1
|
Wu P, Hu Q, Ogunfowora LA, Li Z, Marquardt AV, Savoie BM, Dou L. Toward Sustainable Polydienes. J Am Chem Soc 2025; 147:2960-2977. [PMID: 39824748 DOI: 10.1021/jacs.4c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies. Our investigation reveals the primary technical challenges associated with polydiene recycling, notably the energy-intensive nature of modification processes and the environmental detriments of prevailing disposal techniques. Furthermore, we critically evaluate existing recycling methodologies─including mechanical recycling, energy recovery, and chemical recycling─highlighting their respective merits, constraints, and environmental implications. Pioneering advancements in recycling technology, such as topochemical polymerization and computational prediction models, are spotlighted for their potential to revolutionize polydiene recycling. Looking forward, we delineate an optimistic trajectory for polydiene waste management, advocating for innovative polymerization methods, the exploration of milder recycling conditions, and the adoption of interdisciplinary approaches to bolster recycling efficiency. The Perspective culminates in a discussion on the pivotal role of policy frameworks, life cycle assessments, and economic analyses in shaping the future of polydiene recycling. Through this scholarly examination, we aim to catalyze further research and development efforts aimed at mitigating the environmental impact of polydiene waste, thereby contributing to the broader objective of sustainable chemistry.
Collapse
Affiliation(s)
- Pengfei Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qixuan Hu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lawal A Ogunfowora
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhixu Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew V Marquardt
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemical and Biomolecular Engineering, The University of Notre Dame, South Bend, Indiana 46556, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Huang W, Zeng X, Li J. Fostering the waste management with environmental-resource interacting attribute. Nat Commun 2024; 15:10196. [PMID: 39587105 PMCID: PMC11589759 DOI: 10.1038/s41467-024-54602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Effective waste management is essential for achieving sustainability, yet challenges persist in resource recovery and mitigating environmental impacts. The environmental-resource interacting attribute framework quantifies these difficulties in waste processes, revealing attribute bias and guiding treatment pathway selection. Here we analyze twelve waste categories and reveal significant variability in recyclability and environmental impact. For instance, copper slag demonstrates a range of 25.25-285.46 bit-1 (the unit is the inverse of information entropy), indicating greater recyclability, while downcycling pathways exhibit the highest values (up to 285.46 bit-1), emphasizing resource recovery (up to 77.45° while degree indicates bias). It proposes a classification of waste based on environmental-resource interacting attribute values, prioritizing materials with high recovery potential to prevent irreversible losses. The framework offers insights into waste recyclability and environmental burdens, serving as an alternative tool for advancing waste management towards a circular economy and reducing carbon emissions.
Collapse
Affiliation(s)
- Wenbo Huang
- School of Environment, Tsinghua University, Beijing, China
| | - Xianlai Zeng
- School of Environment, Tsinghua University, Beijing, China.
- State Key Laboratory of Iron and Steel Industry Environmental Protection, Tsinghua University, Beijing, China.
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing, China
- State Key Laboratory of Iron and Steel Industry Environmental Protection, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Anh Nguyen TK, Trần-Phú T, Daiyan R, Minh Chau Ta X, Amal R, Tricoli A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Angew Chem Int Ed Engl 2024; 63:e202401746. [PMID: 38757221 DOI: 10.1002/anie.202401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
- Present address: Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Li J, Ma HP, Zhao G, Huang G, Sun W, Peng C. Plastic Waste Conversion by Leveraging Renewable Photo/Electro-Catalytic Technologies. CHEMSUSCHEM 2024; 17:e202301352. [PMID: 38226954 DOI: 10.1002/cssc.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Plastics have revolutionized our lives; however, the exponential growth of their usage has led to a global crisis. More sustainable strategies are needed to address this dilemma and transform the plastics economy from a linearity to a circular model. Herein, we systematically summarize the recent progress in renewable energy-driven plastic conversion strategies, including photocatalysis, electrocatalysis, and their integration. By introducing the significant works, the design principles, mechanisms, and system regulations, we decipher and compare the various aspects of plastic conversion. These approaches show high reactivity and selectivity under environmentally benign conditions and provide alternative reaction pathways for plastic conversion. Plastic upcycling as a chemical feedstock can yield value-added chemicals and fuels, contributing to the establishment of a sustainable and circular economy. Additionally, several innovations in reaction engineering and system designs are presented. Finally, the challenges and perspectives of sustainable energy-driven plastic conversion technologies are comprehensively discussed.
