thrombosis, guiding personalized medicine.
Collapse
Affiliation(s)
- Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Shaolei Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Dupuy
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oladunni B. Adeyiga
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristin Schwab Jensen
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Freda Passam
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
2
|
Rajagopalan SS, Tammimies K. Predicting neurodevelopmental disorders using machine learning models and electronic health records - status of the field. J Neurodev Disord 2024; 16:63. [PMID: 39548397 PMCID: PMC11566279 DOI: 10.1186/s11689-024-09579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/01/2024] [Indexed: 11/18/2024] Open
Abstract
Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source of multilevel data for ML prediction models includes population-based registers and electronic health records. These can contain rich information on individual and familial medical histories and socio-demographics. This review summarizes studies published between 2010-2022 that used ML algorithms to develop predictive models for NDDs using population-based registers and electronic health records. A literature search identified 1191 articles, of which 32 were retained. Of these, 47% developed ASD prediction models and 25% ADHD models. Classical ML methods were used in 82% of studies and in particular tree-based prediction models performed well. The sensitivity of the models was lower than 75% for most studies, while the area under the curve (AUC) was greater than 75%. The most important predictors were patient and familial medical history and sociodemographic factors. Using private in-house datasets makes comparing and validating model generalizability across studies difficult. The ML model development and reporting guidelines were adopted only in a few recently reported studies. More work is needed to harness the power of data for detecting NDDs early.
Collapse
Affiliation(s)
- Shyam Sundar Rajagopalan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Solna, Sweden.
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Solna, Sweden.
| |
Collapse
|
3
|
Hudon A, Beaudoin M, Phraxayavong K, Potvin S, Dumais A. Exploring the Intersection of Schizophrenia, Machine Learning, and Genomics: Scoping Review. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e62752. [PMID: 39546776 DOI: 10.2196/62752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND An increasing body of literature highlights the integration of machine learning with genomic data in psychiatry, particularly for complex mental health disorders such as schizophrenia. These advanced techniques offer promising potential for uncovering various facets of these disorders. A comprehensive review of the current applications of machine learning in conjunction with genomic data within this context can significantly enhance our understanding of the current state of research and its future directions. OBJECTIVE This study aims to conduct a systematic scoping review of the use of machine learning algorithms with genomic data in the field of schizophrenia. METHODS To conduct a systematic scoping review, a search was performed in the electronic databases MEDLINE, Web of Science, PsycNet (PsycINFO), and Google Scholar from 2013 to 2024. Studies at the intersection of schizophrenia, genomic data, and machine learning were evaluated. RESULTS The literature search identified 2437 eligible articles after removing duplicates. Following abstract screening, 143 full-text articles were assessed, and 121 were subsequently excluded. Therefore, 21 studies were thoroughly assessed. Various machine learning algorithms were used in the identified studies, with support vector machines being the most common. The studies notably used genomic data to predict schizophrenia, identify schizophrenia features, discover drugs, classify schizophrenia amongst other mental health disorders, and predict the quality of life of patients. CONCLUSIONS Several high-quality studies were identified. Yet, the application of machine learning with genomic data in the context of schizophrenia remains limited. Future research is essential to further evaluate the portability of these models and to explore their potential clinical applications.
