1
|
Chen M, Su Z, Xue J. Targeting T-cell Aging to Remodel the Aging Immune System and Revitalize Geriatric Immunotherapy. Aging Dis 2025:AD.2025.0061. [PMID: 40153576 DOI: 10.14336/ad.2025.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025] Open
Abstract
The aging immune system presents profound challenges, notably through the decline of T cell function, which is critical for effective immune responses. As age-related changes lead to diminished T cell diversity and heighten immunosuppressive environments, older individuals face increased susceptibility to infections, autoimmune diseases, and reduced efficacy of immunotherapies. This review investigates the intricate mechanisms by which T cell aging drives immunosenescence, including immune suppression, immune evasion, reduced antigen reactivity, and the overexpression of immune checkpoint molecules. By delving into innovative therapeutic strategies aimed at rejuvenating T cell populations and modifying the immunological landscape, we highlight the potential for enhancing immune resilience in the elderly. Ultimately, our goal is to outline actionable pathways for restoring immune function, thereby improving health outcomes for aging individuals facing immunological decline.
Collapse
Affiliation(s)
- Mi Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zhou Su
- Department of Oncology, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Herbert A, Cherednichenko O, Lybrand TP, Egli M, Poptsova M. Zα and Zβ Localize ADAR1 to Flipons That Modulate Innate Immunity, Alternative Splicing, and Nonsynonymous RNA Editing. Int J Mol Sci 2025; 26:2422. [PMID: 40141064 PMCID: PMC11942513 DOI: 10.3390/ijms26062422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The double-stranded RNA editing enzyme ADAR1 connects two forms of genetic programming, one based on codons and the other on flipons. ADAR1 recodes codons in pre-mRNA by deaminating adenosine to form inosine, which is translated as guanosine. ADAR1 also plays essential roles in the immune defense against viruses and cancers by recognizing left-handed Z-DNA and Z-RNA (collectively called ZNA). Here, we review various aspects of ADAR1 biology, starting with codons and progressing to flipons. ADAR1 has two major isoforms, with the p110 protein lacking the p150 Zα domain that binds ZNAs with high affinity. The p150 isoform is induced by interferon and targets ALU inverted repeats, a class of endogenous retroelement that promotes their transcription and retrotransposition by incorporating Z-flipons that encode ZNAs and G-flipons that form G-quadruplexes (GQ). Both p150 and p110 include the Zβ domain that is related to Zα but does not bind ZNAs. Here we report strong evidence that Zβ binds the GQ that are formed co-transcriptionally by ALU repeats and within R-loops. By binding GQ, ADAR1 suppresses ALU-mediated alternative splicing, generates most of the reported nonsynonymous edits and promotes R-loop resolution. The recognition of the various alternative nucleic acid conformations by ADAR1 connects genetic programming by flipons with the encoding of information by codons. The findings suggest that incorporating G-flipons into editmers might improve the therapeutic editing efficacy of ADAR1.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, MA 02129, USA
| | - Oleksandr Cherednichenko
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| | - Terry P. Lybrand
- Department of Chemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
- Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
| | - Maria Poptsova
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| |
Collapse
|
3
|
Fukushima Y, Ueno R, Minato N, Hattori M. Senescence-associated T cells in immunosenescence and diseases. Int Immunol 2025; 37:143-152. [PMID: 39320393 DOI: 10.1093/intimm/dxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Age-related changes in the immune system, referred to as immunosenescence, appear to evolve with rather paradoxical manifestations, a diminished adaptive immune capacity, and an increased propensity for chronic inflammation often with autoimmunity, which may underlie the development of diverse disorders with age. Immunosenescent phenotypes are associated with the emergence of unique lymphocyte subpopulations of both T and B lineages. We report that a CD153+ programmed cell death protein 1 (PD-1)+ CD4+ T-cell subpopulation with severely attenuated T-cell receptor (TCR)-responsiveness, termed senescence-associated T (SAT) cells, co-evolve with potentially autoreactive CD30+ B cells, such as spontaneous germinal center B cells and age-associated B cells, in aging mice. SAT cells and CD30+ B cells are reciprocally activated with the aid of the interaction of CD153 with CD30 in trans and with the TCR complex in cis, resulting in the restoration of TCR-mediated proliferation and secretion of abundant pro-inflammatory cytokines in SAT cells and the activation and production of autoantibodies by CD30+ B cells. Besides normal aging, the development of SAT cells coupled with counterpart B cells may be robustly accelerated and accumulated in the relevant tissues of lymphoid or extra-lymphoid organs under chronic inflammatory conditions, including autoimmunity, and may contribute to the pathogenesis and aggravation of the disorders. This review summarizes and discusses recent advances in the understanding of SAT cells in the contexts of immunosenescent phenotypes, as well as autoimmune and chronic inflammatory diseases, and it provides a novel therapeutic clue.