Collapse
Affiliation(s)
- Jianan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Hong-Peng Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Shaan Xi, 710072, P. R. China
| | - Guoping Zhao
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Guangfa Huang
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Chong Peng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
6
|
He C, Liu C, Pan S, Tan Y, Guan J, Xu H. Polyurethane with β-Selenocarbonyl Structure Enabling the Combination of Plastic Degradation and Waste Upcycling. Angew Chem Int Ed Engl 2024; 63:e202317558. [PMID: 38156718 DOI: 10.1002/anie.202317558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Degradable polymers offer a promising solution to mitigate global plastic pollution, but the degraded products often suffer from diminished value. Upcycling is a more sustainable approach to upgrade polymer waste into value-added products. Herein, we report a β-selenocarbonyl-containing polyurethane (SePU), which can be directly degraded under mild conditions into valuable selenium fertilizers for selenium-rich vegetable cultivation globally, enabling both plastic degradation and waste upcycling. Under oxidation condition, this polymer can be easily and selectively degraded via selenoxide elimination reaction from mixed plastic waste. The degraded product can serve as effective selenium fertilizers to increase selenium content in radish and pak choi. The SePU exhibits excellent mechanical properties. Additionally, we observed the formation of spherulites-like selenium particles within the materials during degradation for the first time. Our research offers a successful application of selenoxide elimination reaction in the field of plastic degradation for the first time, endowing plastics with both degradability and high reusable value. This strategy provides a promising solution to reduce pollution and improve economy and sustainability of plastics.
Collapse
Affiliation(s)
- Chaowei He
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Cheng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
7
|
Si G, Li C, Chen M, Chen C. Polymer Multi-Block and Multi-Block + Strategies for the Upcycling of Mixed Polyolefins and Other Plastics. Angew Chem Int Ed Engl 2023; 62:e202311733. [PMID: 37850388 DOI: 10.1002/anie.202311733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Due to a continued rise in the production and use of plastic products, their end-of-life pollution has become a pressing global issue. One of the biggest challenges in plastics recycling is the separation of different polymers. Multi-block copolymers (MBCPs) represent an efficient strategy for the upcycling of mixed plastics via induced compatibilization, but this approach is limited by difficulties associated with synthesis and structural modification. In this contribution, several synthetic strategies are explored to prepare MBCPs with tunable microstructures, which were then used as compatibilizer additives to upcycle mixtures of polyolefins with other plastics. A multi-block+ strategy based on a reactive telechelic block copolymer platform was introduced, which enabled block extension during the in situ melt blending of mixed plastics, leading to better compatibilizing properties as well as better 3D printing capability. This strategy was also applicable to more complex ternary plastic blends. The polymer multi-block strategy enabled by versatile MBCPs synthesis and the multi-block+ strategy enabled by in situ block extension show exciting opportunities for the upcycling of mixed plastics.
Collapse
Affiliation(s)
- Guifu Si
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Min Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Sola A, Trinchi A. Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers (Basel) 2023; 15:4219. [PMID: 37959900 PMCID: PMC10649055 DOI: 10.3390/polym15214219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Additive manufacturing (AM, aka 3D printing) is generally acknowledged as a "green" technology. However, its wider uptake in industry largely relies on the development of composite feedstock for imparting superior mechanical properties and bespoke functionality. Composite materials are especially needed in polymer AM, given the otherwise poor performance of most polymer parts in load-bearing applications. As a drawback, the shift from mono-material to composite feedstock may worsen the environmental footprint of polymer AM. This perspective aims to discuss this chasm between the advantage of embedding advanced functionality, and the disadvantage of causing harm to the environment. Fused filament fabrication (FFF, aka fused deposition modelling, FDM) is analysed here as a case study on account of its unparalleled popularity. FFF, which belongs to the material extrusion (MEX) family, is presently the most widespread polymer AM technique for industrial, educational, and recreational applications. On the one hand, the FFF of composite materials has already transitioned "from lab to fab" and finally to community, with far-reaching implications for its sustainability. On the other hand, feedstock materials for FFF are thermoplastic-based, and hence highly amenable to recycling. The literature shows that recycled thermoplastic materials such as poly(lactic acid) (PLA), acrylonitrile-butadiene-styrene (ABS), and polyethylene terephthalate (PET, or its glycol-modified form PETG) can be used for printing by FFF, and FFF printed objects can be recycled when they are at the end of life. Reinforcements/fillers can also be obtained from recycled materials, which may help valorise waste materials and by-products from a wide range of industries (for example, paper, food, furniture) and from agriculture. Increasing attention is being paid to the recovery of carbon fibres (for example, from aviation), and to the reuse of glass fibre-reinforced polymers (for example, from end-of-life wind turbines). Although technical challenges and economical constraints remain, the adoption of recycling strategies appears to be essential for limiting the environmental impact of composite feedstock in FFF by reducing the depletion of natural resources, cutting down the volume of waste materials, and mitigating the dependency on petrochemicals.
