1
|
Zhong H, Zhang Z, Wang M, Fang Y, Liu K, Yin J, Wu J, Du J. Bioactive electrospun polylactic acid/chlorogenic acid-modified chitosan bilayer sponge for acute infection wound healing and rapid coagulation. Biomater Sci 2024. [PMID: 39704054 DOI: 10.1039/d4bm01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Acute severe trauma is often associated with rapid blood loss and a high risk of infection. Based on these concerns, this study successfully constructed a multifunctional dual-layer bioactive sponge PCCT with rapid hemostatic and infection-preventing ability. Its external surface is an electrospun poly(lactic acid) (PLA) nanofiber thin film layer, which ensures its high air permeability and effectively protects against external bacterial invasion. In vitro results showed that the film is effectively resistant to invasion by typical Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. The inner sponge layer was formed by chlorogenic acid (CGA) grafted with chitosan (CS) and loaded with tranexamic acid (TA). The abundant cationic groups on the sponge interacted with negatively charged erythrocytes and achieved rapid hemostasis at the wound site under the action of TA. In addition, the high porosity and bioactivity of the CS-CGA sponge scaffold endowed the hydrogel with good water absorption, antibacterial properties and anti-inflammatory activity, which effectively accelerated the healing of acute infected wounds in rats and demonstrated favorable biosafety.
Collapse
Affiliation(s)
- Huiling Zhong
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Zhen Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Mohong Wang
- Equipment department, The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen 518000, China
| | - Yifei Fang
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Ke Liu
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jun Wu
- The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China.
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Jianhang Du
- Medical Research center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Balmes A, Rodríguez JG, Seifert J, Pinto-Quintero D, Khawaja AA, Boffito M, Frye M, Friebe A, Emerson M, Seta F, Feil R, Feil S, Schäffer TE. Role of the NO-GC/cGMP signaling pathway in platelet biomechanics. Platelets 2024; 35:2313359. [PMID: 38353233 DOI: 10.1080/09537104.2024.2313359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.
Collapse
Affiliation(s)
- Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Johanna G Rodríguez
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jan Seifert
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Daniel Pinto-Quintero
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany
| | - Akif A Khawaja
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Marta Boffito
- Department of Infectious Disease, Imperial College London, London, UK
- St Stephen's Centre, Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Maike Frye
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Friebe
- Physiological Institute, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Michael Emerson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Francesca Seta
- Vascular Biology Section, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Vollherbst J, Zaninetti C, Greinacher A, Dürken M. Disarrangement of Platelet Cytoskeleton might contribute to Hemorrhagic Diathesis in Scurvy. Thromb Haemost 2024. [PMID: 39299272 DOI: 10.1055/a-2418-7823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Johanna Vollherbst
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carlo Zaninetti
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Dürken
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Shen K, Chen T, Xiao M. MYH9-related inherited thrombocytopenia: the genetic spectrum, underlying mechanisms, clinical phenotypes, diagnosis, and management approaches. Res Pract Thromb Haemost 2024; 8:102552. [PMID: 39309229 PMCID: PMC11415342 DOI: 10.1016/j.rpth.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Inherited thrombocytopenias have been considered exceedingly rare for a long time, but recent advances have facilitated diagnosis and greatly enabled the discovery of new causative genes. MYH9-related disease (MYH9-RD) represents one of the most frequent forms of inherited thrombocytopenia, usually presenting with nonspecific clinical manifestations, which renders it difficult to establish an accurate diagnosis. MYH9-RD is an autosomal dominant-inherited thrombocytopenia caused by deleterious variants in the MYH9 gene encoding the heavy chain of nonmuscle myosin IIA. Patients with MYH9-RD usually present with thrombocytopenia and platelet macrocytosis at birth or in infancy, and most of them may develop one or more extrahematologic manifestations of progressive nephritis, sensorial hearing loss, presenile cataracts, and elevated liver enzymatic levels during childhood and adult life. Here, we have reviewed recent advances in the study of MYH9-RD, which aims to provide an updated and comprehensive summary of the current knowledge and improve our understanding of the genetic spectrum, underlying mechanisms, clinical phenotypes, diagnosis, and management approaches of this rare disease. Importantly, our goal is to enable physicians to better understand this rare disease and highlight the critical role of genetic etiologic analysis in ensuring accurate diagnosis, clinical management, and genetic counseling while avoiding ineffective and potentially harmful therapies for MYH9-RD patients.
