1
|
Fan H, Yan D, Fang X, Xiao L, Liang M, Wu H, Zhu G, Geng D, Liu Q. Low expression of GRM4 is associated with poor prognosis and tumor immune infiltration in glioma. Int J Neurosci 2024; 134:1674-1686. [PMID: 38164693 DOI: 10.1080/00207454.2023.2297646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The metabotropic glutamate receptor 4 (mGlu4, GRM4) exhibits significant expression within the central nervous system (CNS) and has been implicated to be correlated with a poor prognosis. OBJECTIVE This study was aimed to elucidate the relationship between the expression profile of GRM4 and the prognosis of glioma patients. METHODS RNA-sequencing datasets from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and China Glioma Genome Atlas (CGGA) repositories were used to evaluate the potential relationship. The value of clinical prognostic about GRM4 was assessed using clinical survival data from CGGA and TCGA. The GEPIA database was used to select genes like GRM4. PPI network was constructed by the database of (STRING), GO and KEGG analyses were performed. TargetScan, TarBase, miRDB, and starBase were used to explore miRNAs that could regulate GRM4 expression. EWAS Data Hub, MethSurv, and MEXPRESS were used for the analysis and relationship between DNA methylation and GRM4 expression and prognosis in glioma. TIMER2.0 and CAMOIP databases were used to assess the association between immune cell infiltration and GRM4. Human GBM cell lines were used to validate the function of GRM4. RESULTS Our study shows that GRM4 is under expressed among gliomas and accompanied by poorer OS. Multivariate analysis showed that low mRNA expression of GRM4 was an independent factor of prognostic for shorter OS in all glioma patients. MiR-1262 affects the malignant phenotype of gliomas through GRM4. Methylation of DNA plays an important role in the instruction of GRM4 expression, the methylation level of GRM4 in glioma tissue is higher in comparison to normal tissue, and the higher methylation level was accompanied with the worse prognosis. Further analysis showed that GRM4 mRNA expression in GBM linked negatively with common lymphoid progenitor, Macrophage M1, Macrophage, and T cell CD4+ Th2, but not with the tumor purity. Overexpression of GRM4 prevents the migration of human GBM cell lines in vitro. CONCLUSION GRM4 may have a substantial impact on the infiltration of immune cells and serve as a valuable prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Hai Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dongming Yan
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
- Shishou City People's Hospital, Shishou, China
| | - Xingyue Fang
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
| | - Liumin Xiao
- Shishou City People's Hospital, Shishou, China
| | - Mengjie Liang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Shihezi University School of Medicine/Hospital of Xinjiang Production and Construction Corps, Shihezi, China
| | - Haolin Wu
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China
| | - Guohua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dangmurenjiafu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qibing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
3
|
Luo Z, Huang Y, Batra N, Chen Y, Huang H, Wang Y, Zhang Z, Li S, Chen CY, Wang Z, Sun J, Wang QJ, Yang D, Lu B, Conway JF, Li LY, Yu AM, Li S. Inhibition of iRhom1 by CD44-targeting nanocarrier for improved cancer immunochemotherapy. Nat Commun 2024; 15:255. [PMID: 38177179 PMCID: PMC10766965 DOI: 10.1038/s41467-023-44572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shichen Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Yu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lu-Yuan Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Yin S, Song G, Gao N, Gao H, Zeng Q, Lu P, Zhang Q, Xu K, He J. Identifying Genetic Architecture of Carcass and Meat Quality Traits in a Ningxiang Indigenous Pig Population. Genes (Basel) 2023; 14:1308. [PMID: 37510213 PMCID: PMC10378861 DOI: 10.3390/genes14071308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ningxiang pig is a breed renowned for its exceptional meat quality, but it possesses suboptimal carcass traits. To elucidate the genetic architecture of meat quality and carcass traits in Ningxiang pigs, we assessed heritability and executed a genome-wide association study (GWAS) concerning carcass length, backfat thickness, meat color parameters (L.LD, a.LD, b.LD), and pH at two postmortem intervals (45 min and 24 h) within a Ningxiang pig population. Heritability estimates ranged from moderate to high (0.30~0.80) for carcass traits and from low to high (0.11~0.48) for meat quality traits. We identified 21 significant SNPs, the majority of which were situated within previously documented QTL regions. Furthermore, the GRM4 gene emerged as a pleiotropic gene that correlated with carcass length and backfat thickness. The ADGRF1, FKBP5, and PRIM2 genes were associated with carcass length, while the NIPBL gene was linked to backfat thickness. These genes hold the potential for use in selective breeding programs targeting carcass traits in Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Peng Lu
- Center of Ningxiang Animal Husbandry and Fishery Affairs, Ningxiang 410625, China
| | - Qin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Chinese Academy of Sciences, The Institute of Subtropical Agriculture, Changsha 410128, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