Collapse
Affiliation(s)
- Alexandre Hudon
- Department of psychiatry and addictology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada
- Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada
| | - Mélissa Beaudoin
- Department of psychiatry and addictology, Université de Montréal, Montréal, QC, Canada
- Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Stéphane Potvin
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada
- Department of psychiatry and addictology, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Dumais
- Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada
- Department of psychiatry and addictology, Université de Montréal, Montréal, QC, Canada
- Services et Recherches Psychiatriques AD, Montréal, QC, Canada
- Institut nationale de psychiatrie légale Philippe-Pinel, Montréal, QC, Canada
| |
Collapse
|
4
|
Martins D, Abbasi M, Egas C, Arrais JP. Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction. J Integr Bioinform 2024; 21:jib-2023-0042. [PMID: 39004922 PMCID: PMC11377398 DOI: 10.1515/jib-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models. The research employed a case-control dataset sourced from the Swedish populace. A gene-annotation-based DL architecture was developed and employed in two stages. First, the model was trained on the entire dataset to highlight differences between cases and controls. Then, samples likely to be misclassified were excluded, and the model was retrained on the refined dataset for performance evaluation. The results indicate that SCZ prevalence and misdiagnosis rates can affect case-control cohorts, potentially compromising future studies reliant on such datasets. However, by detecting and filtering outliers, the study demonstrates the feasibility of adapting DL methodologies to large-scale biological problems, producing results more aligned with existing heritability estimates for SCZ. This approach not only advances the comprehension of the genetic background of SCZ but also opens doors for adapting DL techniques in complex research for precision medicine in mental health.
Collapse
Affiliation(s)
- Daniel Martins
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Maryam Abbasi
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Conceição Egas
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Biocant - Transfer Technology Association, Cantanhede, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Lieslehto J, Tiihonen J, Lähteenvuo M, Leucht S, Correll CU, Mittendorfer-Rutz E, Tanskanen A, Taipale H. Development and Validation of a Machine Learning-Based Model of Mortality Risk in First-Episode Psychosis. JAMA Netw Open 2024; 7:e240640. [PMID: 38497965 PMCID: PMC10949098 DOI: 10.1001/jamanetworkopen.2024.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 03/19/2024] Open
Abstract
Importance There is an absence of mortality risk assessment tools in first-episode psychosis (FEP) that could enable personalized interventions. Objective To examine the feasibility of machine learning (ML) in discerning mortality risk in FEP and to assess whether such risk predictions can inform pharmacotherapy choices. Design, Setting, and Participants In this prognostic study, Swedish nationwide cohort data (from July 1, 2006, to December 31, 2021) were harnessed for model development and validation. Finnish cohort data (from January 1, 1998, to December 31, 2017) were used for external validation. Data analyses were completed between December 2022 and December 2023. Main Outcomes and Measures Fifty-one nationwide register variables, encompassing demographics and clinical and work-related histories, were subjected to ML to predict future mortality risk. The ML model's performance was evaluated by calculating the area under the receiver operating characteristic curve (AUROC). The comparative effectiveness of pharmacotherapies in patients was assessed and was stratified by the ML model to those with predicted high mortality risk (vs low risk), using the between-individual hazard ratio (HR). The 5 most important variables were then identified and a model was retrained using these variables in the discovery sample. Results This study included 24 052 Swedish participants (20 000 in the discovery sample and 4052 in the validation sample) and 1490 Finnish participants (in the validation sample). Swedish participants had a mean (SD) age of 29.1 (8.1) years, 62.1% were men, and 418 died with 2 years. Finnish participants had a mean (SD) age of 29.7 (8.0) years, 61.7% were men, and 31 died within 2 years. The discovery sample achieved an AUROC of 0.71 (95% CI, 0.68-0.74) for 2-year mortality prediction. Using the 5 most important variables (ie, the top 10% [substance use comorbidities, first hospitalization duration due to FEP, male sex, prior somatic hospitalizations, and age]), the final model resulted in an AUROC of 0.70 (95% CI, 0.63-0.76) in the Swedish sample and 0.67 (95% CI, 0.56-0.78) in the Finnish sample. Individuals with predicted high mortality risk had an elevated 15-year risk in the Swedish sample (HR, 3.77 [95% CI, 2.92-4.88]) and an elevated 20-year risk in the Finnish sample (HR, 3.72 [95% CI, 2.67-5.18]). For those with predicted high mortality risk, long-acting injectable antipsychotics (HR, 0.45 [95% CI, 0.23-0.88]) and mood stabilizers (HR, 0.64 [95% CI, 0.46-0.90]) were associated with decreased mortality risk. Conversely, for those predicted to survive, only oral aripiprazole (HR, 0.38 [95% CI, 0.20-0.69]) and risperidone (HR, 0.38 [95% CI, 0.18-0.82]) were associated with decreased mortality risk. Conclusions and Relevance In this prognostic study, an ML-based model was developed and validated to predict mortality risk in FEP. These findings may help to develop personalized interventions to mitigate mortality risk in FEP.
