1
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
2
|
Zhang M, Du G, Xie L, Xu Y, Chen W. Circular RNA HMGCS1 sponges MIR4521 to aggravate type 2 diabetes-induced vascular endothelial dysfunction. eLife 2024; 13:RP97267. [PMID: 39235443 PMCID: PMC11377038 DOI: 10.7554/elife.97267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Hydroxymethylglutaryl-CoA Synthase/genetics
Collapse
Affiliation(s)
- Ming Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guangyi Du
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
3
|
Wu S, Luo X, Chen Y, Wang Z, Liu X, Sun N, Zhao J, Luo W, Zhang J, Tong X, Huang L, Liu C, Qin Z. Sodium-glucose cotransporter 2 inhibitors attenuate vascular calcification by suppressing endoplasmic reticulum protein thioredoxin domain containing 5 dependent osteogenic reprogramming. Redox Biol 2024; 73:103183. [PMID: 38759418 PMCID: PMC11127605 DOI: 10.1016/j.redox.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
AIMS Vascular calcification is strongly linked to the development of major adverse cardiovascular events, but effective treatments are lacking. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an emerging category of oral hypoglycemic drugs that have displayed marked effects on metabolic and cardiovascular diseases, including recently reported vascular medial calcification. However, the roles and underlying mechanisms of SGLT2 inhibitors in vascular calcification have not been fully elucidated. Thus, we aimed to further determine whether SGLT2 inhibitors protect against vascular calcification and to investigate the mechanisms involved. METHODS AND RESULTS A computed tomography angiography investigation of coronary arteries from 1554 patients with type 2 diabetes revealed that SGLT2 inhibitor use was correlated with a lower Agatston calcification score. In the vitamin D3 overdose, 5/6 nephrectomy chronic kidney disease-induced medial calcification and Western diet-induced atherosclerotic intimal calcification models, dapagliflozin (DAPA) substantially alleviated vascular calcification in the aorta. Furthermore, we showed that DAPA reduced vascular calcification via Runx2-dependent osteogenic transdifferentiation in vascular smooth muscle cells (VSMCs). Transcriptome profiling revealed that thioredoxin domain containing 5 (TXNDC5) was involved in the attenuation of vascular calcification by DAPA. Rescue experiments showed that DAPA-induced TXNDC5 downregulation in VSMCs blocked the protective effect on vascular calcification. Furthermore, TXNDC5 downregulation disrupted protein folding-dependent Runx2 stability and promoted subsequent proteasomal degradation. Moreover, DAPA downregulated TXNDC5 expression via amelioration of oxidative stress and ATF6-dependent endoplasmic reticulum stress. Consistently, the class effects of SGLT2 inhibitors on vascular calcification were validated with empagliflozin in intimal and medial calcification models. CONCLUSIONS SGLT2 inhibitors ameliorate vascular calcification through blocking endoplasmic reticulum stress-dependent TXNDC5 upregulation and promoting subsequent Runx2 proteasomal degradation, suggesting that SGLT2 inhibitors are potentially beneficial for vascular calcification treatment and prevention.
Collapse
MESH Headings
- Vascular Calcification/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Animals
- Humans
- Osteogenesis/drug effects
- Mice
- Glucosides/pharmacology
- Male
- Thioredoxins/metabolism
- Thioredoxins/genetics
- Benzhydryl Compounds/pharmacology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
- Rats
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Disease Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Female
Collapse
Affiliation(s)
- Shaofa Wu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Nephrology, Youyang Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 409800, China
| | - Xiaolin Luo
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yang Chen
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Zelan Wang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xi Liu
- Department of Nephrology, Youyang Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 409800, China
| | - Ning Sun
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Junyong Zhao
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Wenjian Luo
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiawen Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Chuan Liu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
4
|
