1
|
Yao X, Chen H, Qin H, Wu QH, Cong HP, Yu SH. Solvent-adaptive hydrogels with lamellar confinement cellular structure for programmable multimodal locomotion. Nat Commun 2024; 15:9254. [PMID: 39461965 PMCID: PMC11514043 DOI: 10.1038/s41467-024-53549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Biological organisms can perform flexible and controllable multimodal motion under external stimuli owing to the hierarchical assembly of anisotropic structures across multiple length scales. However, artificial soft actuators exhibit the limited response speed, deformation programmability and movement capability especially in harsh environments because of insufficient anisotropic hierarchy and precision in structural design. Here, we report a programmed assembly directed confinement polymerization method for the fabrication of environmentally tolerant and fast responsive hydrogels with lamellar assembly-confined cellular structure interpenetrated with highly aligned nanopillars by the directional freezing-assisted polymerization in the predesigned anisotropic laminar scaffold. The obtained hydrogel exhibits ultrafast responsiveness and anisotropic deformation exposed to temperature/light/solvent stimulation, maintaining highly consistent responsive deformation capability in all-polarity solvents over 100 days of soaking. Moreover, the hydrogels implement photoactive programmable multi-gait locomotion whose amplitude and directionality are precisely regulated by the intrinsic structure, including controlled crawling and rotation in water and non-polar solvents, and 3D self-propulsion floating and swimming in polar solvents. Thus, this hydrogel with hierarchically ordered structure and dexterous locomotion may be suitable for flexible intelligent actuators serving in harsh solvent environments.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Hong Chen
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Haili Qin
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi-Hang Wu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Huai-Ping Cong
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China.
| | - Shu-Hong Yu
- Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, P. R. China.
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
2
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
4
|
Ren A, Hu J, Qin C, Xia N, Yu M, Xu X, Yang H, Han M, Zhang L, Ma L. Oral administration microrobots for drug delivery. Bioact Mater 2024; 39:163-190. [PMID: 38808156 PMCID: PMC11130999 DOI: 10.1016/j.bioactmat.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.
Collapse
Affiliation(s)
- An Ren
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changwei Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804 China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Chen L, Xiao T, Yang JL, Liu Y, Xian J, Liu K, Zhao Y, Fan HJ, Yang P. In-Situ Spontaneous Electropolymerization Enables Robust Hydrogel Electrolyte Interfaces in Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202400230. [PMID: 38520070 DOI: 10.1002/anie.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.
Collapse
Affiliation(s)
- Liangyuan Chen
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Tuo Xiao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yipu Liu
- Key Laboratory of Pico Electron Microscopy of Hainan Province School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinglin Xian
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Kang Liu
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Yan Zhao
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Peihua Yang
- The Institute of Technological Sciences MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Zhou H, Wei X, Liu A, Wang S, Chen B, Chen Z, Lyu M, Guo W, Cao X, Ye M. Tough Hydro-Aerogels with Cation Specificity Enabled Ultra-High Stability for Multifunctional Sensing and Quasi-Solid-State Electrolyte Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313088. [PMID: 38308465 DOI: 10.1002/adma.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The anion-specific effects of the salting-in and salting-out phenomena are extensively observed in hydrogels, whereas the cation specificity of hydrogels is rarely reported. Herein, a multi-step strategy including borax pre-gelation, saline soaking, freeze-drying, and rehydrating is developed to fabricate polyvinyl alcohol gels with cation specificity, exhibiting the specific ordering of effects on the mechanical properties of gels as Ca2+ > Li+ > Mg2+ >> Fe3+ > Cu2+ >> Co2+ ≈ Ni2+ ≈ Zn2+. The multiple effects of the fabrication strategy, including the electrostatic repulsion among cations, skeleton support function of graphene oxide nanosheets, and water absorption and retention of ions, endow the gels with the dual characteristics of hydrogels and aerogels (i.e., hydro-aerogels). The hydro-aerogels prepared with the cationic salting-out effect display attractive pressure sensing performance with excellent stability over 90 days and enable continuous monitoring of ambient humidity in real-time and effective work in seawater to detect various parameters (e.g., depth, salinity, and temperature). The hydro-aerogels prepared without borax pretreatment or using the cationic salting-in effect can serve as quasi-solid-state electrolytes in supercapacitors, with 99.59% capacitance retention after 10 000 cycles. This study realizes cation specificity in hydrogels and designs multifunctional hydro-aerogels for promising applications in various fields.
