1
|
Tian L, Hossbach BM, Feussner I. Small size, big impact: Small molecules in plant systemic immune signaling. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102618. [PMID: 39153327 DOI: 10.1016/j.pbi.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.
Collapse
Affiliation(s)
- Lei Tian
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ben Moritz Hossbach
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany; Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany.
| |
Collapse
|
2
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024; 57:131-147. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
3
|
Cao L, Karapetyan S, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024; 385:1211-1217. [PMID: 39265009 PMCID: PMC11586058 DOI: 10.1126/science.adj7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Yang P, Yuan P, Liu W, Zhao Z, Bernier MC, Zhang C, Adhikari A, Opiyo SO, Zhao L, Banks F, Xia Y. Plant Growth Promotion and Plant Disease Suppression Induced by Bacillus amyloliquefaciens Strain GD4a. PLANTS (BASEL, SWITZERLAND) 2024; 13:672. [PMID: 38475518 DOI: 10.3390/plants13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Botrytis cinerea, the causative agent of gray mold disease (GMD), invades plants to obtain nutrients and disseminates through airborne conidia in nature. Bacillus amyloliquefaciens strain GD4a, a beneficial bacterium isolated from switchgrass, shows great potential in managing GMD in plants. However, the precise mechanism by which GD4a confers benefits to plants remains elusive. In this study, an A. thaliana-B. cinerea-B. amyloliquefaciens multiple-scale interaction model was used to explore how beneficial bacteria play essential roles in plant growth promotion, plant pathogen suppression, and plant immunity boosting. Arabidopsis Col-0 wild-type plants served as the testing ground to assess GD4a's efficacy. Additionally, bacterial enzyme activity and targeted metabolite tests were conducted to validate GD4a's potential for enhancing plant growth and suppressing plant pathogens and diseases. GD4a was subjected to co-incubation with various bacterial, fungal, and oomycete pathogens to evaluate its antagonistic effectiveness in vitro. In vivo pathogen inoculation assays were also carried out to investigate GD4a's role in regulating host plant immunity. Bacterial extracellular exudate (BEE) was extracted, purified, and subjected to untargeted metabolomics analysis. Benzocaine (BEN) from the untargeted metabolomics analysis was selected for further study of its function and related mechanisms in enhancing plant immunity through plant mutant analysis and qRT-PCR analysis. Finally, a comprehensive model was formulated to summarize the potential benefits of applying GD4a in agricultural systems. Our study demonstrates the efficacy of GD4a, isolated from switchgrass, in enhancing plant growth, suppressing plant pathogens and diseases, and bolstering host plant immunity. Importantly, GD4a produces a functional bacterial extracellular exudate (BEE) that significantly disrupts the pathogenicity of B. cinerea by inhibiting fungal conidium germination and hypha formation. Additionally, our study identifies benzocaine (BEN) as a novel small molecule that triggers basal defense, ISR, and SAR responses in Arabidopsis plants. Bacillus amyloliquefaciens strain GD4a can effectively promote plant growth, suppress plant disease, and boost plant immunity through functional BEE production and diverse gene expression.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fredrekis Banks
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Ma L, Zhang X, Deng Z, Zhang P, Wang T, Li R, Li J, Cheng K, Wang J, Ma N, Qu G, Zhu B, Fu D, Luo Y, Li F, Zhu H. Dicer-like2b suppresses the wiry leaf phenotype in tomato induced by tobacco mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1737-1747. [PMID: 37694805 DOI: 10.1111/tpj.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peiyu Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tian Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ran Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jubin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
8
|
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Commun 2023; 14:6848. [PMID: 37891163 PMCID: PMC10611778 DOI: 10.1038/s41467-023-42629-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Mingxi Zhou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
10
|
