1
|
Cockrell C, Withington M, Devereux HL, Elena AM, Todorov IT, Liu ZK, Shang SL, McCloy JS, Bingham PA, Trachenko K. Thermodynamics and transport in molten chloride salts and their mixtures. Phys Chem Chem Phys 2025; 27:1604-1615. [PMID: 39711488 DOI: 10.1039/d4cp04180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids. Using recent developments in the theory of liquid thermophysical properties, we interpret our results on the basis of collective atomistic dynamics (phonons). We find that the properties of ionic liquids are well explained by their collective dynamics, as in simple liquids. In particular, we relate the decrease of heat capacity, viscosity, and thermal conductivity to the loss of transverse phonons from the liquid spectrum. We observe the singular dependence of the isochoric heat capacity on the mean free path of phonons, and the obeyance of the Stokes-Einstein equation relating the viscosity to the mass diffusion. The transport properties of mixtures are more complicated compared to simple liquids, however viscosity and thermal conductivity are well guided by fundamental bounds proposed recently. The kinematic viscosity and thermal diffusivity lie very close to one another and obey the theoretical fundamental bounds determined solely by fundamental physical constants. Our results show that recent advances in the theoretical physics of liquids are applicable to molten salts mixtures, and therefore that the evolution and interplay of properties common to all liquids may act as a guide to a deeper understanding of these mixtures.
Collapse
Affiliation(s)
- C Cockrell
- Nuclear Futures Institute, Bangor University, Bangor LL57 1UT, UK.
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - M Withington
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - H L Devereux
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - A M Elena
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury WA4 4AD, UK
| | - I T Todorov
- Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury WA4 4AD, UK
| | - Z K Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - S L Shang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - J S McCloy
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - P A Bingham
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - K Trachenko
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
2
|
Ouyang XY, Ye QJ, Li XZ. Complex phase diagram and supercritical matter. Phys Rev E 2024; 109:024118. [PMID: 38491632 DOI: 10.1103/physreve.109.024118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of the matter therein, e.g., as liquidlike and gaslike, however, suggest "supercritical boundaries." Here we provide a mathematical description of these phenomena by revisiting the Yang-Lee theory and introducing a complex phase diagram, specifically a four-dimensional (4D) one with complex T and p. While the traditional 2D phase diagram with real temperature T and pressure p values (the physical plane) lacks Lee-Yang (LY) zeros beyond the critical point, preventing the occurrence of criticality, the off-plane zeros in this 4D scenario still induce critical anomalies in various physical properties. This relationship is evidenced by the correlation between the Widom line and LY edges in van der Waals, 2D Ising model, and water. The diverged supercritical boundaries manifest the high-dimensional feature of the phase diagram: e.g., when LY zeros of complex T or p are projected onto the physical plane, boundaries defined by isobaric heat capacity C_{p} or isothermal compression coefficient K_{T} emanates. These results demonstrate the incipient phase transition nature of the supercritical matter.
Collapse
Affiliation(s)
- Xiao-Yu Ouyang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Qi-Jun Ye
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People's Republic of China
| |
Collapse
|
3
|
Ramesh A, Balasubramanian R. Generation IV Nuclear Reactor: Coolant Materials in the Supercritical State. NUCL SCI ENG 2023. [DOI: 10.1080/00295639.2022.2147384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A. Ramesh
- Arignar Anna Government Arts College, Department of Physics, Namakkal 637002, India
| | - R. Balasubramanian
- Arignar Anna Government Arts College, Department of Physics, Namakkal 637002, India
| |
Collapse
|
4
|
Trachenko K. Microscopic dynamics and Bose-Einstein condensation in liquid helium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:085101. [PMID: 36595229 DOI: 10.1088/1361-648x/acaba3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
We review fundamental problems involved in liquid theory including both classical and quantum liquids. Understanding classical liquids involves exploring details of their microscopic dynamics and its consequences. Here, we apply the same general idea to quantum liquids. We discuss momentum condensation in liquid helium which is consistent with microscopic dynamics in liquids and high mobility of liquid atoms. We propose that mobile transit atoms accumulate in the finite-energy state where the transit speed is close to the speed of sound. In this state, the transit energy is close to the oscillatory zero-point energy. In momentum space, the accumulation operates on a sphere with the radius set by interatomic spacing and corresponds to zero net momentum. We show that this picture is supported by experiments, including the measured kinetic energy of helium atoms below the superfluid transition and sharp peaks of scattered intensity at predicted energy. We discuss the implications of this picture including the macroscopic wave function and superfluidity.
Collapse
Affiliation(s)
- K Trachenko
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
5
|
Asymptotics and Summation of the Effective Properties of Suspensions, Simple Liquids and Composites. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We review the problem of summation for a very short truncation of a power series by means of special resummation techniques inspired by the field-theoretical renormalization group. Effective viscosity (EV) of active and passive suspensions is studied by means of a special algebraic renormalization approach applied to the first and second-order expansions in volume fractions of particles. EV of the 2D and 3D passive suspensions is analysed by means of various self-similar approximants such as iterated roots, exponential approximants, super-exponential approximants and root approximants. General formulae for all concentrations are derived. A brief introduction to the rheology of micro-swimmers is given. Microscopic expressions for the intrinsic viscosity of the active system of puller-like microswimmers are obtained. Special attention is given to the problem of the calculation of the critical indices and amplitudes of the EV and to the sedimentation rate in the vicinity of known critical points. Critical indices are calculated from the short truncation by means of minimal difference and minimal derivative conditions on the fixed points imposed directly on the critical properties. Accurate expressions are presented for the non-local diffusion coefficient of a simple liquid in the vicinity of a critical point. Extensions and corrections to the celebrated Kawasaki formula are discussed. We also discuss the effective conductivity for the classical analog of graphene and calculate the effective critical index for superconductivity dependent on the concentration of vacancies. Finally, we discuss the effective conductivity of a random 3D composite and calculate the superconductivity critical index of a random 3D composite.
Collapse
|