Collapse
Affiliation(s)
- Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Chen
- Department of Ophthalmology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, Wang Y, Wang Y, Zhou H. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421763. [PMID: 39149512 PMCID: PMC11325155 DOI: 10.3389/fcell.2024.1421763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.
Collapse
Affiliation(s)
- Zixuan Gou
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ye Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Sisario D, Spindler M, Ermer KJ, Grütz N, Nicolai L, Gaertner F, Machesky LM, Bender M. Differential Role of the RAC1-Binding Proteins FAM49b (CYRI-B) and CYFIP1 in Platelets. Cells 2024; 13:299. [PMID: 38391912 PMCID: PMC10886774 DOI: 10.3390/cells13040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Platelet function at vascular injury sites is tightly regulated through the actin cytoskeleton. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex (WRC) activates lamellipodia formation via ARP2/3, initiated by GTP-bound RAC1 interacting with the WRC subunit CYFIP1. The protein FAM49b (Family of Unknown Function 49b), also known as CYRI-B (CYFIP-Related RAC Interactor B), has been found to interact with activated RAC1, leading to the negative regulation of the WRC in mammalian cells. To investigate the role of FAM49b in platelet function, we studied platelet-specific Fam49b-/--, Cyfip1-/--, and Cyfip1/Fam49b-/--mice. Platelet counts and activation of Fam49b-/- mice were comparable to those of control mice. On fully fibrinogen-coated surfaces, Fam49b-/--platelets spread faster with an increased mean projected cell area than control platelets, whereas Cyfip1/Fam49b-/--platelets did not form lamellipodia, phenocopying the Cyfip1-/--platelets. However, Fam49b-/--platelets often assumed a polarized shape and were more prone to migrate on fibrinogen-coated surfaces. On 2D structured micropatterns, however, Fam49b-/--platelets displayed reduced spreading, whereas spreading of Cyfip1-/-- and Cyfip1/Fam49b-/--platelets was enhanced. In summary, FAM49b contributes to the regulation of morphology and migration of spread platelets, but to exert its inhibitory effect on actin polymerization, the functional WAVE complex must be present.
Collapse
Affiliation(s)
- Dmitri Sisario
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Katharina J. Ermer
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Noah Grütz
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig, Maximilian University, 81377 Munich, Germany (F.G.)
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Florian Gaertner
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig, Maximilian University, 81377 Munich, Germany (F.G.)
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, 81377 Munich, Germany
| | - Laura M. Machesky
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Markus Bender
- Institute of Experimental Biomedicine–Chair I, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Kenny M, Pollitt AY, Patil S, Hiebner DW, Smolenski A, Lakic N, Fisher R, Alsufyani R, Lickert S, Vogel V, Schoen I. Contractility defects hinder glycoprotein VI-mediated platelet activation and affect platelet functions beyond clot contraction. Res Pract Thromb Haemost 2024; 8:102322. [PMID: 38379711 PMCID: PMC10877441 DOI: 10.1016/j.rpth.2024.102322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Background Active and passive biomechanical properties of platelets contribute substantially to thrombus formation. Actomyosin contractility drives clot contraction required for stabilizing the hemostatic plug. Impaired contractility results in bleeding but is difficult to detect using platelet function tests. Objectives To determine how diminished myosin activity affects platelet functions, including and beyond clot contraction. Methods Using the myosin IIA-specific pharmacologic inhibitor blebbistatin, we modulated myosin activity in platelets from healthy donors and systematically characterized platelet responses at various levels of inhibition by interrogating distinct platelet functions at each stage of thrombus formation using a range of complementary assays. Results Partial myosin IIA inhibition neither affected platelet von Willebrand factor interactions under arterial shear nor platelet spreading and cytoskeletal rearrangements on fibrinogen. However, it impacted stress fiber formation and the nanoarchitecture of cell-matrix adhesions, drastically reducing and limiting traction forces. Higher blebbistatin concentrations impaired platelet adhesion under flow, altered mechanosensing at lamellipodia edges, and eliminated traction forces without affecting platelet spreading, α-granule secretion, or procoagulant platelet formation. Unexpectedly, myosin IIA inhibition reduced calcium influx, dense granule secretion, and platelet aggregation downstream of glycoprotein (GP)VI and limited the redistribution of GPVI on the cell membrane, whereas aggregation induced by adenosine diphosphate or arachidonic acid was unaffected. Conclusion Our findings highlight the importance of both active contractile and passive crosslinking roles of myosin IIA in the platelet cytoskeleton. They support the hypothesis that highly contractile platelets are needed for hemostasis and further suggest a supportive role for myosin IIA in GPVI signaling.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice Y. Pollitt
