1
|
Yang Q, Dong MJ, Xu J, Xing Y, Wang Y, Yang J, Meng X, Xie T, Li Y, Dong H. CRISPR/RNA Aptamer System Activated by an AND Logic Gate for Biomarker-Driven Theranostics. J Am Chem Soc 2024. [PMID: 39699588 DOI: 10.1021/jacs.4c08719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.
Collapse
Affiliation(s)
- Qiqi Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming-Jie Dong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Jianglian Xu
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Wang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianzhen Xie
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Zhu G, Zhou X, Wen M, Qiao J, Li G, Yao Y. CRISPR-Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics. BIODESIGN RESEARCH 2024; 6:0041. [PMID: 39228750 PMCID: PMC11371277 DOI: 10.34133/bdr.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
The CRISPR-Cas13 system has emerged as a revolutionary tool for RNA editing, offering new opportunities for the development of nucleic acid therapeutics. Unlike DNA-targeting CRISPR-Cas9, Cas13 targets and cleaves RNA, enabling gene silencing and preventing genomic instability. Its applications include suppressing disease-causing genes, correcting splicing errors, and modulating immune responses. Despite these advances, challenges persist, such as the need to refine specificity, mitigate off-target impacts, and ensure effective delivery. This review provides an overview of the CRISPR-Cas13 mechanism, elucidating its role in RNA-targeted therapies and its transformative potential for disease treatment. Furthermore, it addresses the ongoing challenges that the scientific community is striving to overcome.
Collapse
Affiliation(s)
- Guanglin Zhu
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Xinzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education),
Tianjin University, Tianjin 300072, P. R. China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education),
Tianjin University, Tianjin 300072, P. R. China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
| |
Collapse
|
3
|
Liang M, Wang Y, Liu L, Deng D, Yan Z, Feng L, Kong C, Li C, Li Y, Li G. Synergistic intravesical instillation for bladder cancer: CRISPR-Cas13a and fenbendazole combination therapy. J Exp Clin Cancer Res 2024; 43:223. [PMID: 39128990 PMCID: PMC11318243 DOI: 10.1186/s13046-024-03146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND CRISPR-Cas13a is renowned for its precise and potent RNA editing capabilities in cancer therapy. While various material systems have demonstrated efficacy in supporting CRISPR-Cas13a to execute cellular functions in vitro efficiently and specifically, the development of CRISPR-Cas13a-based therapeutic agents for intravesical instillation in bladder cancer (BCa) remains unexplored. METHODS In this study, we introduce a CRISPR-Cas13a nanoplatform, which effectively inhibits PDL1 expression following intravesical instillation. This system utilizes a fusion protein CAST, created through the genetic fusion of CRISPR-Cas13 and the transmembrane peptide TAT. CAST acts as a potent transmembrane RNA editor and is assembled with the transepithelial delivery carrier fluorinated chitosan (FCS). Upon intravesical administration into the bladder, the CAST-crRNAa/FCS nanoparticles (NPs) exhibit remarkable transepithelial capabilities, significantly suppressing PDL1 expression in tumor tissues.To augment immune activation within the tumor microenvironment, we integrated a fenbendazole (FBZ) intravesical system (FBZ@BSA/FCS NPs). This system is formulated through BSA encapsulation followed by FCS coating, positioning FBZ as a powerful chemo-immunological agent. RESULTS In an orthotropic BCa model, the FBZ@BSA/FCS NPs demonstrated pronounced tumor cell apoptosis, synergistically reduced PDL1 expression, and restructured the immune microenvironment. This culminated in an enhanced synergistic intravesical instillation approach for BCa. Consequently, our study unveils a novel RNA editor nanoagent formulation and proposes a potential synergistic therapeutic strategy. This approach significantly bolsters therapeutic efficacy, holding promise for the clinical translation of CRISPR-Cas13-based cancer perfusion treatments.
Collapse
Affiliation(s)
- Mingkang Liang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yongqiang Wang
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zeqin Yan
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lida Feng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenfan Kong
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yuqing Li
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| |
Collapse
|
4
|
Tang X, Zhao S, Luo J, Wang B, Wu X, Deng R, Chang K, Chen M. Smart Stimuli-Responsive Spherical Nucleic Acids: Cutting-Edge Platforms for Biosensing, Bioimaging, and Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310732. [PMID: 38299771 DOI: 10.1002/smll.202310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jie Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xianlan Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
5
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA, Sanjana NE. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nat Biotechnol 2024; 42:628-637. [PMID: 37400521 DOI: 10.1038/s41587-023-01830-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Transcriptome engineering applications in living cells with RNA-targeting CRISPR effectors depend on accurate prediction of on-target activity and off-target avoidance. Here we design and test ~200,000 RfxCas13d guide RNAs targeting essential genes in human cells with systematically designed mismatches and insertions and deletions (indels). We find that mismatches and indels have a position- and context-dependent impact on Cas13d activity, and mismatches that result in G-U wobble pairings are better tolerated than other single-base mismatches. Using this large-scale dataset, we train a convolutional neural network that we term targeted inhibition of gene expression via gRNA design (TIGER) to predict efficacy from guide sequence and context. TIGER outperforms the existing models at predicting on-target and off-target activity on our dataset and published datasets. We show that TIGER scoring combined with specific mismatches yields the first general framework to modulate transcript expression, enabling the use of RNA-targeting CRISPRs to precisely control gene dosage.
