1
|
Le DQ, Nguyen TA, Nguyen SH, Nguyen TT, Nguyen CH, Phung HT, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. Efficient inference of large prokaryotic pangenomes with PanTA. Genome Biol 2024; 25:209. [PMID: 39107817 PMCID: PMC11304767 DOI: 10.1186/s13059-024-03362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Pangenome inference is an indispensable step in bacterial genomics, yet its scalability poses a challenge due to the rapid growth of genomic collections. This paper presents PanTA, a software package designed for constructing pangenomes of large bacterial datasets, showing unprecedented efficiency levels multiple times higher than existing tools. PanTA introduces a novel mechanism to construct the pangenome progressively without rebuilding the accumulated collection from scratch. The progressive mode is shown to consume orders of magnitude less computational resources than existing solutions in managing growing datasets. The software is open source and is publicly available at https://github.com/amromics/panta and at 10.6084/m9.figshare.23724705 .
Collapse
Affiliation(s)
- Duc Quang Le
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of IT, Hanoi University of Civil Engineering, Hanoi, Vietnam
| | - Tien Anh Nguyen
- AMROMICS JSC, Nghe An, Vietnam
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Tam Thi Nguyen
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Huong Thanh Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Tho Huu Ho
- Department of Medical Microbiology, The 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Genomics & Cytogenetics, Institute of Biomedicine & Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nam S Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Vietnam
| | | | | | | |
Collapse
|
2
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Cai H, McLimans CJ, Jiang H, Chen F, Krumholz LR, Hambright KD. Aerobic anoxygenic phototrophs play important roles in nutrient cycling within cyanobacterial Microcystis bloom microbiomes. MICROBIOME 2024; 12:88. [PMID: 38741135 PMCID: PMC11089705 DOI: 10.1186/s40168-024-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Haiyuan Cai
- School of Biological Sciences, University of Oklahoma, Norman, USA
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | - Helong Jiang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA
| | - Lee R Krumholz
- School of Biological Sciences, University of Oklahoma, Norman, USA
| | | |
Collapse
|
4
|
Shu HY, Zhao L, Jia Y, Liu FF, Chen J, Chang CM, Jin T, Yang J, Shu WS. CyanoStrainChip: A Novel DNA Microarray Tool for High-Throughput Detection of Environmental Cyanobacteria at the Strain Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5024-5034. [PMID: 38454313 PMCID: PMC10956431 DOI: 10.1021/acs.est.3c11096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.
Collapse
Affiliation(s)
- Hao-Yue Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Liang Zhao
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| | - Yanyan Jia
- School
of Ecology, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Fei-Fei Liu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Jiang Chen
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Chih-Min Chang
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
| | - Tao Jin
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- One
Health Biotechnology (Suzhou) Co., Ltd., Suzhou 215009, PR China
| | - Jian Yang
- School
of Food and Drug, Shenzhen Polytechnic, Shenzhen 518081, PR China
| | - Wen-Sheng Shu
- Guangdong
Magigene Biotechnology Co., Ltd., Shenzhen 518081, PR China
- Institute
of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity
and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology
for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Kiledal EA, Reitz LA, Kuiper EQ, Evans J, Siddiqui R, Denef VJ, Dick GJ. Comparative genomic analysis of Microcystis strain diversity using conserved marker genes. HARMFUL ALGAE 2024; 132:102580. [PMID: 38331539 DOI: 10.1016/j.hal.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Microcystis-dominated cyanobacterial harmful algal blooms (cyanoHABs) have a global impact on freshwater environments, affecting both wildlife and human health. Microcystis diversity and function in field samples and laboratory cultures can be determined by sequencing whole genomes of cultured isolates or natural populations, but these methods remain computationally and financially expensive. Amplicon sequencing of marker genes is a lower cost and higher throughput alternative to characterize strain composition and diversity in mixed samples. However, the selection of appropriate marker gene region(s) and primers requires prior understanding of the relationship between single gene genotype, whole genome content, and phenotype. To identify phylogenetic markers of Microcystis strain diversity, we compared phylogenetic trees built from each of 2,351 individual core genes to an established phylogeny and assessed the ability of these core genes to predict whole genome content and bioactive compound genotypes. We identified single-copy core genes better able to resolve Microcystis phylogenies than previously identified marker genes. We developed primers suitable for current Illumina-based amplicon sequencing with near-complete coverage of available Microcystis genomes and demonstrate that they outperform existing options for assessing Microcystis strain composition. Results showed that genetic markers can be used to infer Microcystis gene content and phenotypes such as potential production of bioactive compounds , although marker performance varies by bioactive compound gene and sequence similarity. Finally, we demonstrate that these markers can be used to characterize the Microcystis strain composition of laboratory or field samples like those collected for surveillance and modeling of Microcystis-dominated cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- E Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA.