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dishon W. Hiebner
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Albert Smolenski
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Natalija Lakic
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Fisher
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Reema Alsufyani
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sebastian Lickert
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Brysland SA, Hearn JI, Gardiner EE. Is glycoprotein VI involved in contractual negotiations? Res Pract Thromb Haemost 2024; 8:102329. [PMID: 38404946 PMCID: PMC10883811 DOI: 10.1016/j.rpth.2024.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Simone A. Brysland
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - James I. Hearn
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review highlights how the perception of platelet function is evolving based on recent insights into platelet mechanobiology. RECENT FINDINGS The mechanosensitive ion channel Piezo1 mediates activation of free-flowing platelets under conditions of flow acceleration through mechanisms independent of adhesion receptors and classical activation pathways. Interference with the initiation of platelet migration or with the phenotypic switch of migrating platelets to a procoagulant state aggravates inflammatory bleeding. Mechanosensing of biochemical and biophysical microenvironmental cues during thrombus formation feed into platelet contractile force generation. Measurements of single platelet contraction and bulk clot retraction show promise to identify individuals at risk for hemorrhage. SUMMARY New findings unravel novel mechanotransduction pathways and effector functions in platelets, establishing mechanobiology as a pivotal component of platelet function. These insights highlight limitations of existing treatments and offer new potential therapeutic approaches and diagnostic avenues based on mechanobiological principles. Further extensive research is required to distinguish between core hemostatic and pathological mechanisms influenced by platelet mechanosensing.
Collapse
Affiliation(s)
- Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| | - Martin Kenny
- UCD Conway SPHERE Research Group
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Smita Patil
- School of Pharmacy and Biomolecular Sciences
- Irish Centre for Vascular Biology
| |
Collapse
|
10
|
Cao Q, Zhu H, Xu W, Zhang R, Wang Y, Tian Z, Yuan Y. Predicting the efficacy of glucocorticoids in pediatric primary immune thrombocytopenia using plasma proteomics. Front Immunol 2023; 14:1301227. [PMID: 38162645 PMCID: PMC10757608 DOI: 10.3389/fimmu.2023.1301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Primary immune thrombocytopenia (ITP) is the most common acquired autoimmune bleeding disorder among children. While glucocorticoids are the primary first-line treatment for ITP treatment, they prove ineffective in certain patients. The challenge of identifying biomarkers capable of early prediction regarding the response to glucocorticoid therapy in ITP persists. This study aimed to identify ideal biomarkers for predicting glucocorticoid efficacy in patients with ITP using plasma proteomics. Methods A four-dimensional data-independent acquisition approach was performed to determine the differentially expressed proteins in plasma samples collected from glucocorticoid-sensitive (GCS) (n=18) and glucocorticoid-resistant (GCR) (n=17) children with ITP treated with prednisone. The significantly differentially expressed proteins were selected for enzyme-linked immunosorbent assay validation in a cohort conprising 65 samples(30 healthy controls, 18 GCS and 17 GCR children with ITP). Receiver operating characteristics curves, calibration curves, and clinical decision curve analysis were used to determine the diagnostic efficacy of this method. Results 47 differentially expressed proteins (36 up-regulated and 11 down-regulated) were identified in the GCR group compared with the GCS group. The significantly differentially expressed proteins myosin heavy chain 9 (MYH9) and fetuin B (FETUB) were selected for enzyme-linked immunosorbent assay validation. The validation results were consistent with the proteomics analyses. Compared with the GCS group, the GCR group exhibited a significantly reduced the plasma concentration of MYH9 and elevated the plasma concentration of FETUB. Furthermore, the receiver operating characteristics curves, calibration curves, and clinical decision curve analysis demonstrated good diagnostic efficacy of these validated biomarkers. Conclusion This study contributes to the establishment of objective biological indicators for precision therapy in children with ITP. More importantly, the proteins MYH9 and FETUB hold potential as a foundation for making informed decisions regarding alternative treatments for drugresistant patients, thereby preventing treatment delays.