Collapse
Affiliation(s)
- Hao Zhou
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Xiaohan Wei
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Andeng Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Senjing Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Bingqi Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Zhuomin Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Miaoqiang Lyu
- Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Xuezheng Cao
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
8
|
Teng X, Qiao Z, Yu S, Liu Y, Lou X, Zhang H, Ge Z, Yang W. Recent Advances in Microrobots Powered by Multi-Physics Field for Biomedical and Environmental Applications. MICROMACHINES 2024; 15:492. [PMID: 38675303 PMCID: PMC11051856 DOI: 10.3390/mi15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Microrobots powered by multi-physics fields are becoming a hotspot for micro-nano manufacturing. Due to the small size of microrobots, they can easily enter small spaces that are difficult for ordinary robots to reach and perform a variety of special tasks. This gives microrobots a broad application prospect in many fields. This paper describes the materials, structures, and driving principles of microrobots in detail and analyzes the advantages and limitations of their driving methods in depth. In addition, the paper discusses the detailed categorization of the action forms of microrobots and explores their diversified motion modes and their applicable scenarios. Finally, the article highlights the wide range of applications of microrobots in the fields of biomedicine and environmental protection, emphasizing their great potential for solving real-world problems and advancing scientific progress.
Collapse
Affiliation(s)
- Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Zezheng Qiao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Shuxuan Yu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Yujie Liu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Xinyu Lou
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Huanbin Zhang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.T.); (Z.Q.); (S.Y.); (Y.L.); (X.L.); (H.Z.)
| |
Collapse
|
9
|
Yao X, Chen H, Qin H, Cong HP. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations. SMALL METHODS 2024; 8:e2300414. [PMID: 37365950 DOI: 10.1002/smtd.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Flexible intelligent actuators with the characteristics of flexibility, safety and scalability, are highly promising in industrial production, biomedical fields, environmental monitoring, and soft robots. Nanocomposite hydrogels are attractive candidates for soft actuators due to their high pliability, intelligent responsiveness, and capability to execute large-scale rapid reversible deformations under external stimuli. Here, the recent advances of nanocomposite hydrogels as soft actuators are reviewed and focus is on the construction of elaborate and programmable structures by the assembly of nano-objects in the hydrogel matrix. With the help of inducing the gradient or oriented distributions of the nanounits during the gelation process by the external forces or molecular interactions, nanocomposite hydrogels with ordered structures are achieved, which can perform bending, spiraling, patterned deformations, and biomimetic complex shape changes. Given great advantages of these intricate yet programmable shape-morphing, nanocomposite hydrogel actuators have presented high potentials in the fields of moving robots, energy collectors, and biomedicines. In the end, the challenges and future perspectives of this emerging field of nanocomposite hydrogel actuators are proposed.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
10
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|
11
|
Zhou H, Zhang S, Liu Z, Chi B, Li J, Wang Y. Untethered Microgrippers for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305805. [PMID: 37941516 DOI: 10.1002/smll.202305805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Microgrippers, a branch of micro/nanorobots, refer to motile miniaturized machines that are of a size in the range of several to hundreds of micrometers. Compared with tethered grippers or other microscopic diagnostic and surgical equipment, untethered microgrippers play an indispensable role in biomedical applications because of their characteristics such as miniaturized size, dexterous shape tranformation, and controllable motion, which enables the microgrippers to enter hard-to-reach regions to execute specific medical tasks for disease diagnosis and treatment. To date, numerous medical microgrippers are developed, and their potential in cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery are explored. To achieve controlled locomotion and efficient target-oriented actions, the materials, size, microarchitecture, and morphology of microgrippers shall be deliberately designed. In this review, the authors summarizes the latest progress in untethered micrometer-scale grippers. The working mechanisms of shape-morphing and actuation methods for effective movement are first introduced. Then, the design principle and state-of-the-art fabrication techniques of microgrippers are discussed. Finally, their applications in the precise medicine are highlighted, followed by offering future perspectives for the development of untethered medical microgrippers.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Shengchang Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilong Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