Collapse
Affiliation(s)
- Hans-Hermann Wessels
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Andrew Stirn
- New York Genome Center, New York City, NY, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Eric J Kim
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Sydney K Hart
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - David A Knowles
- New York Genome Center, New York City, NY, USA.
- Department of Computer Science, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
- Department of Systems Biology, Columbia University, New York City, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York City, NY, USA.
- Department of Biology, New York University, New York City, NY, USA.
| |
Collapse
|
7
|
Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol 2023; 41:1549-1564. [PMID: 37451945 DOI: 10.1016/j.tibtech.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
CRISPR/Cas systems have revolutionized biology and medicine, and have led to new paradigms in disease diagnostics and therapeutics. However, these complexes suffer from key limitations regarding barriers to cellular entry, stability in biological environments, and off-target effects. Integrating nanotechnology with CRISPR/Cas systems has emerged as a promising strategy to overcome these challenges and has further unlocked structures that accumulate preferentially in tissues of interest, have tunable pharmacological properties, and are activated in response to desired stimuli. Nanomaterials can also enhance CRISPR/Cas-mediated detection platforms by enabling faster, more sensitive, and convenient readouts. We highlight recent advances in this rapidly growing field. We also outline areas that need further development to fully realize the potential of CRISPR technologies.
Collapse
Affiliation(s)
- Rupali Chowdhry
- Department of Public Health, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Z Lu
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. ENVIRONMENTAL RESEARCH 2023; 237:117027. [PMID: 37659647 DOI: 10.1016/j.envres.2023.117027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Sadegh Abedin
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Chaleshgari
- Department of Avian Diseases, Faculty of Veterinary Medicine, Chamran University, Ahvaz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Reza Baeelashaki
- Department of Food Hygiene and Quality Control, Division of Animal Feed Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
10
|
Li Y, Xu R, Wu Y, Guo J, Quan F, Pei Y, Huang D, Zhao X, Gao H, Liu J, Zhang Z, Shi J, Zhang K. Genotype-specific precision tumor therapy using mitochondrial DNA mutation-induced drug release system. SCIENCE ADVANCES 2023; 9:eadi1965. [PMID: 37756407 PMCID: PMC10530102 DOI: 10.1126/sciadv.adi1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Precise killing of tumor cells without affecting surrounding normal cells is a challenge. Mitochondrial DNA (mtDNA) mutations, a common genetic variant in cancer, can directly affect metabolic homeostasis, serving as an ideal regulatory switch for precise tumor therapy. Here, we designed a mutation-induced drug release system (MIDRS), using the single-nucleotide variation (SNV) recognition ability and trans-cleavage activity of Cas12a to convert tumor-specific mtDNA mutations into a regulatory switch for intracellular drug release, realizing precise tumor cell killing. Using Ce6 as a model drug, MIDRS enabled organelle-level photodynamic therapy, triggering innate and adaptive immunity simultaneously. In vivo evaluation showed that MIDRSMT could identify tumor tissue carrying SNVs in mtDNA in unilateral, bilateral, and heterogeneous tumor models, producing an excellent antitumor effect (~82.6%) without affecting normal cells and thus resulting in a stronger systemic antitumor immune response. Additionally, MIDRS was suitable for genotype-specific precision drug release of chemotherapeutic drugs. This strategy holds promise for mutation-specific personalized tumor treatment approaches.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ru Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Di Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hua Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Yang X, Zeng X, Chen X, Huang J, Wei X, Ying X, Tan Q, Wang Y, Li S. Development of a CRISPR/Cas12a-recombinase polymerase amplification assay for visual and highly specific identification of the Congo Basin and West African strains of mpox virus. J Med Virol 2023; 95:e28757. [PMID: 37212293 DOI: 10.1002/jmv.28757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Human mpox is a zoonotic disease, similar to smallpox, caused by the mpox virus, which is further subdivided into Congo Basin and West African clades with different pathogenicity. In this study, a novel diagnostic protocol utilizing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 12a nuclease (CRISPR/Cas12a)-mediated recombinase polymerase amplification (RPA) was developed to identify mpox in the Congo Basin and West Africa (CRISPR-RPA). Specific RPA primers targeting D14L and ATI were designed. CRISPR-RPA assay was performed using various target templates. In the designed CRISPR-RPA reaction system, the exponentially amplified RPA amplification products with a protospacer adjacent motif (PAM) site can locate the Cas12a/crRNA complex to its target regions, which successfully activates the CRISPR/Cas12a effector and achieves ultrafast trans-cleavage of a single-stranded DNA probe. The limit of detection for the CRISPR-RPA assay was 10 copies per reaction for D14L- and ATI-plasmids. No cross-reactivity was observed with non-mpox strains, confirming the high specificity of the CRISPR-RPA assay for distinguishing between the Congo Basin and West African mpox. The CRISPR-RPA assay can be completed within 45 min using real-time fluorescence readout. Moreover, the cleavage results were visualized under UV light or an imaging system, eliminating the need for a specialized apparatus. In summary, the developed CRISPR/RPA assay is a visual, rapid, sensitive, and highly specific detection technique that can be used as an attractive potential identification tool for Congo Basin and West African mpox in resource-limited laboratories.