Collapse
Affiliation(s)
- Qingqing Cao
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Haiyan Zhu
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Wei Xu
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Rongrong Zhang
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Yun Wang
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Yufang Yuan
- Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
11
|
Lassila R, Weisel JW. Role of red blood cells in clinically relevant bleeding tendencies and complications. J Thromb Haemost 2023; 21:3024-3032. [PMID: 37210074 PMCID: PMC10949759 DOI: 10.1016/j.jtha.2023.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
The multiple roles of red blood cells (RBCs) are often neglected as contributors in hemostasis and thrombosis. Proactive opportunities to increase RBC numbers, either acutely or subacutely in the case of iron deficiency, are critical as RBCs are the cellular elements that initiate hemostasis together with platelets and stabilize fibrin and clot structure. RBCs also possess several functional properties to assist hemostasis: releasing platelet agonists, promoting shear force-induced von Willebrand factor unfolding, procoagulant capacity, and binding to fibrin. Additionally, blood clot contraction is important to compress RBCs to form a tightly packed array of polyhedrocytes, making an impermeable seal for hemostasis. All these functions are important for patients having intrinsically poor capacity to cease bleeds (ie, hemostatic disorders) but, conversely, can also play a role in thrombosis if these RBC-mediated reactions overshoot. One acquired example of bleeding with anemia is in patients treated with anticoagulants and/or antithrombotic medication because upon initiation of these drugs, baseline anemia doubles the risk of bleeding complications and mortality. Also, anemia is a risk factor for reoccurring gastrointestinal and urogenital bleeds, pregnancy, and delivery complications. This review summarizes the clinically relevant properties and profiles of RBCs at various steps of platelet adhesion, aggregation, thrombin generation, and fibrin formation, including both structural and functional elements. Regarding patient blood management guidelines, they support minimizing transfusions, but this approach does not deal with severe inherited and acquired bleeding disorders where a poor hemostatic propensity is exacerbated by limited RBC availability, for which future guidance will be needed.
Collapse
Affiliation(s)
- Riitta Lassila
- Research Program Unit in Systems Oncology, Oncosys, Medical Faculty, University of Helsinki, Helsinki, Finland; Coagulation Disorders Unit, Department of Hematology, Helsinki University Hospital, Helsinki, Finland.
| | - John W Weisel
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Chen Z, Yan X, Miao C, Liu L, Liu S, Xia Y, Fang W, Zheng D, Luo Q. Targeting MYH9 represses USP14-mediated NAP1L1 deubiquitination and cell proliferation in glioma. Cancer Cell Int 2023; 23:220. [PMID: 37770914 PMCID: PMC10540345 DOI: 10.1186/s12935-023-03050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/03/2023] [Indexed: 09/30/2023] Open
Abstract
Myosin heavy chain 9 (MYH9) plays an important role in a number of diseases. Nevertheless, the function of MYH9 in glioma is unclear. The present research aimed to investigate the role of MYH9 in glioma and determine whether MYH9 is involved in the temozolomide chemoresistance of glioma cells. Our results showed that MYH9 increased the proliferation and temozolomide resistance of glioma cells. The mechanistic experiments showed that the binding of MYH9 to NAP1L1, a potential promoter of tumor proliferation, inhibited the ubiquitination and degradation of NAP1L1 by recruiting USP14. Upregulation of NAP1L1 increased its binding with c-Myc and activated c-Myc, which induced the expression of CCND1/CDK4, promoting glioma cell temozolomide resistance and proliferation. Additionally, we found that MYH9 upregulation was strongly related to patient survival and is therefore a negative factor for patients with glioma. Altogether, our results show that MYH9 plays a role in glioma progression by regulating NAP1L1 deubiquitination. Thus, targeting MYH9 is a potential therapeutic strategy for the clinical treatment of glioma in the future.