12
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
13
|
Ji Y, Bai X, Sun H, Wang L, Gan C, Jia L, Xu J, Zhang W, Wang L, Xu Y, Hou Y, Wang Y, Hui H, Feng L. Biocompatible Ferrofluid-Based Millirobot for Tumor Photothermal Therapy in Near-Infrared-II Window. Adv Healthc Mater 2024; 13:e2302395. [PMID: 37947303 DOI: 10.1002/adhm.202302395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Ferrofluidic robots with excellent deformability and controllability have been intensively studied recently. However, most of these studies are in vitro and the use of ferrofluids for in vivo medicinal applications remains a big challenge. The application of ferrofluidic robots to the body requires the solution of many key problems. In this study, biocompatibility, controllability, and tumor-killing efficacy are considered when creating a ferrofluid-based millirobot for in vivo tumor-targeted therapy. For biocompatibility problems, corn oil is used specifically for the ferrofluid robot. In addition, a control system is built that enables a 3D magnetic drive to be implemented in complex biological media. Using the photothermal conversion property of 1064 nm, the ferrofluid robot can kill tumor cells in vitro; inhibit tumor volume, destroy the tumor interstitium, increase tumor cell apoptosis, and inhibit tumor cell proliferation in vivo. This study provides a reference for ferrofluid-based millirobots to achieve targeted therapies in vivo.
Collapse
Affiliation(s)
- Yiming Ji
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongyan Sun
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Lina Jia
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Wei Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yaxin Hou
- Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
14
|
Fath A, Liu Y, Xia T, Huston D. MARSBot: A Bristle-Bot Microrobot with Augmented Reality Steering Control for Wireless Structural Health Monitoring. MICROMACHINES 2024; 15:202. [PMID: 38398932 PMCID: PMC10891813 DOI: 10.3390/mi15020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Microrobots are effective for monitoring infrastructure in narrow spaces. However, they have limited computing power, and most of them are not wireless and stable enough for accessing infrastructure in difficult-to-reach areas. In this paper, we describe the fabrication of a microrobot with bristle-bot locomotion using a novel centrifugal yaw-steering control scheme. The microrobot operates in a network consisting of an augmented reality headset and an access point to monitor infrastructures using augmented reality (AR) haptic controllers for human-robot collaboration. For the development of the microrobot, the dynamics of bristle-bots in several conditions were studied, and multiple additive manufacturing processes were investigated to develop the most suitable prototype for structural health monitoring. Using the proposed network, visual data are sent in real time to a hub connected to an AR headset upon request, which can be utilized by the operator to monitor and make decisions in the field. This allows the operators wearing an AR headset to inspect the exterior of a structure with their eyes, while controlling the surveying robot to monitor the interior side of the structure.
Collapse
Affiliation(s)
- Alireza Fath
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA; (A.F.); (Y.L.)
| | - Yi Liu
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA; (A.F.); (Y.L.)
| | - Tian Xia
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| | - Dryver Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA; (A.F.); (Y.L.)
| |
Collapse
|
15
|
Chen Z, Wang Y, Chen H, Law J, Pu H, Xie S, Duan F, Sun Y, Liu N, Yu J. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun 2024; 15:644. [PMID: 38245517 PMCID: PMC10799857 DOI: 10.1038/s41467-024-44995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Magnetic soft robots have shown great potential for biomedical applications due to their high shape reconfigurability, motion agility, and multi-functionality in physiological environments. Magnetic soft robots with multi-layer structures can enhance the loading capacity and function complexity for targeted delivery. However, the interactions between soft entities have yet to be fully investigated, and thus the assembly of magnetic soft robots with on-demand motion modes from multiple film-like layers is still challenging. Herein, we model and tailor the magnetic interaction between soft film-like layers with distinct in-plane structures, and then realize multi-layer soft robots that are capable of performing agile motions and targeted adhesion. Each layer of the robot consists of a soft magnetic substrate and an adhesive film. The mechanical properties and adhesion performance of the adhesive films are systematically characterized. The robot is capable of performing two locomotion modes, i.e., translational motion and tumbling motion, and also the on-demand separation with one side layer adhered to tissues. Simulation results are presented, which have a good qualitative agreement with the experimental results. The feasibility of using the robot to perform multi-target adhesion in a stomach is validated in both ex-vivo and in-vivo experiments.