7
|
Koda S, Hu J, Ju X, Sun G, Shao S, Tang RX, Zheng KY, Yan J. The role of glutamate receptors in the regulation of the tumor microenvironment. Front Immunol 2023; 14:1123841. [PMID: 36817470 PMCID: PMC9929049 DOI: 10.3389/fimmu.2023.1123841] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Glutamate, as one of the most important carbon sources in the TCA cycle, is central in metabolic processes that will subsequently influence tumor progression. Several factors can affect the expression of glutamate receptors, playing either a tumor-promoting or tumor-suppressor role in cancer. Thus, the activation of glutamate receptors by the ligand could play a role in tumor development as ample studies have demonstrated the expression of glutamate receptors in a broad range of tumor cells. Glutamate and its receptors are involved in the regulation of different immune cells' development and function, as suggested by the receptor expression in immune cells. The activation of glutamate receptors can enhance the effectiveness of the effector's T cells, or decrease the cytokine production in immunosuppressive myeloid-derived suppressor cells, increasing the antitumor immune response. These receptors are essential for the interaction between tumor and immune cells within the tumor microenvironment (TME) and the regulation of antitumor immune responses. Although the role of glutamate in the TCA cycle has been well studied, few studies have deeply investigated the role of glutamate receptors in the regulation of cancer and immune cells within the TME. Here, by a systematic review of the available data, we will critically assess the physiopathological relevance of glutamate receptors in the regulation of cancer and immune cells in the TME and provide some unifying hypotheses for futures research on the role of glutamate receptors in the immune modulation of the tumor.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Hu
- Department of Bioinformatics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoman Ju
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Simin Shao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| |
Collapse
|
8
|
Yu M, Zhang S. Influenced tumor microenvironment and tumor immunity by amino acids. Front Immunol 2023; 14:1118448. [PMID: 36798123 PMCID: PMC9927402 DOI: 10.3389/fimmu.2023.1118448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
It is widely accepted that tumors are a complex tissue composed of cancer cells, extracellular matrix, inflammatory cells, immune cells, and other cells. Deregulation of tumor microenvironment promotes tumor aggressiveness by sustaining cell growth, invasion, and survival from immune surveillance. The concepts that some dietary nutrients could change tumor microenvironment are extremely attractive. Many studies demonstrated that high-fat diet-induced obesity shaped metabolism to suppress anti-tumor immunity, but how amino acids changed the tumor microenvironment and impacted tumor immunity was still not totally understood. In fact, amino acid metabolism in different signaling pathways and their cross-talk shaped tumor immunity and therapy efficacy in cancer patients. Our review focused on mechanisms by which amino acid influenced tumor microenvironment, and found potential drug targets for immunotherapy in cancer.
Collapse
Affiliation(s)
- Min Yu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Sichuan, Chengdu, China,*Correspondence: Shuang Zhang,
| |
Collapse
|
9
|
Wan Z, Huang H, West RE, Zhang M, Zhang B, Cai X, Zhang Z, Luo Z, Chen Y, Zhang Y, Xie W, Yang D, Nolin TD, Wang J, Li S, Sun J. Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:33-50. [PMID: 38239407 PMCID: PMC10795849 DOI: 10.1016/j.mattod.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
STING agonist has recently gained much attention for cancer treatment, but the therapeutic potential of STING agonist is hampered by STING-associated tumor immune resistance. In this work, guided by both bioinformatics and computer modeling, we rationally designed a "one stone hits two birds" nanoparticle-based strategy to simultaneously activate STING innate immune response while eliminating STING-associated immune resistance for the treatment of pancreatic ductal adenocarcinoma (PDAC). We discovered that the ultra-small sized micellar system based on gemcitabine-conjugated polymer (PGEM), which showed superior capacity of penetration in pancreatic tumor spheroid model and orthotopic tumor model, could serve as a novel "STING agonist". The activation of STING signaling in dendritic cells (DCs) by PGEM increased both innate nature killer (NK) and adaptive anti-tumor T cell response. However, activation of STING signaling by PGEM in tumor cells also drove the induction of chemokines CCL2 and CCL7, resulting in immune resistance by recruiting tumor associated macrophage (TAM) and myeloid-derived suppressor cells (MDSCs). Through the combination of computer modeling and experimental screening, we developed a dual delivery modality by incorporating a CCR2 (the receptor shared by both CCL2 and CCL7) antagonist PF-6309 (PF) into PGEM micellar system. Our studies demonstrated that PGEM/PF formulation significantly reduced pancreatic tumor burden and induced potent anti-tumor immunity through reversing the CCL2/CCL7-mediated immunosuppression. Moreover, PGEM/PF sensitized PDAC tumors to anti-PD-1 therapy, leading to complete suppression/eradication of the tumors. Our work has shed light to the multi-faceted role of STING activation and provided a novel immunotherapy regimen to maximize the benefit of STING activation for PDAC treatment. In addition, this work paved a new way for bioinformatics and computer modeling-guided rational design of nanomedicine.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raymond E West