| | - Laura A Reitz
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Esmée Q Kuiper
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Jacob Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Ruqaiya Siddiqui
- Microbiome Core, University of Michigan, 1500 MSRB 1, 1150W Medical Center Drive, Ann Arbor, MI 48109-5666, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research, University of Michigan, 4040 Dana Building, 440 Church Street, Ann Arbor, MI 48109-1041, USA
| |
Collapse
|
6
|
Wilson ML, Romano SN, Khatri N, Aharon D, Liu Y, Kaufman OH, Draper BW, Marlow FL. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component, Mios. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577235. [PMID: 38328218 PMCID: PMC10849709 DOI: 10.1101/2024.01.25.577235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary in character. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
Collapse
Affiliation(s)
- Miranda L. Wilson
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Shannon N. Romano
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Nitya Khatri
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Odelya H. Kaufman
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Florence L. Marlow
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
7
|
Romanis CS, Timms VJ, Nebauer DJ, Crosbie ND, Neilan BA. Microbiome analysis reveals Microcystis blooms endogenously seeded from benthos within wastewater maturation ponds. Appl Environ Microbiol 2024; 90:e0158523. [PMID: 38117057 PMCID: PMC10807444 DOI: 10.1128/aem.01585-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Toxigenic Microcystis blooms periodically disrupt the stabilization ponds of wastewater treatment plants (WWTPs). Dense proliferations of Microcystis cells within the surface waters (SWs) impede the water treatment process by reducing the treatment efficacy of the latent WWTP microbiome. Further, water quality is reduced when conventional treatment leads to Microcystis cell lysis and the release of intracellular microcystins into the water column. Recurrent seasonal Microcystis blooms cause significant financial burdens for the water industry and predicting their source is vital for bloom management strategies. We investigated the source of recurrent toxigenic Microcystis blooms at Australia's largest lagoon-based municipal WWTP in both sediment core (SC) and SW samples between 2018 and 2020. Bacterial community composition of the SC and SW samples according to 16S rRNA gene amplicon sequencing showed that Microcystis sp. was dominant within SW samples throughout the period and reached peak relative abundances (32%) during the summer. The same Microcystis Amplicon sequence variants were present within the SC and SW samples indicating a potential migratory population that transitions between the sediment water and SWs during bloom formation events. To investigate the potential of the sediment to act as a repository of viable Microcystis cells for recurrent bloom formation, a novel in-vitro bloom model was established featuring sediments and sterilized SW collected from the WWTP. Microcystin-producing Microcystis blooms were established through passive resuspension after 12 weeks of incubation. These results demonstrate the capacity of Microcystis to transition between the sediments and SWs in WWTPs, acting as a perennial inoculum for recurrent blooms.IMPORTANCECyanobacterial blooms are prevalent to wastewater treatment facilities owing to the stable, eutrophic conditions. Cyanobacterial proliferations can disrupt operational procedures through the blocking of filtration apparatus or altering the wastewater treatment plant (WWTP) microbiome, reducing treatment efficiency. Conventional wastewater treatment often results in the lysis of cyanobacterial cells and the release of intracellular toxins which pose a health risk to end users. This research identifies a potential seeding source of recurrent toxigenic cyanobacterial blooms within wastewater treatment facilities. Our results demonstrate the capacity of Microcystis to transition between the sediments and surface waters (SWs) of wastewater treatment ponds enabling water utilities to develop adequate monitoring and management strategies. Further, we developed a novel model to demonstrate benthic recruitment of toxigenic Microcystis under laboratory conditions facilitating future research into the genetic mechanisms behind bloom development.
Collapse
Affiliation(s)
- C. S. Romanis
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
| | - V. J. Timms
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
- ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia
| | - D. J. Nebauer
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
| | | | - B. A. Neilan
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia
- ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia
| |
Collapse
|
8
|
Xu Y, Leung SKK, Li TMW, Yung CCM. Hidden genomic diversity drives niche partitioning in a cosmopolitan eukaryotic picophytoplankton. THE ISME JOURNAL 2024; 18:wrae163. [PMID: 39141834 PMCID: PMC11409870 DOI: 10.1093/ismejo/wrae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
Marine eukaryotic phytoplankton are fundamental to the marine food web, yet the lack of reference genomes or just a single genome representing a taxon has led to an underestimation of their taxonomic, adaptive, and functional diversity. Here, we integrated strain isolation with metagenomic binning to recover genomes from the cosmopolitan picophytoplankton genus Bathycoccus, traditionally considered monospecific. Our recovery and analysis of 37 Bathycoccus genomes delineated their global genomic diversity and established four evolutionary clades (BI, BII, BIII, BIV). Our metagenomic abundance survey revealed well-differentiated ecological niches and distinct biogeographic distributions for each clade, predominantly shaped by temperature, salinity, and nutrient availability. Comparative genomics analyses further revealed clade-specific genomic traits that underpin niche adaptation and contribute to the global prevalence of Bathycoccus. Our findings underscore temperature as a major driver of genome diversification in this genus, with clade divergences coinciding with major paleoclimatic events that influenced their contemporary thermal niches. Moreover, the unique enrichment of C2H2 zinc finger and ankyrin repeat gene families in polar-adapted clades suggests previously unrecognized cold-adaptation mechanisms in marine eukaryotic phytoplankton. Our study offers a comprehensive genomic landscape of this crucial eukaryotic picophytoplankton, providing insights into their microdiversity and adaptive evolution in response to changing environments.