Collapse
Affiliation(s)
- Zigui Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang ST, Guangzhou, 510315, China
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China
| | - Xin Yan
- Department of neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 53300, China
| | - Changfeng Miao
- Department of Laboratory Medicine, Neurosurgery Second Branche, Hunan Provincial People ' s Hospital, The First affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410005, China
| | - Longyang Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang ST, Guangzhou, 510315, China
| | - Su Liu
- Department of encephalopathy, Liuyang Hospital of Traditional Chinese Medicine, Liuyang, Hunan, 410300, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 570208, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang ST, Guangzhou, 510315, China.
| | - Dandan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310009, China.
| | - Qisheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang ST, Guangzhou, 510315, China.
- Department of neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 53300, China.
| |
Collapse
|
13
|
Park C, Hahn O, Gupta S, Moreno AJ, Marino F, Kedir B, Wang D, Villeda SA, Wyss-Coray T, Dubal DB. Platelet factors are induced by longevity factor klotho and enhance cognition in young and aging mice. NATURE AGING 2023; 3:1067-1078. [PMID: 37587231 PMCID: PMC10501899 DOI: 10.1038/s43587-023-00468-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Platelet factors regulate wound healing and can signal from the blood to the brain1,2. However, whether platelet factors modulate cognition, a highly valued and central manifestation of brain function, is unknown. Here we show that systemic platelet factor 4 (PF4) permeates the brain and enhances cognition. We found that, in mice, peripheral administration of klotho, a longevity and cognition-enhancing protein3-7, increased the levels of multiple platelet factors in plasma, including PF4. A pharmacologic intervention that inhibits platelet activation blocked klotho-mediated cognitive enhancement, indicating that klotho may require platelets to enhance cognition. To directly test the effects of platelet factors on the brain, we treated mice with vehicle or systemic PF4. In young mice, PF4 enhanced synaptic plasticity and cognition. In old mice, PF4 decreased cognitive deficits and restored aging-induced increases of select factors associated with cognitive performance in the hippocampus. The effects of klotho on cognition were still present in mice lacking PF4, suggesting this platelet factor is sufficient to enhance cognition but not necessary for the effects of klotho-and that other unidentified factors probably contribute. Augmenting platelet factors, possible messengers of klotho, may enhance cognition in the young brain and decrease cognitive deficits in the aging brain.
Collapse
Affiliation(s)
- Cana Park
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, USA
| | - Blen Kedir
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- The Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Oshinowo O, Azer SS, Lin J, Lam WA. Why platelet mechanotransduction matters for hemostasis and thrombosis. J Thromb Haemost 2023; 21:2339-2353. [PMID: 37331517 PMCID: PMC10529432 DOI: 10.1016/j.jtha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Mechanotransduction is the ability of cells to "feel" or sense their mechanical microenvironment and integrate and convert these physical stimuli into adaptive biochemical cellular responses. This phenomenon is vital for the physiology of numerous nucleated cell types to affect their various cellular processes. As the main drivers of hemostasis and clot retraction, platelets also possess this ability to sense the dynamic mechanical microenvironments of circulation and convert those signals into biological responses integral to clot formation. Like other cell types, platelets leverage their "hands" or receptors/integrins to mechanotransduce important signals in responding to vascular injury to achieve hemostasis. The clinical relevance of cellular mechanics and mechanotransduction is imperative as pathologic alterations or aberrant mechanotransduction in platelets has been shown to lead to bleeding and thrombosis. As such, the aim of this review is to provide an overview of the most recent research related to platelet mechanotransduction, from platelet generation to platelet activation, within the hemodynamic environment and clot contraction at the site of vascular injury, thereby covering the entire "life cycle" of platelets. Additionally, we describe the key mechanoreceptors in platelets and discuss the new biophysical techniques that have enabled the field to understand how platelets sense and respond to their mechanical microenvironment via those receptors. Finally, the clinical significance and importance of continued exploration of platelet mechanotransduction have been discussed as the key to better understanding of both thrombotic and bleeding disorders lies in a more complete mechanistic understanding of platelet function by way of mechanotransduction.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Sally S Azer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Jessica Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA; Children's Healthcare of Atlanta Inc, Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Pontarollo G, Reinhardt C. The hemorrhage risk of dasatinib therapy. Blood 2023; 141:2917-2918. [PMID: 37318908 DOI: 10.1182/blood.2023020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
|
16
|
