1
|
Meng Y, Peplowski L, Wu T, Cheng Z, Han L, Qiao J, Cheng Z, Zhou Z. Multi-method analysis revealed the mechanism of substrate selectivity in NHase: A gatekeeper residue at the activity center. Int J Biol Macromol 2024; 279:135426. [PMID: 39251006 DOI: 10.1016/j.ijbiomac.2024.135426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Recognizing the critical need to elucidate the molecular determinants of this selectivity offers a pathway to engineer enzymes with broader and more versatile catalytic capabilities. Through integrated methods including phylogenetic analysis, molecular docking, and structural analysis, we identified a pivotal amino acid residue, αTrp116, linking the substrate binding pocket and the active site of a NHase from Pseudonocardia thermophila JCM 3095 (PtNHase). This residue acts as a crucial determinant of substrate specificity within the NHase enzyme. The mutant αW116R modified the substrate specificity of PtNHase, significantly enhancing its catalytic efficiency towards aromatic substrates. The catalytic activity for aromatic compounds such as 3-Cyanopyridine was 14-fold that of the wild-type, whereas its activity for aliphatic substrates diminished to one-sixth. MD simulations revealed that replacing αTrp116 with Arg allowed aromatic nitrile substrates to achieve more favorable conformations within the active site. Based on the mutant αW116R, we further constructed a combinatorial variant Pt-4, tailored for aromatic substrates, which exhibited an enzyme activity 50 times that of the wild-type. These results highlight the critical influence of amino acid residues in the enzyme's active site on substrate specificity and offer fresh perspectives and approaches for the evolution of enzymes.
Collapse
Affiliation(s)
- Yiwei Meng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Tong Wu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Qiao
- Ningbo Institute of Marine Medicine, Peking University, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| |
Collapse
|
2
|
Yan X, He Q, Geng B, Yang S. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. BIODESIGN RESEARCH 2024; 6:0052. [PMID: 39434802 PMCID: PMC11491672 DOI: 10.34133/bdr.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Microbial cell factories (MCFs) are extensively used to produce a wide array of bioproducts, such as bioenergy, biochemical, food, nutrients, and pharmaceuticals, and have been regarded as the "chips" of biomanufacturing that will fuel the emerging bioeconomy era. Biotechnology advances have led to the screening, investigation, and engineering of an increasing number of microorganisms as diverse MCFs, which are the workhorses of biomanufacturing and help develop the bioeconomy. This review briefly summarizes the progress and strategies in the development of robust and efficient MCFs for sustainable and economic biomanufacturing. First, a comprehensive understanding of microbial chassis cells, including accurate genome sequences and corresponding annotations; metabolic and regulatory networks governing substances, energy, physiology, and information; and their similarity and uniqueness compared with those of other microorganisms, is needed. Moreover, the development and application of effective and efficient tools is crucial for engineering both model and nonmodel microbial chassis cells into efficient MCFs, including the identification and characterization of biological parts, as well as the design, synthesis, assembly, editing, and regulation of genes, circuits, and pathways. This review also highlights the necessity of integrating automation and artificial intelligence (AI) with biotechnology to facilitate the development of future customized artificial synthetic MCFs to expedite the industrialization process of biomanufacturing and the bioeconomy.
Collapse
Affiliation(s)
| | | | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Liu SC, Xin X, He ZJ, Xie ZH, Xie ZX, Liu ZH, Li BZ, Yuan YJ. Biological conversion of lignin-derived ferulic acid from wheat bran into vanillin. Int J Biol Macromol 2024; 281:136406. [PMID: 39389498 DOI: 10.1016/j.ijbiomac.2024.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Lignin is a promising feedstock for producing vanillin, one of the most extensively used flavor enhancers. However, the biotransformation performance of lignin derivatives into vanillin is still unsatisfactory. In this study, an efficient conversion strategy of lignin into vanillin was established by employing engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Optimization of cell culture media and whole-cell bioconversion improved the production efficiency of vanillin. The vanillin titer reached 15.3 mM with a molar yield of 71 % in fed-batch fermentation mode, while incorporating in-situ product separation, demonstrated a remarkable 2.6-fold increase. The whole-cell bioconversion, coupled with in-situ separation, successfully converted real lignin hydrolysate into a record vanillin titer of 21.1 mM, equivalent to 1.8 mg of vanillin per gram of wheat bran biomass. The whole-cell bioconversion process integrated in-situ product separation, represents a sustainable approach for vanillin production and offers a promising pathway for lignin valorization.