Collapse
Affiliation(s)
- Yuji Fukushima
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Ryuji Ueno
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Masakazu Hattori
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Zhang W, Liu H, Zhang D, Yi Y, Tao L, Zhu Y, Huang S, Zhao X, Shao Q, Li P, Weng Y, Lu W, Zhang J, Zhang H, Chen Y, Weng D. Role of hepatocyte RIPK1 in maintaining liver homeostasis during metabolic challenges. eLife 2025; 13:RP96798. [PMID: 39886919 PMCID: PMC11785375 DOI: 10.7554/elife.96798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.
Collapse
Affiliation(s)
- Weigao Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Hu Liu
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Danyang Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen UniversityShenzhenChina
| | - Liang Tao
- The First Affiliated Hospital, Basic Medical Sciences, University of South ChinaHengyangChina
| | - Yunfeng Zhu
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Shuxian Huang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Xunan Zhao
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Qianchao Shao
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Peiqi Li
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Yiwen Weng
- Internal Medicine Department, Chengdu Jinniu District People's HospitalChengduChina
| | - Wei Lu
- Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Dan Weng
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and TechnologyNanjingChina
| |
Collapse
|
5
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2025; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
6
|
Zhang J, Hu H, Zhu Y, Jin Y, Zhang H, Fan R, Ye Y, Xin X, Li D. Bushen Jianpi Tiaoxue Decoction (BJTD) ameliorates oxidative stress and apoptosis induced by uterus ageing through activation of the SIRT1/NRF2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156288. [PMID: 39631297 DOI: 10.1016/j.phymed.2024.156288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Uterus ageing is a crucial factor contributing to decreased fertility in older women and is also implicated in menstrual disorders, endometritis, and adenomyosis. Bushen Jianpi Tiaoxue Decoction (BJTD) is a traditional Chinese medicine formulation used to ameliorate endocrine disorders in the female reproductive system and finds extensive application in ageing-related endometrial diseases. However, the mechanisms underlying its improvement of uterus ageing have not been thoroughly investigated. PURPOSE To explore the potential components and mechanisms of BJTD in ameliorating uterus ageing through network pharmacology, in vivo, and in vitro experiments. METHODS Morphological changes were observed using hematoxylin and eosin staining, collagen deposition was assessed using Masson staining, and apoptotic-related molecules were detected using Western blot. After determining the modeling doses, BJTD intervention was administered at two doses, and the expression of oxidative stress and apoptosis-related genes and proteins was measured. The levels of cellular apoptosis were evaluated using the TUNEL assay kit and Annexin V/FITC-PI assay kit. The main components of BJTD were determined by UPLC-MS, and the potential targets and mechanisms of BJTD action were explored using network pharmacology and molecular docking. BJTD-Containing Serum (BJTD-S) was extracted and applied in vitro experiments using human endometrial stroma cells (hESC) to