1
|
Mrnjavac N, Degli Esposti M, Mizrahi I, Martin WF, Allen JF. Three enzymes governed the rise of O 2 on Earth. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149495. [PMID: 39004113 PMCID: PMC7616410 DOI: 10.1016/j.bbabio.2024.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
2
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
3
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
4
|
Slotznick SP, Johnson JE, Rasmussen B, Raub TD, Webb SM, Zi JW, Kirschvink JL, Fischer WW. Response to comment on "Reexamination of 2.5-Ga 'whiff' of oxygen interval points to anoxic ocean before GOE". SCIENCE ADVANCES 2023; 9:eadg1530. [PMID: 37027468 PMCID: PMC10081838 DOI: 10.1126/sciadv.adg1530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Sedimentological, textural, and microscale analyses of the Mount McRae Shale revealed a complex postdepositional history, previously unrecognized in bulk geochemical studies. We found that metal enrichments in the shale do not reside with depositional organic carbon, as previously proposed by Anbar et al., but with late-stage pyrite, compromising claims for a "whiff" of oxygen ~50 million years before the Great Oxygenation Event.
Collapse
Affiliation(s)
| | - Jena E. Johnson
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48103, USA
| | - Birger Rasmussen
- School of Earth Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Timothy D. Raub
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, Fife, Scotland, KY16 9AL, UK
- Geoheritage Research Institute, Arlington Heights, IL 60005, USA
| | - Samuel M. Webb
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Jian-Wei Zi
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Joseph L. Kirschvink
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Woodward W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|