Collapse
Affiliation(s)
- Antonella Sola
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| | - Adrian Trinchi
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| |
Collapse
|
9
|
Christoff-Tempesta T, Epps TH. Ionic-Liquid-Mediated Deconstruction of Polymers for Advanced Recycling and Upcycling. ACS Macro Lett 2023; 12:1058-1070. [PMID: 37516988 PMCID: PMC10433533 DOI: 10.1021/acsmacrolett.3c00276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Ionic liquids (ILs) are a promising medium to assist in the advanced (chemical and biological) recycling of polymers, owing to their tunable catalytic activity, tailorable chemical functionality, low vapor pressures, and thermal stability. These unique physicochemical properties, combined with ILs' capacity to solubilize plastics waste and biopolymers, offer routes to deconstruct polymers at reduced temperatures (and lower energy inputs) versus conventional bulk and solvent-based methods, while also minimizing unwanted side reactions. In this Viewpoint, we discuss the use of ILs as catalysts and mediators in advanced recycling, with an emphasis on chemical recycling, by examining the interplay between IL chemistry and deconstruction thermodynamics, deconstruction kinetics, IL recovery, and product recovery. We also consider several potential environmental benefits and concerns associated with employing ILs for advanced recycling over bulk- or solvent-mediated deconstruction techniques, such as reduced chemical escape by volatilization, decreased energy demands, toxicity, and environmental persistence. By analyzing IL-mediated polymer deconstruction across a breadth of macromolecular systems, we identify recent innovations, current challenges, and future opportunities in IL application toward circular polymer economies.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Yan T, Balzer AH, Herbert KM, Epps TH, Korley LTJ. Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chem Sci 2023; 14:5243-5265. [PMID: 37234906 PMCID: PMC10208058 DOI: 10.1039/d3sc00551h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The circularity of current and future polymeric materials is a major focus of fundamental and applied research, as undesirable end-of-life outcomes and waste accumulation are global problems that impact our society. The recycling or repurposing of thermoplastics and thermosets is an attractive solution to these issues, yet both options are encumbered by poor property retention upon reuse, along with heterogeneities in common waste streams that limit property optimization. Dynamic covalent chemistry, when applied to polymeric materials, enables the targeted design of reversible bonds that can be tailored to specific reprocessing conditions to help address conventional recycling challenges. In this review, we highlight the key features of several dynamic covalent chemistries that can promote closed-loop recyclability and we discuss recent synthetic progress towards incorporating these chemistries into new polymers and existing commodity plastics. Next, we outline how dynamic covalent bonds and polymer network structure influence thermomechanical properties related to application and recyclability, with a focus on predictive physical models that describe network rearrangement. Finally, we examine the potential economic and environmental impacts of dynamic covalent polymeric materials in closed-loop processing using elements derived from techno-economic analysis and life-cycle assessment, including minimum selling prices and greenhouse gas emissions. Throughout each section, we discuss interdisciplinary obstacles that hinder the widespread adoption of dynamic polymers and present opportunities and new directions toward the realization of circularity in polymeric materials.