Collapse
Affiliation(s)
- Ziheng Chen
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Huayan Pu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shaorong Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Feng Duan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
16
|
Pu R, Yang X, Mu H, Xu Z, He J. Current status and future application of electrically controlled micro/nanorobots in biomedicine. Front Bioeng Biotechnol 2024; 12:1353660. [PMID: 38314349 PMCID: PMC10834684 DOI: 10.3389/fbioe.2024.1353660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.
Collapse
Affiliation(s)
- Ruochen Pu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiyu Yang
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Mu
- Shanghai Bone Tumor Institution, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Xu
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin He
- Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhong S, Xin Z, Hou Y, Li Y, Huang HW, Sun T, Shi Q, Wang H. Double-Modal Locomotion of a Hydrogel Ultra-Soft Magnetic Miniature Robot with Switchable Forms. CYBORG AND BIONIC SYSTEMS 2024; 6:0077. [PMID: 38435709 PMCID: PMC10907021 DOI: 10.34133/cbsystems.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
Flexible miniature robots are expected to enter difficult-to-reach areas in vivo to carry out targeted operations, attracting widespread attention. However, it is challenging for the existing soft miniature robots to substantially alter their stable shape once the structure is designed. This limitation leads to a fixed motion mode, which subsequently restricts their operating environment. In this study, we designed a biocompatible flexible miniature robot with a variable stable form that is capable of adapting to complex terrain environments through multiple movement modes. Inspired by the reversible stretching reaction of alginate saline gel stimulated by changes in environmental ion concentration, we manufactured a morphologically changeable super-soft hydrogel miniature robot body. According to the stretch and contraction shapes of the flexible hydrogel miniature robot, we designed magnetic fields for swing and rolling motion modes to realize multi-shape movement. The experimental results demonstrate that the deflection angle of the designed flexible miniature robot is reversible and can reach a maximum of 180°. The flexible miniature robot can complete forward swinging in the bar stretch state and tumbling motion in the spherical state. We anticipate that flexible hydrogel miniature robots with multiple morphologies and multimodal motion have great potential for biomedical applications in complex, unstructured, and enclosed living environments.
Collapse
Affiliation(s)
- Shihao Zhong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhengyuan Xin
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yaozhen Hou
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- Peking University First Hospital, Beijing 100034, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering,
Harvard Medical School, Cambridge, MA 02139, USA
| | - Tao Sun
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
18
|
Su L, Jin D, Wang Y, Wang Q, Pan C, Jiang S, Yang H, Yang Z, Wang X, Xia N, Chan KF, Chiu PWY, Sung JJY, Zhang L. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. SCIENCE ADVANCES 2023; 9:eadj0883. [PMID: 38100592 PMCID: PMC10848723 DOI: 10.1126/sciadv.adj0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The magnetic microrobots promise benefits in minimally invasive cell-based therapy. However, they generally suffer from an inevitable compromise between their magnetic responsiveness and biomedical functions. Herein, we report a modularized microrobot consisting of magnetic actuation (MA) and cell scaffold (CS) modules. The MA module with strong magnetism and pH-responsive deformability and the CS module with cell loading-release capabilities were fabricated by three-dimensional printing technique. Subsequently, assembly of modules was performed by designing a shaft-hole structure and customizing their relative dimensions, which enabled magnetic navigation in complex environments, while not deteriorating the cellular functionalities. On-demand disassembly at targeted lesion was then realized to facilitate CS module delivery and retrieval of the MA module. Furthermore, the feasibility of proposed system was validated in an in vivo rabbit bile duct. Therefore, this work presents a modular design-based strategy that enables uncompromised fabrication of multifunctional microrobots and stimulates their development for future cell-based therapy.