preliminarily identify the pathways affected. RESULTS We demonstrated that modeling with 600 mg/kg/day D-Gal for 5 weeks significantly increased collagen deposition in uterine tissues, particularly in the glands and stroma. Additionally, it significantly elevated the levels of TNF-α and IL-1β and increased the expression of p53 and BAX while decreasing BCL-2 expression. BJTD significantly reduced the increased levels of TNF-α and IL-1β induced by D-Gal, and modulated oxidative stress markers such as SOD, MDA, GSH-Px, and T-AOC. BJTD also inhibited the cascade activation of apoptosis induced by D-Gal, suppressing the expression of cleaved-Caspase 8, cleaved-Caspase 3, and BAX. SIRT1 is a potential target of BJTD action. In vitro experiments showed that BJTD-S significantly improved D-Gal-induced apoptosis in hESC cells, and the expression levels of SIRT1, NRF2, and HO-1 were significantly decreased in D-Gal-induced hESC, and BJTD-S significantly increased their expression. CONCLUSION BJTD can ameliorate oxidative stress and cell apoptosis levels in D-Gal-induced uterine aging, and its active ingredients can activate the SIRT1/NRF2 pathway to exert its effects. Importantly, our study provides novel insights into the molecular mechanisms by which traditional Chinese medicine influence uterus ageing. By specifically targeting the SIRT1/NRF2 pathway, BJTD presents a unique therapeutic approach that has not been extensively explored in previous studies, marking a significant advancement in the treatment of uterus ageing.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
8
|
Zhang W, Zhang J, Zhang Y, Zhai J, Sun B, Guo Y, Wang F. The up-regulation of RIPK3 mediated by ac4C modification promotes oxidative stress-induced granulosa cell senescence by inhibiting the Nrf2/HO-1 pathway. IUBMB Life 2025; 77:e2944. [PMID: 39865380 DOI: 10.1002/iub.2944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025]
Abstract
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence. Primary GCs were treated with H₂O₂ to induce senescence. ROS was detected via DCFH-DA staining. Levels of senescence-related molecules and SA-β-Gal activity were examined. Cyclophosphamide was administered to mice to induce POF. The impact of RIPK3 on atretic follicles and sex hormones was evaluated through HE staining and ELISA, respectively. The acRIP-qPCR analysis of RIPK3 ac4C levels, RIP detection for interaction between RIPK3 and NAT10, and actinomycin D treatment to detect RIPK3 degradation were conducted. In H2O2-treated GCs and POF mouse ovaries, levels of RIPK3, ROS, senescence-related molecules, as well as SA-β-Gal activity, were all up-regulated, and this effect was suppressed by RIPK3 inhibition. RIPK3 interference reduced atretic follicles and FSH levels while increasing AMH and E2 levels. Nrf2 and HO-1 content were diminished in the models, whereas si-RIPK3 facilitated their expression. The effect of si-RIPK3 on decreased levels of ROS and senescence-related molecules was reversed by ML385. H2O2 decreased RIPK3 mRNA degradation and increased its ac4C modification. The ac4C modifying enzyme NAT10 was up-regulated in the models, and NAT10 enhanced RIPK3 mRNA stability through ac4C modification. NAT10 knockdown mitigated ovarian GC senescence by inhibiting RIPK3 expression. The promotion of RIPK3 mRNA stability through ac4C modification by NAT10, in turn, affects the Nrf2/HO-1 pathway and promotes ovarian GC senescence.