Schurr Y, Reil L, Spindler M, Nieswandt B, Machesky LM, Bender M. The WASH-complex subunit Strumpellin regulates integrin αIIbβ3 trafficking in murine platelets. Sci Rep 2023; 13:9526. [PMID: 37308549 PMCID: PMC10260982 DOI: 10.1038/s41598-023-36387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The platelet specific integrin αIIbβ3 mediates platelet adhesion, aggregation and plays a central role in thrombosis and hemostasis. In resting platelets, αIIbβ3 is expressed on the membrane surface and in intracellular compartments. Upon activation, the number of surface-expressed αIIbβ3 is increased by the translocation of internal granule pools to the plasma membrane. The WASH complex is the major endosomal actin polymerization-promoting complex and has been implicated in the generation of actin networks involved in endocytic trafficking of integrins in other cell types. The role of the WASH complex and its subunit Strumpellin in platelet function is still unknown. Here, we report that Strumpellin-deficient murine platelets display an approximately 20% reduction in integrin αIIbβ3 surface expression. While exposure of the internal αIIbβ3 pool after platelet activation was unaffected, the uptake of the αIIbβ3 ligand fibrinogen was delayed. The number of platelet α-granules was slightly but significantly increased in Strumpellin-deficient platelets. Quantitative proteome analysis of isolated αIIbβ3-positive vesicular structures revealed an enrichment of protein markers, which are associated with the endoplasmic reticulum, Golgi complex and early endosomes in Strumpellin-deficient platelets. These results point to a so far unidentified role of the WASH complex subunit Strumpellin in integrin αIIbβ3 trafficking in murine platelets.
Collapse
Affiliation(s)
- Yvonne Schurr
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Lucy Reil
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Laura M Machesky
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Markus Bender
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
17
|
Li X, Wang W, Ni X, Cheng D, Chen J. Successful living-related kidney transplantation in MYH9-related disorder with macrothrombocytopenia: lessons for the clinical nephrologist. J Nephrol 2023:10.1007/s40620-023-01651-7. [PMID: 37258992 DOI: 10.1007/s40620-023-01651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Xue Li
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Wang
- Department of Nephrology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xuefeng Ni
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dongrui Cheng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jinsong Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, pathophysiology, and disease. Res Pract Thromb Haemost 2023; 7:100023. [PMID: 36760777 PMCID: PMC9903854 DOI: 10.1016/j.rpth.2022.100023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
A State of the Art lecture titled "Blood Clot Contraction: Mechanisms, Pathophysiology, and Disease" was presented at the International Society on Thrombosis and Haemostasis (ISTH) Congress in 2022. This was a systematic description of blood clot contraction or retraction, driven by activated platelets and causing compaction of the fibrin network along with compression of the embedded erythrocytes. The consequences of clot contraction include redistribution of the fibrin-platelet meshwork toward the periphery of the clot and condensation of erythrocytes in the core, followed by their deformation from the biconcave shape into polyhedral cells (polyhedrocytes). These structural signatures of contraction have been found in ex vivo thrombi derived from various locations, which indicated that clots undergo intravital contraction within the blood vessels. In hemostatic clots, tightly packed polyhedrocytes make a nearly impermeable seal that stems bleeding and is impaired in hemorrhagic disorders. In thrombosis, contraction facilitates the local blood flow by decreasing thrombus obstructiveness, reducing permeability, and changing susceptibility to fibrinolytic enzymes. However, in (pro)thrombotic conditions, continuous background platelet activation is followed by platelet exhaustion, refractoriness, and impaired intravital clot contraction, which is associated with weaker thrombi predisposed to embolization. Therefore, assays that detect imperfect in vitro clot contraction have potential diagnostic and prognostic values for imminent or ongoing thrombosis and thrombotic embolism. Collectively, the contraction of blood clots and thrombi is an underappreciated and understudied process that has a pathogenic and clinical significance in bleeding and thrombosis of various etiologies. Finally, we have summarized relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Komaragiri Y, Panhwar MH, Fregin B, Jagirdar G, Wolke C, Spiegler S, Otto O. Mechanical characterization of isolated mitochondria under conditions of oxidative stress. BIOMICROFLUIDICS 2022; 16:064101. [PMID: 36406339 PMCID: PMC9674388 DOI: 10.1063/5.0111581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
Collapse
Affiliation(s)
| | | | | | - Gayatri Jagirdar
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Carmen Wolke
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Loss of α4A- and β1-tubulins leads to severe platelet spherocytosis and strongly impairs hemostasis in mice. Blood 2022; 140:2290-2299. [PMID: 36026602 DOI: 10.1182/blood.2022016729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific β1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for β1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and β-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.