Collapse
Affiliation(s)
- Johannes Lieslehto
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christoph U. Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, New York
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Department of Child and Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ellenor Mittendorfer-Rutz
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Antti Tanskanen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Heidi Taipale
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
- School of Pharmacy, University of Eastern Finland, Kuopio
| |
Collapse
|
6
|
Sun J, Dong QX, Wang SW, Zheng YB, Liu XX, Lu TS, Yuan K, Shi J, Hu B, Lu L, Han Y. Artificial intelligence in psychiatry research, diagnosis, and therapy. Asian J Psychiatr 2023; 87:103705. [PMID: 37506575 DOI: 10.1016/j.ajp.2023.103705] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Psychiatric disorders are now responsible for the largest proportion of the global burden of disease, and even more challenges have been seen during the COVID-19 pandemic. Artificial intelligence (AI) is commonly used to facilitate the early detection of disease, understand disease progression, and discover new treatments in the fields of both physical and mental health. The present review provides a broad overview of AI methodology and its applications in data acquisition and processing, feature extraction and characterization, psychiatric disorder classification, potential biomarker detection, real-time monitoring, and interventions in psychiatric disorders. We also comprehensively summarize AI applications with regard to the early warning, diagnosis, prognosis, and treatment of specific psychiatric disorders, including depression, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, addiction, sleep disorders, and Alzheimer's disease. The advantages and disadvantages of AI in psychiatry are clarified. We foresee a new wave of research opportunities to facilitate and improve AI technology and its long-term implications in psychiatry during and after the COVID-19 era.
Collapse
Affiliation(s)
- Jie Sun
- Pain Medicine Center, Peking University Third Hospital, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Qun-Xi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - San-Wang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yong-Bo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiao-Xing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tang-Sheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Felsky D, Cannitelli A, Pipitone J. Whole Person Modeling: a transdisciplinary approach to mental health research. DISCOVER MENTAL HEALTH 2023; 3:16. [PMID: 37638348 PMCID: PMC10449734 DOI: 10.1007/s44192-023-00041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
The growing global burden of mental illness has prompted calls for innovative research strategies. Theoretical models of mental health include complex contributions of biological, psychosocial, experiential, and other environmental influences. Accordingly, neuropsychiatric research has self-organized into largely isolated disciplines working to decode each individual contribution. However, research directly modeling objective biological measurements in combination with cognitive, psychological, demographic, or other environmental measurements is only now beginning to proliferate. This review aims to (1) to describe the landscape of modern mental health research and current movement towards integrative study, (2) to provide a concrete framework for quantitative integrative research, which we call Whole Person Modeling, (3) to explore existing and emerging techniques and methods used in Whole Person Modeling, and (4) to discuss our observations about the scarcity, potential value, and untested aspects of highly transdisciplinary research in general. Whole Person Modeling studies have the potential to provide a better understanding of multilevel phenomena, deliver more accurate diagnostic and prognostic tests to aid in clinical decision making, and test long standing theoretical models of mental illness. Some current barriers to progress include challenges with interdisciplinary communication and collaboration, systemic cultural barriers to transdisciplinary career paths, technical challenges in model specification, bias, and data harmonization, and gaps in transdisciplinary educational programs. We hope to ease anxiety in the field surrounding the often mysterious and intimidating world of transdisciplinary, data-driven mental health research and provide a useful orientation for students or highly specialized researchers who are new to this area.