Collapse
Affiliation(s)
- Wanjun Zhang
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiahao Zhang
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yile Zhang
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun Zhai
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Sun
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yihong Guo
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fang Wang
- Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Dong J, Xiong X. Serum Level of RIPK1/3 Correlated With the Prognosis in ICU Patients With Acute Ischemic Stroke. Immun Inflamm Dis 2024; 12:e70085. [PMID: 39657719 PMCID: PMC11631146 DOI: 10.1002/iid3.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular disease with high mortality. AIS patients in the intensive care unit (ICU) often have severe conditions that require close monitoring and timely treatment. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 play important roles in cell apoptosis and inflammation. However, the relevance of serum RIPK1/3 to AIS patients in the ICU has not been clarified. OBJECTIVE To explore the correlation of serum RIPK1 and RIPK3 with the prognosis of AIS patients in the ICU. METHODS One hundred and twenty AIS patients were selected as the research subjects for the retrospective analysis. The subjects were grouped based on the volume of cerebral infarction and the score of the National Institute of Health Stroke Scale (NIHSS) and mRS. The correlation was explored using Pearson analysis. The predictive value was valued using the ROC curve. RESULTS The content of serum RIPK1 and RIPK3 was gradually elevated with increased cerebral infarction volume and the severity of the disease (p < 0.05). Patients with poor prognosis had a higher content of serum RIPK1 and RIPK3 than those with good prognosis (p < 0.05). Serum RIPK1 and RIPK3 levels were positively correlated with infarct volume, NHISS, and mRS scores (p < 0.001). The area under the curve (AUC) of RIPK1 and RIPK3 for predicting the severity of AIS was 0.703, 0.883, and 0.912, respectively. The AUC for predicting poor prognosis of AIS was 0.797, 0.721, and 0.893, respectively. The cooperative detection of RIPK1 and RIPK3 had higher clinical value. CONCLUSION AIS patients in the ICU had abnormally elevated content of serum RIPK1 and RIPK3, which was closely related to the volume of cerebral infarction, severity, and prognosis. Combined detection of RIPK1 and RIPK3 might help to early identify the severity and evaluate the prognosis, providing a reference basis for clinical doctors to develop treatment strategies.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Intensive Care Unit, Beijing Boai HospitalChina Rehabilitation Research CenterBeijingChina
| | - Xinli Xiong
- Department of Neurology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
10
|
Zhang X, Liu L. Senescent T Cells: The Silent Culprit in Acute Myeloid Leukemia Progression? Int J Mol Sci 2024; 25:12550. [PMID: 39684260 DOI: 10.3390/ijms252312550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors can evade immune surveillance and elimination through multiple mechanisms, with the induction of immune cell dysfunction serving as a crucial strategy. Mounting evidence indicates that T cell senescence constitutes the primary mechanism underlying T cell dysfunction in acute myeloid leukemia (AML) and represents one of the potential causes of immunotherapy failure. AML usually progresses rapidly and is highly susceptible to drug resistance, thereby resulting in recurrence and patient mortality. Hence, disrupting the immune interface within the bone marrow microenvironment of AML has emerged as a critical objective for synergistically enhancing tumor immunotherapy. In this review, we summarize the general characteristics, distinctive phenotypes, and regulatory signaling networks of senescent T cells and highlight their potential clinical significance in the bone marrow microenvironment of AML. Additionally, we discuss potential therapeutic strategies for alleviating and reversing T cell senescence.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Pan J, Qu J, Fang W, Zhao L, Zheng W, Zhai L, Tan M, Xu Q, Du Q, Lv W, Sun Y. SHP2-Triggered Endothelial Cell Activation Fuels Estradiol-Independent Endometrial Sterile Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403038. [PMID: 39234819 PMCID: PMC11538683 DOI: 10.1002/advs.