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yue Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Wang X, Li Y, Shi Y, Luo J, Zhang Y, Pan Z, Wu F, Tian J, Yu W. Comprehensive analysis to identify the neurotransmitter receptor-related genes as prognostic and therapeutic biomarkers in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:887076. [PMID: 35990607 PMCID: PMC9388745 DOI: 10.3389/fcell.2022.887076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease with high morbidity and mortality, which accounts for the fourth most common cause of cancer-related deaths. Reports suggest that the neurotransmitter receptor-related genes (NRGs) may influence the tumor microenvironment and the prognosis of patients with HCC.Methods: The clinical information and RNA-seq data of patients with HCC were acquired from the ICGC-LIRI-JP dataset and the TCGA-LIHC dataset. Effects of 115 NRGs on the prognosis of HCC patients were analyzed in the ICGC-LIRI-JP dataset. The least absolute shrinkage and selection operator (LASSO) regression model was utilized to generate a risk score formula based on the critical NRGs. Next, the risk score effectiveness was validated both in the TCGA-LIHC dataset and in our clinical HCC samples. Based on the risk scores, patients with HCC were divided into two groups. Moreover, differentially expressed genes (DEGs) were screened. The gene ontology (GO) was used to analyze the functional enrichments of DEGs and to identify potential signaling pathways. To test the diagnostic effectiveness of our model, the receiver operator characteristic curve (ROC) analysis and nomogram were used. Finally, potential targeted drug prediction was performed based on DEGs of nine clinical HCC samples.Results: Nine NRGs were correlated significantly with the prognosis of patients with HCC, and eight NRGs were successfully included in the LASSO regression model. The Kaplan-Meier analysis of overall survival (OS) suggested that patients in the high-risk score group had worse prognosis; on the other hand, ROC analysis revealed a high prognostic value of the risk score in HCC. Several critical signaling pathways, such as lipid metabolism, organic acid metabolism, cell migration, cell adhesion, and immune response, were enriched both in public datasets and clinical samples. Nomogram results also suggested that the risk scores correlated well with the patients’ prognosis. Potential targeted drugs prediction revealed that tubulin inhibitors might be the promising drugs for patients with HCC who have high risk scores based on the NRGs.Conclusion: We established a prognostic model based on critical NRGs. NRGs show a promising prognostic prediction value in HCC and are potential therapeutic targets for the disease treatment.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiran Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiying Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feixiang Wu
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weifeng Yu, ; Jie Tian,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weifeng Yu, ; Jie Tian,
| |
Collapse
|
11
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
12
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
13
|
Xiong T, He P, Zhou M, Zhong D, Yang T, He W, Xu Z, Chen Z, Liu YW, Dai SS. Glutamate blunts cell-killing effects of neutrophils in tumor microenvironment. Cancer Sci 2022; 113:1955-1967. [PMID: 35363928 PMCID: PMC9207372 DOI: 10.1111/cas.15355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Neutrophils are the first defenders of the innate system for injury and infection. They have gradually been recognized as important participants in tumor initiation and development due to their heterogeneity and plasticity. In the tumor microenvironment (TME), neutrophils can exert antitumor and protumor functions, depending on the surroundings. Tumor cells systemically alter intracellular amino acid (AA) metabolism and extracellular AA distribution to meet their proliferation need, leading to metabolic reprogramming and TME reshaping. However, the underlying mechanisms that determine how altered AAs affect neutrophils in TME are less‐explored. Here, we identified that abundant glutamate releasing from tumor cells blunted neutrophils’ cell‐killing effects toward tumor cells in vitro and in vivo. Mass spectrometric detection, flow cytometry, and western blot experiments proved that increased levels of pSTAT3/RAB10/ARF4, mediated by glutamate, were accompanied with immunosuppressive phenotypes of neutrophils in TME. We also discovered that riluzole, an FDA‐approved glutamate release inhibitor, significantly inhibited tumor growth by restoring neutrophils’ cell‐killing effects and decreasing glutamate secretion from tumor cells. These findings highlight the importance of tumor‐released glutamate on neutrophil transformation in TME, providing new possible cancer treatments targeting altered glutamate metabolism.
Collapse
Affiliation(s)
- Tiantian Xiong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zongtao Chen
- Health Management Center, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| |
Collapse
|