Collapse
Affiliation(s)
- Shi-Chang Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Xin Xin
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Han Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
4
|
Ni X, Zhai X, Yu W, Ye M, Yang F, Zhou YJ, Gao J. Dynamically Regulating Homologous Recombination Enables Precise Genome Editing in Ogataea polymorpha. ACS Synth Biol 2024; 13:2938-2947. [PMID: 39230514 DOI: 10.1021/acssynbio.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Methylotrophic yeast Ogataea polymorpha has become a promising cell factory due to its efficient utilization of methanol to produce high value-added chemicals. However, the low homologous recombination (HR) efficiency in O. polymorpha greatly hinders extensive metabolic engineering for industrial applications. Overexpression of HR-related genes successfully improved HR efficiency, which however brought cellular stress and reduced chemical production due to constitutive expression of the HR-related gene. Here, we engineered an HR repair pathway using the dynamically regulated gene ScRAD51 under the control of the l-rhamnose-induced promoter PLRA3 based on the previously constructed CRISPR-Cas9 system in O. polymorpha. Under the optimal inducible conditions, the appropriate expression level of ScRAD51 achieved up to 60% of HR rates without any detectable influence on cell growth in methanol, which was 10-fold higher than that of the wild-type strain. While adopting as the chassis strain for bioproductions, the dynamically regulated recombination system had 50% higher titers of fatty alcohols than that static regulation system. Therefore, this study provided a feasible platform in O. polymorpha for convenient genetic manipulation without perturbing cellular fitness.
Collapse
Affiliation(s)
- Xin Ni
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
5
|
Zhang MM, Yuan B, Wang YT, Zhang FL, Liu CG, Zhao XQ. Differential Protein Expression in Set5p-Mediated Acetic Acid Stress Response and Novel Targets for Engineering Yeast Stress Tolerance. J Proteome Res 2024; 23:2986-2998. [PMID: 38396335 DOI: 10.1021/acs.jproteome.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Acetic acid is a prevalent inhibitor in lignocellulosic hydrolysate, which represses microbial growth and bioproduction. Histone modification and chromatin remodeling have been revealed to be critical for regulating eukaryotic metabolism. However, related studies in chronic acetic acid stress responses remain unclear. Our previous studies revealed that overexpression of the histone H4 methyltransferase Set5p enhanced acetic acid stress tolerance of the budding yeast Saccharomyces cerevisiae. In this study, we examined the role of Set5p in acetic acid stress by analyzing global protein expression. Significant activation of intracellular protein expression under the stress was discovered, and the functions of the differential proteins were mainly involved in chromatin modification, signal transduction, and carbohydrate metabolism. Notably, a substantial increase of Set5p expression was observed in response to acetic acid stress. Functional studies demonstrated that the restriction of the telomere capping protein Rtc3p, as well as Ies3p and Taf14p, which are related to chromatin regulation, was critical for yeast stress response. This study enriches the understanding of the epigenetic regulatory mechanisms underlying yeast stress response mediated by histone-modifying enzymes. The results also benefit the development of robust yeast strains for lignocellulosic bioconversion.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Li X, Yu H, Liu S, Ma B, Wu X, Zheng X, Xu Y. Discovery, characterization and mechanism of a Microbacterium esterase for key d-biotin chiral intermediate synthesis. BIORESOUR BIOPROCESS 2024; 11:59. [PMID: 38879848 PMCID: PMC11180644 DOI: 10.1186/s40643-024-00776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Esterases are crucial biocatalysts in chiral compound synthesis. Herein, a novel esterase EstSIT01 belonging to family V was identified from Microbacterium chocolatum SIT101 through genome mining and phylogenetic analysis. EstSIT01 demonstrated remarkable efficiency in asymmetrically hydrolyzing meso-dimethyl ester [Dimethyl cis-1,3-Dibenzyl-2-imidazolidine-4,5-dicarboxyate], producing over 99% yield and 99% enantiomeric excess (e.e.) for (4S, 5R)-monomethyl ester, a crucial chiral intermediate during the synthesis of d-biotin. Notably, the recombinant E. coli expressing EstSIT01 exhibited over 40-fold higher activity than that of the wild strain. EstSIT01 displays a preference for short-chain p-NP esters. The optimal temperature and pH were 45 °C and 10.0, with Km and kcat values of 0.147 mmol/L and 5.808 s- 1, respectively. Molecular docking and MD simulations suggest that the high stereoselectivity for meso-diester may attribute to the narrow entrance tunnel and unique binding pocket structure. Collectively, EstSIT01 holds great potential for preparing chiral carboxylic acids and esters.