Collapse
Affiliation(s)
- Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Alyssa Cannitelli
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Jon Pipitone
- Department of Psychiatry, Queen’s University, Kingston, ON Canada
| |
Collapse
|
8
|
Allesøe RL, Lundgaard AT, Hernández Medina R, Aguayo-Orozco A, Johansen J, Nissen JN, Brorsson C, Mazzoni G, Niu L, Biel JH, Brasas V, Webel H, Benros ME, Pedersen AG, Chmura PJ, Jacobsen UP, Mari A, Koivula R, Mahajan A, Vinuela A, Tajes JF, Sharma S, Haid M, Hong MG, Musholt PB, De Masi F, Vogt J, Pedersen HK, Gudmundsdottir V, Jones A, Kennedy G, Bell J, Thomas EL, Frost G, Thomsen H, Hansen E, Hansen TH, Vestergaard H, Muilwijk M, Blom MT, 't Hart LM, Pattou F, Raverdy V, Brage S, Kokkola T, Heggie A, McEvoy D, Mourby M, Kaye J, Hattersley A, McDonald T, Ridderstråle M, Walker M, Forgie I, Giordano GN, Pavo I, Ruetten H, Pedersen O, Hansen T, Dermitzakis E, Franks PW, Schwenk JM, Adamski J, McCarthy MI, Pearson E, Banasik K, Rasmussen S, Brunak S, Thomas CE, Haussler R, Beulens J, Rutters F, Nijpels G, van Oort S, Groeneveld L, Elders P, Giorgino T, Rodriquez M, Nice R, Perry M, Bianzano S, Graefe-Mody U, Hennige A, Grempler R, Baum P, Stærfeldt HH, Shah N, Teare H, Ehrhardt B, Tillner J, Dings C, Lehr T, Scherer N, Sihinevich I, Cabrelli L, Loftus H, Bizzotto R, Tura A, Dekkers K, van Leeuwen N, Groop L, Slieker R, Ramisch A, Jennison C, McVittie I, Frau F, Steckel-Hamann B, Adragni K, Thomas M, Pasdar NA, Fitipaldi H, Kurbasic A, Mutie P, Pomares-Millan H, Bonnefond A, Canouil M, Caiazzo R, Verkindt H, Holl R, Kuulasmaa T, Deshmukh H, Cederberg H, Laakso M, Vangipurapu J, Dale M, Thorand B, Nicolay C, Fritsche A, Hill A, Hudson M, Thorne C, Allin K, Arumugam M, Jonsson A, Engelbrechtsen L, Forman A, Dutta A, Sondertoft N, Fan Y, Gough S, Robertson N, McRobert N, Wesolowska-Andersen A, Brown A, Davtian D, Dawed A, Donnelly L, Palmer C, White M, Ferrer J, Whitcher B, Artati A, Prehn C, Adam J, Grallert H, Gupta R, Sackett PW, Nilsson B, Tsirigos K, Eriksen R, Jablonka B, Uhlen M, Gassenhuber J, Baltauss T, de Preville N, Klintenberg M, Abdalla M. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol 2023; 41:399-408. [PMID: 36593394 PMCID: PMC10017515 DOI: 10.1038/s41587-022-01520-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 01/03/2023]
Abstract
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Collapse
Affiliation(s)
- Rosa Lundbye Allesøe
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnete Troen Lundgaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ricardo Hernández Medina
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Aguayo-Orozco
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Nybo Nissen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gianluca Mazzoni
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jorge Hernansanz Biel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valentas Brasas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henry Webel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Piotr Jaroslaw Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrik Plesner Jacobsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea Mari
- C.N.R. Institute of Neuroscience, Padova, Italy
| | - Robert Koivula
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ana Vinuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Petra B Musholt
- Research and Development Global Development, Translational Medicine and Clinical Pharmacology, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Federico De Masi
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Josef Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Krogh Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valborg Gudmundsdottir
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Angus Jones
- University of Exeter Medical School, Exeter, UK
| | - Gwen Kennedy
- The Immunoassay Biomarker Core Laboratory, School of Medicine, University of Dundee, Dundee, UK
| | - Jimmy Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Gary Frost
- Section for Nutrition Research, Faculty of Medicine, Imperial College London, London, UK
| | - Henrik Thomsen
- Department of Radiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Elizaveta Hansen
- Department of Radiology, Copenhagen University Hospital Herlev-Gentofte, Herlev, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mirthe Muilwijk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marieke T Blom
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leen M 't Hart
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Biomedical Data Science, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francois Pattou
- Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
| | - Violeta Raverdy
- Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Tarja Kokkola
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alison Heggie
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Donna McEvoy
- Diabetes Research Network, Royal Victoria Infirmary, Newcastle, UK
| | - Miranda Mourby
- Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, UK
| | - Jane Kaye
- Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, UK
| | | | | | - Martin Ridderstråle
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Mark Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Ian Forgie
- Division of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations, Vienna, Austria
| | - Hartmut Ruetten
- Research and Development Global Development, Translational Medicine and Clinical Pharmacology, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Paul W Franks
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Harvard T.H. Chan School of Public Health, Boston, MA, USA.,OCDEM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.,Genentech, South San Francisco, CA, USA
| | - Ewan Pearson
- Division of Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Allesøe RL, Thompson WK, Bybjerg-Grauholm J, Hougaard DM, Nordentoft M, Werge T, Rasmussen S, Benros ME. Deep Learning for Cross-Diagnostic Prediction of Mental Disorder Diagnosis and Prognosis Using Danish Nationwide Register and Genetic Data. JAMA Psychiatry 2023; 80:146-155. [PMID: 36477816 PMCID: PMC9857190 DOI: 10.1001/jamapsychiatry.2022.4076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Diagnoses and treatment of mental disorders are hampered by the current lack of objective markers needed to provide a more precise diagnosis and treatment strategy. Objective To develop deep learning models to predict mental disorder diagnosis and severity spanning multiple diagnoses using nationwide register data, family and patient-specific diagnostic history, birth-related measurement, and genetics. Design, Setting, and Participants This study was conducted from May 1, 1981, to December 31, 2016. For the analysis, which used a Danish population-based case-cohort sample of individuals born between 1981 and 2005, genotype data and matched longitudinal health register data were taken from the longitudinal Danish population-based Integrative Psychiatric Research Consortium 2012 case-cohort study. Included were individuals with mental disorders (attention-deficit/hyperactivity disorder [ADHD]), autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), schizophrenia spectrum disorders (SCZ), and population controls. Data were analyzed from February 1, 2021, to January 24, 2022. Exposure At least 1 hospital contact with diagnosis of ADHD, ASD, MDD, BD, or SCZ. Main Outcomes and Measures The predictability of (1) mental disorder diagnosis and (2) severity trajectories (measured by future outpatient hospital contacts, admissions, and suicide attempts) were investigated using both a cross-diagnostic and single-disorder setup. Predictive power was measured by AUC, accuracy, and Matthews correlation coefficient (MCC), including an estimate of feature importance. Results A total of 63 535 individuals (mean [SD] age, 23 [7] years; 34 944 male [55%]; 28 591 female [45%]) were included in the model. Based on data prior to diagnosis, the specific diagnosis was predicted in a multidiagnostic prediction model including the background population with an overall area under the curve (AUC) of 0.81 and MCC of 0.28, whereas the single-disorder models gave AUCs/MCCs of 0.84/0.54 for SCZ, 0.79/0.41 for BD, 0.77/0.39 for ASD, 0.74/0.38, for ADHD, and 0.74/0.38 for MDD. The most important data sets for multidiagnostic prediction were previous mental disorders and age (11%-23% reduction in prediction accuracy when removed) followed by family diagnoses, birth-related measurements, and genetic data (3%-5% reduction in prediction accuracy when removed). Furthermore, when predicting subsequent disease trajectories of the disorder, the most severe cases were the most easily predictable, with an AUC of 0.72. Conclusions and Relevance Results of this diagnostic study suggest the possibility of combining genetics and registry data to predict both mental disorder diagnosis and disorder progression in a clinically relevant, cross-diagnostic setting prior to clinical assessment.
Collapse
Affiliation(s)
- Rosa Lundbye Allesøe
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wesley K. Thompson
- Division of Biostatistics and Department of Radiology, Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - David M. Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|