Collapse
Affiliation(s)
- Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yuqiong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengfeng Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Jiang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Fung Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Philip Wai Yan Chiu
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Fan X, Zhang Y, Wu Z, Xie H, Sun L, Chen T, Yang Z. Combined three dimensional locomotion and deformation of functional ferrofluidic robots. NANOSCALE 2023. [PMID: 37982182 DOI: 10.1039/d3nr02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Magnetic microrobots possess remarkable potential for targeted applications in the medical field, primarily due to their non-invasive, controllable properties. These unique qualities have garnered increased attention and fascination among researchers. However, these robotic systems do face challenges such as limited deformation capabilities and difficulties navigating confined spaces. Recently, researchers have turned their attention towards magnetic droplet robots, which are notable for their superior deformability, controllability, and potential for a range of applications such as automated virus detection and targeted drug delivery. Despite these advantages, the majority of current research is constrained to two-dimensional deformation and motion, thereby limiting their broader functionality. In response to these limitations, this study proposes innovative strategies for controlling deformation and achieving a three-dimensional (3D) trajectory in ferrofluidic robots. These strategies leverage a custom-designed eight-axis electromagnetic coil and a sliding mode controller. The implementation of these methods exhibits the potential of ferrofluidic robots in diverse applications, including microfluidic pump systems, 3D micromanipulation, and selective vascular occlusion. In essence, this study aims to broaden the capabilities of ferrofluidic robots, thereby enhancing their applicability across a multitude of fields such as medicine, micromanipulation, bioengineering, and more by maximizing the potential of these intricate robotic systems.
Collapse
Affiliation(s)
- Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yunfei Zhang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Yikuang, Harbin 150080, China
| | - Lining Sun
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
- School of Future Science and Engineering, Soochow University, No. 1, Jiuyongxi Road, Suzhou 215222, China.
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
21
|
Yang Q, Yang W, Wang Z, Chen R, Li M, Qin C, Gao D, Chen W. Strong and Tough Antifreezing Hydrogel Sensor via the Synergy of Coordination and Hydrogen Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51684-51693. [PMID: 37874370 DOI: 10.1021/acsami.3c10205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hydrogel sensors are fascinating as flexible sensors and electronic skin due to their excellent biocompatibility and structure controllability. However, developing conductive hydrogels possessing both excellent mechanical and antifreezing properties for environmental-adaptive sensors remains a challenge. Herein, a strategy of combining betaine and metal ions to construct poly(acrylic acid) (PAA)-based high-conductive hydrogels has been reported. PAA-Al3+/betaine hydrogels with high toughness and antifreezing property were prepared by a one-step UV curing method. Their high toughness is attributed to the coordination of metal ions with the carboxylic groups in PAA, the interaction of betaine with PAA, and the formation of hydrogen bonds between them and water molecules. Moreover, the significant antifreezing property is due to the reduction of free water in the hydrogel. This, in turn, is attributed to the hydration of metal ions and the synergistic hydrogen bonding between betaine and water. The experiments demonstrate that the hydrogel has excellent mechanical property, high conductivity, superior transparency, antiswelling property, antipuncture as well as shape memory properties, and especially, low cytotoxicity. It can be used as a sensor for motion detection and information recognition. This work provides new insights into the application of flexible sensors and human-machine interfaces in multienvironmental conditions.
Collapse
Affiliation(s)
- Qin Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzi Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chuanjian Qin
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dahang Gao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wei Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, China
| |
Collapse
|
22
|
Cherukumilli S, Kirmizitas FC, Sokolich M, Valencia A, Karakan MÇ, White AE, Malikopoulos AA, Das S. Programmable Modular Acoustic Microrobots. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2023; 2023:10.1109/marss58567.2023.10294125. [PMID: 38952454 PMCID: PMC11215786 DOI: 10.1109/marss58567.2023.10294125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Microrobots have emerged as promising tools for biomedical and in vivo applications, leveraging their untethered actuation capabilities and miniature size. Despite extensive research on diversifying multi-actuation modes for single types of robots, these tiny machines tend to have limited versatility while navigating different environments or performing specific tasks. To overcome such limitations, self-assembly microstructures with on-demand reconfiguration capabilities have gained recent attention as the future of biocompatible microrobotics, as they can address drug delivery, microsurgery, and organoid development processes. Reversible modular reconfiguration structures require specific arrangements of particles that can assume several shapes when external fields are applied. We show how magnetic interaction can be used to assemble cylindrical microrobots into modular microstructures with different shapes. The motion actuation of the formed microstructure happens due to an external acoustic field, which generates responsive forces in the air bubbles trapped in the inner cavity of the robots. An external magnetic field can also steer these structures. We illustrate these capabilities by assembling the robots into different shapes that can swim and be steered, showing the potential to perform biomedical applications. Furthermore, we confirm the biocompatibility of the cylindrical microrobot used as the building blocks of our microstructure. Exposing Chinese Hamster Ovary cells to our microrobots for 24 hours demonstrates cell viability when in contact with the microrobot.