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sterile inflammation occurs in various chronic diseases due to many nonmicrobe factors. Examples include endometrial hyperplasia (EH), endometriosis, endometrial cancer, and breast cancer, which are all sterile inflammation diseases induced by estrogen imbalances. However, how estrogen-induced sterile inflammation regulates EH remains unclear. Here, a single-cell RNA-Seq is used to show that SHP2 upregulation in endometrial endothelial cells promotes their inflammatory activation and subsequent transendothelial macrophage migration. Independent of the initial estrogen stimulation, IL1β and TNFα from macrophages then create a feedforward loop that enhances endothelial cell activation and IGF1 secretion. This endothelial cell-macrophage interaction sustains sterile endometrial inflammation and facilitates epithelial cell proliferation, even after estradiol withdrawal. The bulk RNA-Seq results and phosphoproteomic analysis show that endothelial SHP2 mechanistically enhances RIPK1 activity by dephosphorylating RIPK1Tyr380. This event activates downstream activator protein 1 (AP-1) and instigates the inflammation response. Furthermore, targeting SHP2 using SHP099 (an allosteric inhibitor) or endothelial-specific SHP2 deletion alleviates endothelial cell activation, macrophage infiltration, and EH progression in mice. Collectively, the findings demonstrate that SHP2 mediates the transition of endothelial activation from estradiol-driven acute inflammation to macrophage-amplified chronic inflammation. Targeting sterile inflammation mediated by endothelial cell activation is a promising strategy for nonhormonal intervention in estrogen-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Linhui Zhai
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Minjia Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Qianming Du
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjing210006China
- School of Basic Medicine & Clinical PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Lv
- Department of GynecologyTongde Hospital of Zhejiang Province234 Gucui RoadHangzhouZhejiang310012China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| |
Collapse
|
12
|
Yin J, Yu Y, Huang X, Chan FKM. Necroptosis in immunity, tissue homeostasis, and cancer. Curr Opin Immunol 2024; 89:102455. [PMID: 39167896 DOI: 10.1016/j.coi.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Immune and tissue homeostasis is achieved through balancing signals that regulate cell survival, proliferation, and cell death. Recent studies indicate that certain cell death programs can stimulate inflammation and are often referred as 'immunogenic cell death' (ICD). ICD is a double-edged sword that can confer protection against pathogen infection but also cause tissue damage. Necroptosis is a key ICD module that has been shown to participate in host defense against pathogen infection, tissue homeostasis, and cancer response to immunotherapy. Here, we will review recent findings on the regulation of necroptosis signaling and its role in pathogen infection, tissue homeostasis, and cancer.
Collapse
Affiliation(s)
| | - Yuqiang Yu
- Department of Cardiology of the Second Affiliated Hospital, China; State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, China
| | | | - Francis K-M Chan
- Department of Cardiology of the Second Affiliated Hospital, China; State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, China; Liangzhu Laboratory, China; Zhejiang University School of Medicine, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
13
|
Yi C, Yang J, Zhang T, Xie Z, Xiong Q, Chen D, Jiang S. lncRNA signature mediates mitochondrial permeability transition-driven necrosis in regulating the tumor immune microenvironment of cervical cancer. Sci Rep 2024; 14:17406. [PMID: 39075098 PMCID: PMC11286791 DOI: 10.1038/s41598-024-65990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis (MPTDN) was a regulated variant of cell death triggered by specific stimuli. It played a crucial role in the development of organisms and the pathogenesis of diseases, and may provide new strategies for treating various diseases. However, there was limited research on the mechanisms of MPTDN in cervical cancer (CESC) at present. In this study, Weighted Gene Co-expression Network Analysis (WGCNA) was performed on differentially expressed genes in CESC. The module MEyellow, which showed the highest correlation with the phenotype, was selected for in-depth analysis. It was found that the genes in the MEyellow module may be associated with the tumor immune microenvironment (TIME). Through COX univariate regression and LASSO regression analysis, 6 key genes were identified. These genes were further investigated from multiple perspectives, including their independent diagnostic value, prognostic value, specific regulatory mechanisms in the tumor immune microenvironment, drug sensitivity analysis, and somatic mutation analysis. This study provided a comprehensive exploration of the