Collapse
|
21
|
A familial case of MYH9 gene mutation associated with multiple functional and structural platelet abnormalities. Sci Rep 2022; 12:19975. [PMID: 36404341 PMCID: PMC9676191 DOI: 10.1038/s41598-022-24098-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in the MYH9 gene result in macrothrombocytopenia often associated with hemorrhages. Here, we studied the function and structure of platelets in three family members with a heterozygous mutation R1933X in the MYH9 gene, characteristic of closely related disorders known as the May-Hegglin anomaly and Sebastian syndrome. The examination included complete blood count, blood smear microscopy, platelet flow cytometry (expression of P-selectin and active integrin αIIbβ3 before and after activation), the kinetics of platelet-driven contraction (retraction) of blood clots, as well as scanning/transmission electron microscopy of platelets. Despite severe thrombocytopenia ranging (36-86) × 109/l, none of the patients had hemorrhages at the time of examination, although they had a history of heavy menstruation, spontaneous ecchymosis, and postpartum hemorrhage. Flow cytometry showed background platelet activation, revealed by overexpression of P-selectin and active αIIbβ3 integrin above normal levels. After TRAP-induced stimulation, the fractions of platelets expressing P-selectin in the proband and her sister were below normal response, indicating partial platelet refractoriness. The initiation of clot contraction was delayed. Electron microscopy revealed giant platelets with multiple filopodia and fusion of α-granules with dilated open canalicular system, containing filamentous and vesicular inclusions. The novel concept implies that the R1933X mutation in the MYH9 gene is associated not only with thrombocytopenia, but also with qualitative structural and functional defects in platelets. Platelet dysfunction includes impaired contractility, which can disrupt the compaction of hemostatic clots, making the clots weak and permeable, therefore predisposing patients with MYH9 gene mutations to the hemorrhagic phenotype.
Collapse
|
22
|
Lickert S, Kenny M, Selcuk K, Mehl JL, Bender M, Früh SM, Burkhardt MA, Studt JD, Nieswandt B, Schoen I, Vogel V. Platelets drive fibronectin fibrillogenesis using integrin αIIbβ3. SCIENCE ADVANCES 2022; 8:eabj8331. [PMID: 35275711 PMCID: PMC8916723 DOI: 10.1126/sciadv.abj8331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Platelets interact with multiple adhesion proteins during thrombogenesis, yet little is known about their ability to assemble fibronectin matrix. In vitro three-dimensional superresolution microscopy complemented by biophysical and biochemical methods revealed fundamental insights into how platelet contractility drives fibronectin fibrillogenesis. Platelets adhering to thrombus proteins (fibronectin and fibrin) versus basement membrane components (laminin and collagen IV) pull fibronectin fibrils along their apical membrane versus underneath their basal membrane, respectively. In contrast to other cell types, platelets assemble fibronectin nanofibrils using αIIbβ3 rather than α5β1 integrins. Apical fibrillogenesis correlated with a stronger activation of integrin-linked kinase, higher platelet traction forces, and a larger tension in fibrillar-like adhesions compared to basal fibrillogenesis. Our findings have potential implications for how mechanical thrombus integrity might be maintained during remodeling and vascular repair.
Collapse
Affiliation(s)
- Sebastian Lickert
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Martin Kenny
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Kateryna Selcuk
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Johanna L. Mehl
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Markus Bender
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Melanie A. Burkhardt
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jan-Dirk Studt
- Division of Hematology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine – Chair I, University Hospital, and Rudolf Virchow Center, Julius Maximilian University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- Corresponding author. (V.V.); (I.S.)
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Corresponding author. (V.V.); (I.S.)
| |
Collapse
|