1
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Ye C, Dai Q, Deng L, Huang H. Therapeutic potential of thymosin beta 4 in a variety of diseases. Asian J Surg 2024; 47:4865. [PMID: 38824027 DOI: 10.1016/j.asjsur.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Affiliation(s)
- Chaoqun Ye
- Children's Hospital Affiliated to Anhui Medical University /The Fifth Clinical College of Anhui Medical University, Anhui, Hefei, 230022, China.
| | - Qingmei Dai
- Children's Hospital Affiliated to Anhui Medical University /The Fifth Clinical College of Anhui Medical University, Anhui, Hefei, 230022, China.
| | - Luyao Deng
- Children's Hospital Affiliated to Anhui Medical University /The Fifth Clinical College of Anhui Medical University, Anhui, Hefei, 230022, China.
| | - Huizhi Huang
- Children's Hospital Affiliated to Anhui Medical University /The Fifth Clinical College of Anhui Medical University, Anhui, Hefei, 230022, China.
| |
Collapse
|
3
|
Deng C, Qin C, Li Z, Lu L, Tong Y, Yuan J, Yin F, Cheng Y, Wu C. Diatomite-incorporated hierarchical scaffolds for osteochondral regeneration. Bioact Mater 2024; 38:305-320. [PMID: 38745590 PMCID: PMC11091463 DOI: 10.1016/j.bioactmat.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Osteochondral regeneration involves the highly challenging and complex reconstruction of cartilage and subchondral bone. Silicon (Si) ions play a crucial role in bone development. Current research on Si ions mainly focuses on bone repair, by using silicate bioceramics with complex ion compositions. However, it is unclear whether the Si ions have important effect on cartilage regeneration. Developing a scaffold that solely releases Si ions to simultaneously promote subchondral bone repair and stimulate cartilage regeneration is critically important. Diatomite (DE) is a natural diatomaceous sediment that can stably release Si ions, known for its abundant availability, low cost, and environmental friendliness. Herein, a hierarchical osteochondral repair scaffold is uniquely designed by incorporating gradient DE into GelMA hydrogel. The adding DE microparticles provides a specific Si source for controlled Si ions release, which not only promotes osteogenic differentiation of rBMSCs (rabbit bone marrow mesenchymal stem cells) but also enhances proliferation and maturation of chondrocytes. Moreover, DE-incorporated hierarchical scaffolds significantly promoted the regeneration of cartilage and subchondral bone. The study suggests the significant role of Si ions in promoting cartilage regeneration and solidifies their foundational role in enhancing bone repair. Furthermore, it offers an economic and eco-friendly strategy for developing high value-added osteochondral regenerative bioscaffolds from low-value ocean natural materials.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yifan Tong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Jiaqi Yuan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai, 200032, PR China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, PR China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
4
|
Zhang X, Wang X, Yuan P, Ma C, Wang Y, Zhang Z, Wang P, Zhao Y, Wu W. A 3D-Printed Cuttlefish Bone Elastomeric Sponge Rapidly Controlling Noncompressible Hemorrhage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307041. [PMID: 38072798 DOI: 10.1002/smll.202307041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Indexed: 05/12/2024]
Abstract
Developing a self-expanding hemostatic sponge with high blood absorption and rapid shape recovery for noncompressible hemorrhage remains a challenge. In this study, a 3D-printed cuttlefish bone elastomeric sponge (CBES) is fabricated, which combined ordered channels and porous structures, presented tunable mechanical strength, and shape memory potentials. The incorporation of cuttlefish bone powder (CBp) plays key roles in concentrating blood components, promoting aggregation of red blood cells and platelets, and activating platelets, which makes CBES show enhanced hemostatic performance compared with commercial gelatin sponges in vivo. Moreover, CBES promotes more histiocytic infiltration and neovascularization in the early stage of degradation than gelatin sponges, which is conducive to the regeneration and repair of injured tissue. To conclude, CBp loaded 3D-printed elastomeric sponges can promote coagulation, present the potential to guide tissue healing, and broaden the hemostatic application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuqiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Cheng D, Lian W, Wang T, Xi S, Jia X, Li Z, Xiong H, Wang Y, Sun W, Zhou S, Peng L, Han L, Liu Y, Ni C. The interplay of Cxcl10 +/Mmp14 + monocytes and Ccl3 + neutrophils proactively mediates silica-induced pulmonary fibrosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133713. [PMID: 38335607 DOI: 10.1016/j.jhazmat.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang 320700, China.
| |
Collapse
|
6
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
7
|
Fahad MAA, Lee HY, Park S, Choi M, Shanto PC, Park M, Bae SH, Lee BT. Small-diameter vascular graft composing of core-shell structured micro-nanofibers loaded with heparin and VEGF for endothelialization and prevention of neointimal hyperplasia. Biomaterials 2024; 306:122507. [PMID: 38367300 DOI: 10.1016/j.biomaterials.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Despite the significant progress made in recent years, clinical issues with small-diameter vascular grafts related to low mechanical strength, thrombosis, intimal hyperplasia, and insufficient endothelialization remain unresolved. This study aims to design and fabricate a core-shell fibrous small-diameter vascular graft by co-axial electrospinning process, which will mechanically and biologically meet the benchmarks for blood vessel replacement. The presented graft (PGHV) comprised polycaprolactone/gelatin (shell) loaded with heparin-VEGF and polycaprolactone (core). This study hypothesized that the shell structure of the fibers would allow rapid degradation to release heparin-VEGF, and the core would provide mechanical strength for long-term application. Physico-mechanical evaluation, in vitro biocompatibility, and hemocompatibility assays were performed to ensure safe in vivo applications. After 25 days, the PGHV group released 79.47 ± 1.54% of heparin and 86.25 ± 1.19% of VEGF, and degradation of the shell was observed but the core remained pristine. Both the control (PG) and PGHV groups demonstrated robust mechanical properties. The PGHV group showed excellent biocompatibility and hemocompatibility compared to the PG group. After four months of rat aorta implantation, PGHV exhibited smooth muscle cell regeneration and complete endothelialization with a patency rate of 100%. The novel core-shell structured graft could be pivotal in vascular tissue regeneration application.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Minji Choi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
8
|
Johnston A, Callanan A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics (Basel) 2023; 8:205. [PMID: 37218791 PMCID: PMC10204517 DOI: 10.3390/biomimetics8020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The limited regenerative capacity of the human body, in conjunction with a shortage of healthy autologous tissue, has created an urgent need for alternative grafting materials. A potential solution is a tissue-engineered graft, a construct which supports and integrates with host tissue. One of the key challenges in fabricating a tissue-engineered graft is achieving mechanical compatibility with the graft site; a disparity in these properties can shape the behaviour of the surrounding native tissue, contributing to the likelihood of graft failure. The purpose of this review is to examine the means by which researchers have altered the mechanical properties of tissue-engineered constructs via hybrid material usage, multi-layer scaffold designs, and surface modifications. A subset of these studies which has investigated the function of their constructs in vivo is also presented, followed by an examination of various tissue-engineered designs which have been clinically translated.
Collapse
Affiliation(s)
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
9
|
Kong B, Zhao Y. 3D Bioprinting for Biomedical Applications. BME FRONTIERS 2023; 4:0010. [PMID: 37849677 PMCID: PMC10521671 DOI: 10.34133/bmef.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
- Bin Kong
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|