Collapse
Affiliation(s)
- Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Shara K K Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Taylor M W Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
9
|
Baker D, Godwin CM, Khanam M, Burtner AM, Dick GJ, Denef VJ. Variation in resource competition traits among Microcystis strains is affected by their microbiomes. MLIFE 2023; 2:401-415. [PMID: 38818269 PMCID: PMC10989160 DOI: 10.1002/mlf2.12094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 06/01/2024]
Abstract
Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate μ max, half-saturation value for growth K s, and quota) as a function of N and P levels for four strains (NIES-843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half-saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis-intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, μ max, and K s are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource-use parameters.
Collapse
Affiliation(s)
- Dylan Baker
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Casey M. Godwin
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Muhtamim Khanam
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ashley M. Burtner
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Gregory J. Dick
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Vincent J. Denef
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Lefler FW, Barbosa M, Zimba PV, Smyth AR, Berthold DE, Laughinghouse HD. Spatiotemporal diversity and community structure of cyanobacteria and associated bacteria in the large shallow subtropical Lake Okeechobee (Florida, United States). Front Microbiol 2023; 14:1219261. [PMID: 37711696 PMCID: PMC10499181 DOI: 10.3389/fmicb.2023.1219261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Lake Okeechobee is a large eutrophic, shallow, subtropical lake in south Florida, United States. Due to decades of nutrient loading and phosphorus rich sediments, the lake is eutrophic and frequently experiences cyanobacterial harmful algal blooms (cyanoHABs). In the past, surveys of the phytoplankton community structure in the lake have been conducted by morphological studies, whereas molecular based studies have been seldom employed. With increased frequency of cyanoHABs in Lake Okeechobee (e.g., 2016 and 2018 Microcystis-dominated blooms), it is imperative to determine the diversity of cyanobacterial taxa that exist within the lake and the limnological parameters that drive bloom-forming genera. A spatiotemporal study of the lake was conducted over the course of 1 year to characterize the (cyano)bacterial community structure, using 16S rRNA metabarcoding, with coincident collection of limnological parameters (e.g., nutrients, water temperature, major ions), and cyanotoxins. The objectives of this study were to elucidate spatiotemporal trends of community structure, identify drivers of community structure, and examine cyanobacteria-bacterial relationships within the lake. Results indicated that cyanobacterial communities within the lake were significantly different between the wet and dry season, but not between periods of nitrogen limitation and co-nutrient limitation. Throughout the year, the lake was primarily dominated by the picocyanobacterium Cyanobium. The bloom-forming genera Cuspidothrix, Dolichospermum, Microcystis, and Raphidiopsis were highly abundant throughout the lake and had disparate nutrient requirements and niches within the lake. Anatoxin-a, microcystins, and nodularins were detected throughout the lake across both seasons. There were no correlated (cyano)bacteria shared between the common bloom-forming cyanobacteria Dolichospermum, Microcystis, and Raphidiopsis. This study is the first of its kind to use molecular based methods to assess the cyanobacterial community structure within the lake. These data greatly improve our understanding of the cyanobacterial community structure within the lake and the physiochemical parameters which may drive the bloom-forming taxa within Lake Okeechobee.
Collapse
Affiliation(s)
- Forrest W. Lefler
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida—IFAS, Davie, FL, United States
| | - Maximiliano Barbosa
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida—IFAS, Davie, FL, United States
| | - Paul V. Zimba
- Rice Rivers Center, Virginia Commonwealth University, Charles City, VA, United States
| | - Ashley R. Smyth
- Soil, Water and Ecosystem Sciences Department, Tropical Research and Education Center, University of Florida—IFAS, Homestead, FL, United States
| | - David E. Berthold
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida—IFAS, Davie, FL, United States
| | - H. Dail Laughinghouse
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida—IFAS, Davie, FL, United States
| |
Collapse
|
11
|
Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. Expression of Microcystis Biosynthetic Gene Clusters in Natural Populations Suggests Temporally Dynamic Synthesis of Novel and Known Secondary Metabolites in Western Lake Erie. Appl Environ Microbiol 2023; 89:e0209222. [PMID: 37070981 PMCID: PMC10231183 DOI: 10.1128/aem.02092-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|