Selvarajan I, Kiema M, Huang RT, Li J, Zhu J, Pölönen P, Örd T, Õunap K, Godiwala M, Golebiewski AK, Ravindran A, Mäklin K, Toropainen A, Stolze LK, Arce M, Magnusson PU, White S, Romanoski CE, Heinäniemi M, Laakkonen JP, Fang Y, Kaikkonen MU. Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro. Arterioscler Thromb Vasc Biol 2024; 44:1330-1345. [PMID: 38602103 PMCID: PMC11111333 DOI: 10.1161/atvbaha.123.318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Collapse
Affiliation(s)
- Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miika Kiema
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ru-Ting Huang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jin Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayu Zhu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mehvash Godiwala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna Kathryn Golebiewski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Aarthi Ravindran
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kiira Mäklin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stephen White
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona; Tucson, AZ 85721, USA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
6
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
8
|
Huang JB, Chen ZR, Yang SL, Hong FF. Nitric Oxide Synthases in Rheumatoid Arthritis. Molecules 2023; 28:molecules28114414. [PMID: 37298893 DOI: 10.3390/molecules28114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe joint damage and disability. However, the specific mechanism of RA has not been thoroughly clarified over the past decade. Nitric oxide (NO), a kind of gas messenger molecule with many molecular targets, is demonstrated to have significant roles in histopathology and homeostasis. Three nitric oxide synthases (NOS) are related to producing NO and regulating the generation of NO. Based on the latest studies, NOS/NO signaling pathways play a key role in the pathogenesis of RA. Overproduction of NO can induce the generation and release of inflammatory cytokines and act as free radical gas to accumulate and trigger oxidative stress, which can involve in the pathogenesis of RA. Therefore, targeting NOS and its upstream and downstream signaling pathways may be an effective approach to managing RA. This review clearly summarizes the NOS/NO signaling pathway, the pathological changes of RA, the involvement of NOS/NO in RA pathogenesis and the conventional and novel drugs based on NOS/NO signaling pathways that are still in clinical trials and have good therapeutic potential in recent years, with an aim to provide a theoretical basis for further exploration of the role of NOS/NO in the pathogenesis, prevention and treatment of RA.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Zhi-Ru Chen
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shu-Long Yang
- School of Basic Medical Sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Gogulamudi VR, Islam MT, Durrant JR, Adeyemo AO, Trott DW, Hyuhn MH, Zhu W, Donato AJ, Walker AE, Lesniewski LA. Heterozygosity for ADP-ribosylation factor 6 suppresses the burden and severity of atherosclerosis. PLoS One 2023; 18:e0285253. [PMID: 37163513 PMCID: PMC10171652 DOI: 10.1371/journal.pone.0285253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Atherosclerosis is the root cause of major cardiovascular diseases (CVD) such as myocardial infarction and stroke. ADP-ribosylation factor 6 (Arf6) is a ubiquitously expressed GTPase known to be involved in inflammation, vascular permeability and is sensitive to changes in shear stress. Here, using atheroprone, ApoE-/- mice, with a single allele deletion of Arf6 (HET) or wildtype Arf6 (WT), we demonstrate that reduction in Arf6 attenuates atherosclerotic plaque burden and severity. We found that plaque burden in the descending aorta was lower in HET compared to WT mice (p˂0.001) after the consumption of an atherogenic Paigen diet for 5 weeks. Likewise, luminal occlusion, necrotic core size, plaque grade, elastic lamina breaks, and matrix deposition were lower in the aortic root atheromas of HET compared to WT mice (all p≤0.05). We also induced advanced human-like complex atherosclerotic plaque in the left carotid artery using partial carotid ligation surgery and found that atheroma area, plaque grade, intimal necrosis, intraplaque hemorrhage, thrombosis, and calcification were lower in HET compared to WT mice (all p≤0.04). Our findings suggest that the atheroprotection afforded by Arf6 heterozygosity may result from reduced immune cell migration (all p≤0.005) as well as endothelial and vascular smooth muscle cell proliferation (both p≤0.001) but independent of changes in circulating lipids (all p≥0.40). These findings demonstrate a critical role for Arf6 in the development and severity of atherosclerosis and suggest that Arf6 inhibition can be explored as a novel therapeutic strategy for the treatment of atherosclerotic CVD.