Collapse
Affiliation(s)
- Xinjia Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd, Linyi, 276400, China
| | - Baodi Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaomei Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xuesong Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yi Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
7
|
Jones BS, Ross CM, Foley G, Pozhydaieva N, Sharratt JW, Kress N, Seibt LS, Thomson RES, Gumulya Y, Hayes MA, Gillam EMJ, Flitsch SL. Engineering Biocatalysts for the C-H Activation of Fatty Acids by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202314869. [PMID: 38163289 DOI: 10.1002/anie.202314869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases. We resurrected 11 catalytically active CYP116B ancestors, each with a unique regioselectivity fingerprint that varied from subterminal in the older ancestors to mid-chain in the lineage leading to the extant, P450-TT. In lineages leading to extant enzymes in thermophiles, thermostability increased from ancestral to extant forms, as expected if thermophily had arisen de novo. Our studies show that ASR can be applied to multidomain enzymes to develop active, self-sufficient monooxygenases as regioselective biocatalysts for fatty acid hydroxylation.
Collapse
Affiliation(s)
- Bethan S Jones
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Connie M Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Nadiia Pozhydaieva
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Joseph W Sharratt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Nico Kress
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Lisa S Seibt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Sabine L Flitsch
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
8
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
9
|
Vasylyshyn R, Dmytruk O, Sybirnyy A, Ruchała J. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose. FEMS Yeast Res 2024; 24:foae007. [PMID: 38400543 PMCID: PMC10929770 DOI: 10.1093/femsyr/foae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
Collapse
Affiliation(s)
- Roksolana Vasylyshyn
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Olena Dmytruk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Andriy Sybirnyy
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Justyna Ruchała
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
10
|
Zhao R, Li H, Li Q, Jia Z, Li S, Zhao L, Li S, Wang Y, Fan W, Ren R, Yuan Z, Yang M, Wang X, Zhao X, Xiao W, Zhao J, Cao L. High titer (>100 g/L) ethanol production from pretreated corn stover hydrolysate by modified yeast strains. BIORESOURCE TECHNOLOGY 2024; 391:129993. [PMID: 37944621 DOI: 10.1016/j.biortech.2023.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Developing a reliable lignocellulose pretreatment method to extract mixed sugars and engineering efficient strains capable of utilizing xylose are crucial for advancing cellulosic ethanol production. In this study, chemical and characterization analyses revealed that alkali cooking can significantly remove lignin from lignocellulose crops. The highest amount of mixed sugar was obtained from corn stover hydrolysates with a 15 % solid loading. Our genetically engineered yeast strain ΔsnR4, derived from a well-staged WXY70, demonstrated excellent performance in low 10 % solids loading corn stover hydrolysate, producing a high ethanol yield of 0.485 g/g total sugars. When a combined NaOH-ball milling pretreatment strategy was applied at high solids loading, ΔsnR4 exhibited the maximum ethanol titer of 110.9 g/L within 36 h, achieving an ethanol yield of 92.9 % theoretical maximum. Therefore, ΔsnR4 is highly compatible with high solid loading NaOH-ball milling pretreatment, making it a potential candidate for industrial cellulosic ethanol.