mechanisms of action of these 6 key genes in CESC patients. And qRT-PCR validation was also conducted. Through COX univariate regression and LASSO coefficient screening of the MEyellow module, 6 key genes were identified: CHRM3-AS2, AC096734.1, BISPR, LINC02446, LINC00944, and DGUOK-AS1. Evaluation of the independent diagnostic value of these 6 key genes revealed that they can serve as independent diagnostic biomarkers. Through correlation analysis among these 6 genes, a potential regulatory mechanism among them was identified. Therefore, a risk prognostic model was established based on the collective action of these 6 genes, and the model showed good performance in predicting the survival period of CESC patients. By studying the relationship between these 6 key genes and the tumor microenvironment of CESC patients from multiple angles, it was found that these 6 genes are key regulatory factors in the tumor immune microenvironment of CESC patients. Additionally, 16 drugs that are associated with these 6 key genes were identified, and 8 small molecule drugs were predicted based on the lncRNA-mRNA network. The 6 key genes can serve as independent biomarkers for diagnosis, and the Risk score of these genes when acting together can be used as an indicator for predicting the clinical survival period of CESC patients. Additionally, these 6 key genes were closely related to the tumor immune microenvironment of CESC patients and were the important regulatory factors in the tumor immune microenvironment of CESC patients.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Zilu Xie
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
14
|
Guo J, Xue Z, Wang L. Highlight of 2023: Unraveling the complexity of T cell aging - insights from recent advances. Immunol Cell Biol 2024; 102:425-428. [PMID: 38650445 DOI: 10.1111/imcb.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unraveling the complexities of T cell aging is essential for developing targeted interventions to enhance immune function in the elderly. This article for the Highlights of 2023 Series integrates recent findings published in 2023, offering a panoramic view of the current understanding of T cell aging and its implications.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhonghui Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
15
|
Huysentruyt J, Steels W, Ruiz Perez M, Verstraeten B, Vadi M, Divert T, Flies K, Takahashi N, Lambrecht BN, Declercq W, Vanden Berghe T, Maelfait J, Vandenabeele P, Tougaard P. RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis. Cell Death Differ 2024; 31:820-832. [PMID: 38734851 PMCID: PMC11164875 DOI: 10.1038/s41418-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of Ripk1 in conventional T cells (Ripk1ΔCD4) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4+, naive CD8+, and FoxP3+ regulatory T cells. Interestingly, peripheral naive CD8+ T cells in Ripk1ΔCD4 mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4+ T cells. Ripk1K45A mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of Ripk1ΔCD4 naive T cells expressed the proliferation marker Ki-67+ despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore, Ripk1ΔCD4Casp8 ΔCD4 and Ripk1ΔCD4Tnfr1-/- double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4+ and CD8+ cells and FoxP3+ regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.
Collapse
Affiliation(s)
- Jelle Huysentruyt
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wolf Steels
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mario Ruiz Perez
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mike Vadi
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kayleigh Flies
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Wim Declercq
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Maelfait
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Peng Z, Zhang H, Hu H. Not to be and how not to be: the questions of Tregs controlled by RIPK1. Cell Mol Immunol 2024; 21:205-206. [PMID: 38225350 PMCID: PMC10805722 DOI: 10.1038/s41423-024-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Zhengcai Peng
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Chongqing International Institute for Immunology, Chongqing, 401338, China.
| |
Collapse
|
17
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
18
|
Wang L, Zhang X, Zhang H, Lu K, Li M, Li X, Ou Y, Zhao X, Wu X, Wu X, Liu J, Xing M, Liu H, Zhang Y, Tan Y, Li F, Deng X, Deng J, Zhang X, Li J, Zhao Y, Ding Q, Wang H, Wang X, Luo Y, Zhou B, Zhang H. Excessive apoptosis of Rip1-deficient T cells leads to premature aging. EMBO Rep 2023; 24:e57925. [PMID: 37965894 PMCID: PMC10702839 DOI: 10.15252/embr.202357925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.
