1
|
Yu L, Gu X, Chen P, Yang R, Xu Y, Yang X. Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations. Curr Issues Mol Biol 2024; 46:12061-12074. [PMID: 39590309 PMCID: PMC11593023 DOI: 10.3390/cimb46110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), this study infected SKM-1 cell line (MDS cell line) with packaged H_PTPN6-shRNA lentivirus to obtain H_PTPN6-shRNA SKM-1 stable strain. The effect of PTPN6 knockdown on apoptosis, erythroid differentiation, and inflammations in SKM-1 cell line was examined. Methods: The stable knockdown SKM-1 cell line was validated using qPCR and Western blot assays. The proliferation activity, apoptosi, erythroid differentiation, and inflammatory cytokines in SKM-1 cells were assessed before and after transfection. Results: qPCR confirmed that the expression level of H_PTPN6-shRNA in SKM-1 cells was significantly reduced, and Western blot showed that the protein expression level of H_PTPN6-shRNA in SKM-1 cells was also significantly reduced. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell viability. Flow cytometry revealed that the apoptosis rate of cells in the PTPN6 knockdown group was 0.8%, lower than the 2.7% observed in the empty plasmid group; the expression rate of the erythroid differentiation marker CD235a was 13.2%, lower than the 25.0% observed in the empty plasmid group. The expression levels of the proinflammatory factors IL-6 and IL-8 increased, and the expression levels of the inhibitor factor IL-4 decreased. Conclusions: The PTPN6 gene was successfully knocked down using lentivirus-mediated transduction, and the constructed cell line was validated using PCR and Western blot. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell proliferation viability. Flow cytometry analysis of apoptosis and erythroid differentiation indicated that PTPN6 knockdown inhibits apoptosis and erythroid differentiation in SKM-1 cells and also alters the level of inflammations in the bone marrow microenvironment. It suggests that the PTPN6 gene acts as a tumor suppressor in myelodysplastic syndrome cells, influencing hematopoietic cell apoptosis, erythroid differentiation, and inflammations. This provides a reliable experimental basis for further in-depth studies on the mechanism of PTPN6 in MDS and related pharmacological research.
Collapse
Affiliation(s)
| | | | | | | | - Yonggang Xu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (L.Y.); (X.G.); (P.C.); (R.Y.)
| | - Xiupeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (L.Y.); (X.G.); (P.C.); (R.Y.)
| |
Collapse
|
2
|
Roiuk M, Neff M, Teleman AA. eIF4E-independent translation is largely eIF3d-dependent. Nat Commun 2024; 15:6692. [PMID: 39107322 PMCID: PMC11303786 DOI: 10.1038/s41467-024-51027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Mykola Roiuk
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marilena Neff
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|