Collapse
Affiliation(s)
- Rui Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongshen Li
- Institute of New Energy Technology, Tsinghua University, Beijing 100084, China; ENN Group Co. Ltd., Langfang, Hebei 065001, China
| | - Qi Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefang Jia
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shizhong Li
- Institute of New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ling Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shan Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuwei Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenxin Fan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoqi Ren
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zitong Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Mengchan Yang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaomei Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xin Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
11
|
Zhang Y, Xu Z, Lu M, Ma X, Chen S, Wang Y, Shen W, Li P, Jin M. High titer (>200 g/L) lactic acid production from undetoxified pretreated corn stover. BIORESOURCE TECHNOLOGY 2023; 388:129729. [PMID: 37690486 DOI: 10.1016/j.biortech.2023.129729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Lignocellulosic biomass is a reliable feedstock for lactic acid fermentation, low product titers hamper the scale production of cellulosic lactic acid. In this study, a Densifying Lignocellulosic biomass with Chemicals (sulfuric acid) pretreatment based cellulosic lactic acid biorefinery system was developed and demonstrated from multi-dimensions of producing bacteria, fermentation modes, corn stover solid loadings, fermentation vessels, and product purification. Results suggested that several lactic acid bacteria exhibited high fermentation activity in high solid loading corn stover hydrolysates. Remarkably, simultaneous saccharification co-fermentation performed in 100-mL flasks enabled 210.1 g/L lactic acid from 40% solid loading corn stover hydrolysate. When simultaneous saccharification co-fermentation was performed in 3-L bioreactors, 157.4 g/L lactic acid was obtained from 35% solid loading corn stover hydrolysate. These obtained lactic acid titers are the highest reports until now when lignocellulosic biomasses are used as substrates, making it efficient for scale production of cellulosic lactic acid.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xingwang Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanchen Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenyuan Shen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Nandel V, Scadden J, Baker MAB. Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going? Int J Mol Sci 2023; 24:10601. [PMID: 37445779 PMCID: PMC10341847 DOI: 10.3390/ijms241310601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.
Collapse
Affiliation(s)
| | | | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW 2033, Australia; (V.N.); (J.S.)
| |
Collapse
|
13
|
Yang Q, Zhang L, Lian Z, Zhang J. Efficient co-production of xylo-oligosaccharides and probiotics from corncob by combined lactic acid pretreatment and two-step enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 382:129172. [PMID: 37201871 DOI: 10.1016/j.biortech.2023.129172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Lactic acid (LA) is efficient in xylo-oligosaccharides (XOS) production from poplar. However, the role of LA in XOS production from corncob has not been carefully elucidated, and the co-production of probiotics of Bacillus subtilis from corncob residue has not been reported. In this study, LA pretreatment was combined with enzymatic hydrolysis to produce XOS and monosaccharides from corncob. An XOS yield of 69.9% was obtained from corncob by combining 2% LA pretreatment and xylanase hydrolysis. Yields of 95.6% glucose and 54.0% xylose were obtained from corncob residue via cellulase, and the resulting cellulase hydrolysate was used to culture B. subtilis YS01. The resulting viable count of the strain was 6.4×108 CFU/mL, and the glucose and xylose utilization rates were 99.0% and 89.8%, respectively. This study demonstrates a green, efficient, and mild process for producing XOS and probiotics from corncob by combining LA pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Qianqian Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Lei Zhang
- State Key Laboratory of Civilian NBC Protection, Beijing 102205, PR China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
14
|
Cui JQ, Li YQ, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Surfactant-assisted ethylenediamine for the deconstruction and conversion of corn stover biomass. BIORESOURCE TECHNOLOGY 2023; 382:129174. [PMID: 37187332 DOI: 10.1016/j.biortech.2023.129174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Lignocellulosic biomass is a promising feedstock to produce sustainable fuels and energy toward a green bioeconomy. A surfactant-assisted ethylenediamine (EDA) was developed for the deconstruction and conversion of corn stover in this study. The effects of surfactants on the whole conversion process of corn stover was also evaluated. The results showed that xylan recovery and lignin removal in solid fraction were significantly enhanced by surfactant-assisted EDA. The glucan and xylan recoveries in solid fraction reached 92.1% and 65.7%, respectively, while the lignin removal was 74.5% by sodium dodecyl sulfate (SDS)-assisted EDA. SDS-assisted EDA also improved the sugar conversion in 12 h enzymatic hydrolysis at low enzyme loadings. The ethanol production and glucose consumption of washed EDA pretreated corn stover in simultaneous saccharification and co-fermentation were improved with the addition of 0.001 g/mL SDS. Therefore, surfactant-assisted EDA showed the potential to improve the bioconversion performance of biomass.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ya-Qi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|