Yang Q, Wang J, Zhang S, Zhan Y, Shen J, Chang F. ARF3-Mediated Regulation of SPL in Early Anther Morphogenesis: Maintaining Precise Spatial Distribution and Expression Level. Int J Mol Sci 2023; 24:11740. [PMID: 37511499 PMCID: PMC10380544 DOI: 10.3390/ijms241411740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Early anther morphogenesis is a crucial process for male fertility in plants, governed by the transcription factor SPL. While the involvement of AGAMOUS (AG) in SPL activation and microsporogenesis initiation is well established, our understanding of the mechanisms governing the spatial distribution and precise expression of SPL during anther cell fate determination remains limited. Here, we present novel findings on the abnormal phenotypes of two previously unreported SPL mutants, spl-4 and spl-5, during anther morphogenesis. Through comprehensive analysis, we identified ARF3 as a key upstream regulator of SPL. Our cytological experiments demonstrated that ARF3 plays a critical role in restricting SPL expression specifically in microsporocytes. Moreover, we revealed that ARF3 directly binds to two specific auxin response elements on the SPL promoter, effectively suppressing AG-mediated activation of SPL. Notably, the arf3 loss-of-function mutant exhibits phenotypic similarities to the SPL overexpression mutant (spl-5), characterized by defective adaxial anther lobes. Transcriptomic analysis revealed differential expression of the genes involved in the morphogenesis pathway in both arf3 and spl mutants, with ARF3 and SPL exhibited opposing regulatory effects on this pathway. Taken together, our study unveils the precise role of ARF3 in restricting the spatial expression and preventing aberrant SPL levels during early anther morphogenesis, thereby ensuring the fidelity of the critical developmental process in plants.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianzheng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shiting Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuyuan Zhan
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingting Shen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:570-587. [PMID: 36917011 DOI: 10.1111/mpp.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Mansi Singh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
13
|
Kim TJ, Lim GH. Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:1013. [PMID: 36903874 PMCID: PMC10005269 DOI: 10.3390/plants12051013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Systemic acquired resistance (SAR) occurs when primary infected leaves produce several SAR-inducing chemical or mobile signals that are transported to uninfected distal parts via apoplastic or symplastic compartments and activate systemic immunity. The transport route of many chemicals associated with SAR is unknown. Recently, it was demonstrated that pathogen-infected cells preferentially transport salicylic acid (SA) through the apoplasts to uninfected areas. The pH gradient and deprotonation of SA may lead to apoplastic accumulation of SA before it accumulates in the cytosol following pathogen infection. Additionally, SA mobility over a long distance is essential for SAR, and transpiration controls the partitioning of SA into apoplasts and cuticles. On the other hand, glycerol-3-phosphate (G3P) and azelaic acid (AzA) travel via the plasmodesmata (PD) channel in the symplastic route. In this review, we discuss the role of SA as a mobile signal and the regulation of SA transport in SAR.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Lim GH. Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. THE PLANT PATHOLOGY JOURNAL 2023; 39:21-27. [PMID: 36760046 PMCID: PMC9929166 DOI: 10.5423/ppj.rw.10.2022.0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
15
|
Shi J, Jiang Q, Zhang S, Dai X, Wang F, Ma Y. MIR390 Is Involved in Regulating Anthracnose Resistance in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:3299. [PMID: 36501336 PMCID: PMC9736487 DOI: 10.3390/plants11233299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As an important cash crop in China, apple has a good flavor and is rich in nutrients. Fungal attacks have become a major obstacle in apple cultivation. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in apple. Thus, discovering resistance genes in response to C. gloeosporioides may aid in designing safer control strategies and facilitate the development of apple resistance breeding. A previous study reported that 'Hanfu' autotetraploid apple displayed higher C. gloeosporioides resistance than 'Hanfu' apple, and the expression level of mdm-MIR390b was significantly upregulated in autotetraploid plants compared to that in 'Hanfu' plants, as demonstrated by digital gene expression (DGE) analysis. It is still unclear, however, whether mdm-MIR390b regulates apple anthracnose resistance. Apple MIR390b was transformed into apple 'GL-3' plants to identify the functions of mdm-MIR390b in anthracnose resistance. C. gloeosporioides treatment analysis indicated that the overexpression of mdm-MIR390b reduced fungal damage to apple leaves and fruit. Physiology analysis showed that mdm-MIR390b increased C. gloeosporioides resistance by improving superoxide dismutase (SOD) and peroxidase (POD) activity to alleviate the damage caused by O2- and H2O2. Our results demonstrate that mdm-MIR390b can improve apple plants' anthracnose resistance.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Jiang
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
16
|
Gong Q, Wang Y, Jin Z, Hong Y, Liu Y. Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. STRESS BIOLOGY 2022; 2:33. [PMID: 37676459 PMCID: PMC10441928 DOI: 10.1007/s44154-022-00057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Zhenhui Jin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|