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P.R. China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P.R. China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| |
Collapse
|
12
|
Yang X, Huang J, Chen Y, Ying X, Tan Q, Chen X, Zeng X, Lei S, Wang Y, Li S. Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Mycobacterium tuberculosis Complex in Clinical Settings. Microbiol Spectr 2023; 11:e0347522. [PMID: 36975805 PMCID: PMC10100757 DOI: 10.1128/spectrum.03475-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease with high mortality caused by the Mycobacterium tuberculosis complex (MTC). Its clinical symptoms include a prolonged cough with mucus, pleuritic chest pain, hemoptysis, etc., and predominant complications such as tuberculous meningitis and pleural effusion. Thus, developing rapid, ultrasensitive, and highly specific detection techniques plays an important role in controlling TB. Here, we devised CRISPR/CRISPR-associated 12b nuclease (CRISPR/Cas12b)-based multiple cross displacement amplification technique (CRISPR-MCDA) targeting the IS6110 sequence and used it to detect MTC pathogens. A newly engineered protospacer adjacent motif (PAM) site (TTTC) was modified in the linker region of the CP1 primer. In the CRISPR-MCDA system, the exponentially amplified MCDA amplicons with the PAM sites can guide the Cas12b/gRNA complex to quickly and accurately recognize its target regions, which successfully activates the CRISPR/Cas12b effector and enables ultrafast trans-cleavage of single-stranded DNA reporter molecules. The limit of detection of the CRISPR-MCDA assay was 5 fg/μL of genomic DNA extracted from the MTB reference strain H37Rv. The CRISPR-MCDA assay successfully detected all examined MTC strains and there was no cross-reaction with non-MTC pathogens, confirming that its specificity is 100%. The entire detection process can be completed within 70 min using real-time fluorescence analysis. Moreover, visualization detection (under UV light) was also designed to verify the results, eliminating the use of specialized instruments. In conclusion, the CRISPR-MCDA assay established in this report can be used as a valuable detection technique for MTC infection. IMPORTANCE The Mycobacterium tuberculosis complex pathogen is a crucial infectious agent of tuberculosis. Hence, improving the capability of MTC detection is one of the most urgently required strategies for preventing and controlling TB. In this report, we successfully developed and implemented CRISPR/Cas12b-based multiple cross displacement amplification targeting the IS6110 sequence to detect MTC pathogens. These results demonstrated that the CRISPR-MCDA assay developed in this study was a rapid, ultrasensitive, highly specific, and readily available method which can be used as a valuable diagnostic tool for MTC infection in clinical settings.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xu Chen
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoyan Zeng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Shiguang Lei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
13
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
14
|
Chang Y, Bao M, Waitkus J, Cai H, Du K. On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10672-10678. [PMID: 35984448 PMCID: PMC9897971 DOI: 10.1021/acs.langmuir.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Superhydrophobic surface-based optofluidics have been introduced to biosensors and unconventional optics with unique advantages, such as low light loss and power consumption. However, most of these platforms were made with planar-like microstructures and nanostructures, which may cause bonding issues and result in significant waveguide loss. Here, we introduce a fully enclosed superhydrophobic-based optofluidics system, enabled by a one-step microstereolithography procedure. Various microstructured cladding designs with a feature size down to 100 μm were studied and a "T-type" overhang design exhibits the lowest optical loss, regardless of the excitation wavelength. Surprisingly, the optical loss of superhydrophobic-based optofluidics is not solely decided by the solid area fraction at the solid/water/air interface, but also the cross-section shape and the effective cladding layer composition. We show that this fully enclosed optofluidic system can be used for CRISPR-labeled quantum dot quantification, intended for in vitro and in vivo CRISPR therapeutics.
Collapse
Affiliation(s)
- Yu Chang
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jacob Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
- College of Health Science and Technology, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|