Collapse
Affiliation(s)
- Tianwei Yan
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Alex H Balzer
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Katie M Herbert
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
| | - Thomas H Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| | - LaShanda T J Korley
- Department of Chemical & Biomolecular Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Plastics Innovation (CPI), University of Delaware Newark 19716 Delaware USA
- Department of Materials Science and Engineering, University of Delaware Newark 19716 Delaware USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware Newark 19716 Delaware USA
| |
Collapse
|
11
|
Zheng J, Arifuzzaman M, Tang X, Chen XC, Saito T. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. MATERIALS HORIZONS 2023; 10:1608-1624. [PMID: 37022098 DOI: 10.1039/d2mh01549h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plastics have advanced society as a lightweight, inexpensive material of choice, and consequently over 400 million metric tons of plastics are produced each year. The difficulty with their reuse, due to varying chemical structures and properties, is leading to one of the major global challenges of the 21st century-plastic waste management. While mechanical recycling has been proven successful for certain types of plastic waste, most of these technologies can only recycle single types of plastics at a time. Since most recycling collection streams today have a mixture of different plastic types, additional sorting is required before the plastic waste can be processed by recyclers. To combat this problem, academics have devoted their efforts to developing technologies such as selective deconstruction catalysts or compatibilizer for commodity plastics and new types of upcycled plastics. In this review, the strengths and challenges of current commercial recycling processes are discussed, followed by examples of the advancement in academic research. Bridging a gap to integrate new recycling materials and processes into current industrial practices will improve commercial recycling and plastic waste management, as well as create new economies. Furthermore, establishing closed-loop circularity of plastics by the combined efforts of academia and industry will contribute toward establishing a net zero carbon society by significant reduction of carbon and energy footprints. This review serves as a guide to understand the gap and help to create a path for new discovery in academic research to be integrated into industrial practices.
Collapse
Affiliation(s)
- Jackie Zheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee Knoxville, Knoxville, TN 37966, USA
| | - Md Arifuzzaman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xiaomin Tang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xi Chelsea Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
12
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
13
|
Chethalen RJ, Fastow EJ, Coughlin EB, Winey KI. Thiol-ene Click Chemistry Incorporates Hydroxyl Functionality on Polycyclooctene to Tune Properties. ACS Macro Lett 2023; 12:107-112. [PMID: 36603198 DOI: 10.1021/acsmacrolett.2c00670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyolefins compose the majority of plastic waste, but conventional mechanical recycling degrades their properties, thereby reducing their value. We report the functionalization of a model for dehydrogenated polyethylene, polycyclooctene (PCOE), with thiol-ene click chemistry to install pendant hydroxyl ethyl thioethers. Functionalization of PCOE using mercaptoethanol via thiol-ene click chemistry yielded functionalization between 1.4 and 22.9% based on ethylene monomeric units. Reactions were well-controlled by varying the reagent stoichiometry and reaction time. Crystallinity and melting temperature decreased, and glass transition temperature increased with greater functionalization. Contact angle measurements reveal an increase in surface polarity with functionalization. Comparisons with poly(ethylene-co-vinyl alcohol) (EVOH) show comparable surface polarity at similar levels of alcohol functionalization. At 12% functionalization, the ultimate shear stress (USS) of functionalized PCOE in an adhesive configuration is 4.10 ± 0.48 MPa, comparable to EVOH. At >12% functionalization, the failure mode changed from adhesive to mixed adhesive-cohesive, and the USS decreased.
Collapse
Affiliation(s)
- Roshni John Chethalen
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eli J Fastow
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Lee G, Song HY, Choi S, Kim CB, Hyun K, Ahn SK. Harnessing β-Hydroxyl Groups in Poly(β-Amino Esters) toward Robust and Fast Reprocessing Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gyuri Lee
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Subi Choi
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
15
|
Rana S, Solanki M, Sahoo NG, Krishnakumar B. Bio-Vitrimers for Sustainable Circular Bio-Economy. Polymers (Basel) 2022; 14:4338. [PMID: 36297916 PMCID: PMC9606967 DOI: 10.3390/polym14204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The aim to achieve sustainable development goals (SDG) and cut CO2-emission is forcing researchers to develop bio-based materials over conventional polymers. Since most of the established bio-based polymeric materials demonstrate prominent sustainability, however, performance, cost, and durability limit their utilization in real-time applications. Additionally, a sustainable circular bioeconomy (CE) ensures SDGs deliver material production, where it ceases the linear approach from production to waste. Simultaneously, sustainable circular bio-economy promoted materials should exhibit the prominent properties to involve and substitute conventional materials. These interceptions can be resolved through state-of-the-art bio-vitrimeric materials that display durability/mechanical properties such as thermosets and processability/malleability such as thermoplastics. This article emphasizes the current need for vitrimers based on bio-derived chemicals; as well as to summarize the developed bio-based vitrimers (including reprocessing, recycling and self-healing properties) and their requirements for a sustainable circular economy in future prospects.
Collapse
Affiliation(s)
- Sravendra Rana
- School of Engineering, Energy Acres, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Manisha Solanki
- School of Business, Energy Acres, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital 263001, India
| | - Balaji Krishnakumar
- College of Engineering, The Florida A&M University-Florida State University, 2525 Pottsdamer St., Tallahassee, FL 32310-6046, USA
| |
Collapse
|