Collapse
Affiliation(s)
- Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xixi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Kaili Lu
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yue Zhang
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoxue Deng
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jiangshan Deng
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojie Zhang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinbao Li
- Department of Anesthesiology, Shanghai First People's HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Yuwu Zhao
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and ImmunologyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xiuzhe Wang
- Department of NeurologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Luo
- Department of Anesthesiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
19
|
Hägglöf T, Parthasarathy R, Liendo N, Dudley EA, Leadbetter EA. RIPK1 deficiency prevents thymic NK1.1 expression and subsequent iNKT cell development. Front Immunol 2023; 14:1103591. [PMID: 37965338 PMCID: PMC10642909 DOI: 10.3389/fimmu.2023.1103591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) and caspase-8 (Casp8) jointly orchestrate apoptosis, a key mechanism for eliminating developing T cells which have autoreactive or improperly arranged T cell receptors. Mutations in the scaffolding domain of Ripk1 gene have been identified in humans with autoinflammatory diseases like Cleavage Resistant RIPK1 Induced Autoinflammatory (CRIA) and Inflammatory Bowel Disease. RIPK1 protein also contributes to conventional T cell differentiation and peripheral T cell homeostasis through its scaffolding domain in a cell death independent context. Ripk1 deficient mice do not survive beyond birth, so we have studied the function of this kinase in vivo against a backdrop Ripk3 and Casp8 deficiency which allows the mice to survive to adulthood. These studies reveal a key role for RIPK1 in mediating NK1.1 expression, including on thymic iNKT cells, which is a key requirement for thymic stage 2 to stage 3 transition as well as iNKT cell precursor development. These results are consistent with RIPK1 mediating responses to TcR engagement, which influence NK1.1 expression and iNKT cell thymic development. We also used in vivo and in vitro stimulation assays to confirm a role for both Casp8 and RIPK1 in mediating iNKT cytokine effector responses. Finally, we also noted expanded and hyperactivated iNKT follicular helper (iNKTFH) cells in both DKO (Casp8-, Ripk3- deficient) and TKO mice (Ripk1-, Casp8-, Ripk3- deficient). Thus, while RIPK1 and Casp8 jointly facilitate iNKT effector function, RIPK1 uniquely influenced thymic iNKT cell development most likely by regulating molecular responses to T cell receptor engagement. iNKT developmental and functional aberrances were not evident in mice expressing a kinase-dead version of RIPK1 (RIPK1kd), indicating that the scaffolding function of this protein exerts the critical regulation of iNKT cells. Our findings suggest that small molecule inhibitors of RIPK1 could be used to regulate iNKT cell development and effector function to alleviate autoinflammatory conditions in humans.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Nathaniel Liendo
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
- St Mary’s University, San Antonio, TX, United States
| | - Elizabeth A. Dudley
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
20
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
21
|
Kondo T, Fujimoto K, Fujiwara K, Yumita S, Ishino T, Ogawa K, Nakagawa M, Iwanaga T, Koroki K, Kanzaki H, Inoue M, Kobayashi K, Kiyono S, Nakamura M, Kanogawa N, Ogasawara S, Nakamoto S, Chiba T, Kato J, Fujiwara K, Kato N. Potential of circulating receptor-interacting protein kinase 3 levels as a marker of acute liver injury. Sci Rep 2023; 13:14043. [PMID: 37640752 PMCID: PMC10462689 DOI: 10.1038/s41598-023-41425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023] Open
Abstract
The pathogenesis of acute liver failure (ALF) involves cell death. Necroptosis is a newly suggested programmed cell death, and receptor-interacting protein kinase 3 (RIPK3) has been reported as a marker for necroptosis. However, there are few reports on necroptosis in ALF. Therefore, we evaluated the role of cell death markers such as cytokeratin (CK) 18, cleaved CK (cCK) 18, and RIPK3 in ALF, as well as cytokines and hepatocyte growth factor (HGF). Seventy-one hospitalized patients with acute liver injury (38 nonsevere hepatitis [non-SH]/22 severe hepatitis [SH]/11 ALF) were studied. No significant difference was found for cytokines, but a substantial increase in HGF levels was found following the severity of hepatitis. The non-SH group had lower levels of CK18 and cCK18 than the SH/ALF group. RIPK3 was significantly lower in the non-SH/SH group than in the ALF group. HGF, RIPK3, and albumin levels were found to be important predictive variables. The present study suggests that cCK18, CK18, and RIPK3 are associated with the severity of hepatitis. RIPK3 and other markers related cell death may be useful for understanding the pathogenesis of ALF and as a prognostic marker of acute liver injury.
Collapse
Affiliation(s)
- Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Ultrasound Center, Chiba University Hospital, Chiba, Japan.
| | - Kentaro Fujimoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kisako Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Sae Yumita
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takamasa Ishino
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Miyuki Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keisuke Koroki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masanori Inoue
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazufumi Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Soichiro Kiyono
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoya Kanogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keiichi Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Ultrasound Center, Chiba University Hospital, Chiba, Japan
| |
Collapse
|