Collapse
Affiliation(s)
- Venkateswara R. Gogulamudi
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, Utah, United States of America
| | - Jessica R. Durrant
- Dallas Tissue Research, Farmers Branch, Texas, Dallas, United States of America
| | - Adelola O. Adeyemo
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel W. Trott
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Utah, Salt Lake City, Utah, United States of America
| | - Mi Ho Hyuhn
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
| | - Weiquan Zhu
- Department of Internal Medicine, Division of Cardiovascular Medicine, The University of Utah, Salt Lake City, Utah, United States of America
- Department of Pathology, The University of Utah, Salt Lake City, Utah, United States of America
- Program of Molecular Medicine, The University of Utah, Salt Lake City, Utah, United States of America
| | - Anthony J. Donato
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, Utah, United States of America
- Department of Biochemistry, The University of Utah, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States of America
| | - Ashley E. Walker
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Physiology, The University of Oregon, Eugene, Oregon, United States of America
| | - Lisa A. Lesniewski
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, Utah, United States of America
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, Utah, United States of America
- Geriatric Research Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, Utah, United States of America
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
10
|
Pu L, Meng Q, Li S, Wang Y, Liu B. TXNRD1 knockdown inhibits the proliferation of endothelial cells subjected to oscillatory shear stress via activation of the endothelial nitric oxide synthase/apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119436. [PMID: 36754152 DOI: 10.1016/j.bbamcr.2023.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Hung CT, Tsai YW, Wu YS, Yeh CF, Yang KC. The novel role of ER protein TXNDC5 in the pathogenesis of organ fibrosis: mechanistic insights and therapeutic implications. J Biomed Sci 2022; 29:63. [PMID: 36050716 PMCID: PMC9438287 DOI: 10.1186/s12929-022-00850-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrosis-related disorders account for an enormous burden of disease-associated morbidity and mortality worldwide. Fibrosis is defined by excessive extracellular matrix deposition at fibrotic foci in the organ tissue following injury, resulting in abnormal architecture, impaired function and ultimately, organ failure. To date, there lacks effective pharmacological therapy to target fibrosis per se, highlighting the urgent need to identify novel drug targets against organ fibrosis. Recently, we have discovered the critical role of a fibroblasts-enriched endoplasmic reticulum protein disulfide isomerase (PDI), thioredoxin domain containing 5 (TXNDC5), in cardiac, pulmonary, renal and liver fibrosis, showing TXNDC5 is required for the activation of fibrogenic transforming growth factor-β signaling cascades depending on its catalytic activity as a PDI. Moreover, deletion of TXNDC5 in fibroblasts ameliorates organ fibrosis and preserves organ function by inhibiting myofibroblasts activation, proliferation and extracellular matrix production. In this review, we detailed the molecular and cellular mechanisms by which TXNDC5 promotes fibrogenesis in various tissue types and summarized potential therapeutic strategies targeting TXNDC5 to treat organ fibrosis.
Collapse
Affiliation(s)
- Chen-Ting Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yi-Wei Tsai
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yu-Shuo Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan. .,Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. .,Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Wang X, Li H, Chang X. The role and mechanism of TXNDC5 in diseases. Eur J Med Res 2022; 27:145. [PMID: 35934705 PMCID: PMC9358121 DOI: 10.1186/s40001-022-00770-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/20/2023] Open
Abstract
Thioredoxin domain-containing protein 5 (TXNDC5) is a member of the protein disulfide isomerase (PDI) family. It can promote the formation and rearrangement of disulfide bonds, ensuring proper protein folding. TXNDC5 has three Trx-like domains, which can act independently to introduce disulfide bonds rapidly and disorderly. TXNDC5 is abnormally expressed in various diseases, such as cancer, rheumatoid arthritis (RA), etc. It can protect cells from oxidative stress, promote cell proliferation, inhibit apoptosis and promote the progression of disease. Aberrant expression of TXNDC5 in different diseases suggests its role in disease diagnosis. In addition, targeting TXNDC5 in the treatment of diseases has shown promising application prospects. This article reviews the structure and function of TXNDC5 as well as its role and mechanism in cancer, RA and other diseases.
Collapse
Affiliation(s)
- Xueling Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China.
| |
Collapse
|
13
|
Thioredoxin Domain Containing 5 Suppression Elicits Serum Amyloid A-Containing High-Density Lipoproteins. Biomedicines 2022; 10:biomedicines10030709. [PMID: 35327511 PMCID: PMC8945230 DOI: 10.3390/biomedicines10030709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Thioredoxin domain containing 5 (TXNDC5) is a protein disulfide isomerase involved in several diseases related to oxidative stress, energy metabolism and cellular inflammation. In a previous manuscript, a negative association between fatty liver development and hepatic Txndc5 expression was observed. To study the role of TXNDC5 in the liver, we generated Txndc5-deficient mice. The absence of the protein caused an increased metabolic need to gain weight along with a bigger and fatter liver. RNAseq was performed to elucidate the putative mechanisms, showing a substantial liver overexpression of serum amyloid genes (Saa1, Saa2) with no changes in hepatic protein, but discrete plasma augmentation by the gene inactivation. Higher levels of malonyldialdehyde, apolipoprotein A1 and platelet activating factor-aryl esterase activity were also found in serum from Txndc5-deficient mice. However, no difference in the distribution of high-density lipoproteins (HDL)-mayor components and SAA was found between groups, and even the reactive oxygen species decreased in HDL coming from Txndc5-deficient mice. These results confirm the relation of this gene with hepatic steatosis and with a fasting metabolic derive remedying an acute phase response. Likewise, they pose a new role in modulating the nature of HDL particles, and SAA-containing HDL particles are not particularly oxidized.
Collapse
|