Collapse
Affiliation(s)
| | - Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Max Sokolich
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Alejandra Valencia
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Alice E White
- Department of Mechanical Engineering, and the departments of Biomedical Engineering and Materials Science and Engineering, Boston University, Boston, MA 02215 USA
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
23
|
Cao Q, Chen W, Zhong Y, Ma X, Wang B. Biomedical Applications of Deformable Hydrogel Microrobots. MICROMACHINES 2023; 14:1824. [PMID: 37893261 PMCID: PMC10609176 DOI: 10.3390/mi14101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023]
Abstract
Hydrogel, a material with outstanding biocompatibility and shape deformation ability, has recently become a hot topic for researchers studying innovative functional materials due to the growth of new biomedicine. Due to their stimulus responsiveness to external environments, hydrogels have progressively evolved into "smart" responsive (such as to pH, light, electricity, magnetism, temperature, and humidity) materials in recent years. The physical and chemical properties of hydrogels have been used to construct hydrogel micro-nano robots which have demonstrated significant promise for biomedical applications. The different responsive deformation mechanisms in hydrogels are initially discussed in this study; after which, a number of preparation techniques and a variety of structural designs are introduced. This study also highlights the most recent developments in hydrogel micro-nano robots' biological applications, such as drug delivery, stem cell treatment, and cargo manipulation. On the basis of the hydrogel micro-nano robots' current state of development, current difficulties and potential future growth paths are identified.
Collapse
Affiliation(s)
- Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenjun Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ying Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.Z.); (X.M.)
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| |
Collapse
|
24
|
Wang Y, Li L, Ji YE, Wang T, Fu Y, Li X, Li G, Zheng T, Wu L, Han Q, Zhang Y, Wang Y, Kaplan DL, Lu Y. Silk-protein-based gradient hydrogels with multimode reprogrammable shape changes for biointegrated devices. Proc Natl Acad Sci U S A 2023; 120:e2305704120. [PMID: 37549277 PMCID: PMC10434304 DOI: 10.1073/pnas.2305704120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.
Collapse
Affiliation(s)
- Yushu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yue-E. Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yinghao Fu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Xinxin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Qi Han
- Key Laboratory of Neuroregeneration, Collaborative Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, China
| |
Collapse
|
25
|
Zheng Z, Han J, Demir SO, Wang H, Jiang W, Liu H, Sitti M. Electrodeposited Superhydrophilic-Superhydrophobic Composites for Untethered Multi-Stimuli-Responsive Soft Millirobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302409. [PMID: 37288527 PMCID: PMC10427389 DOI: 10.1002/advs.202302409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Indexed: 06/09/2023]
Abstract
To navigate in complex and unstructured real-world environments, soft miniature robots need to possess multiple functions, including autonomous environmental sensing, self-adaptation, and multimodal locomotion. However, to achieve multifunctionality, artificial soft robots should respond to multiple stimuli, which can be achieved by multimaterial integration using facile and flexible fabrication methods. Here, a multimaterial integration strategy for fabricating soft millirobots that uses electrodeposition to integrate two inherently non-adherable materials, superhydrophilic hydrogels and superhydrophobic elastomers, together via gel roots is proposed. This approach enables the authors to electrodeposit sodium alginate hydrogel onto a laser-induced graphene-coated elastomer, which can then be laser cut into various shapes to function as multi-stimuli-responsive soft robots (MSRs). Each MSR can respond to six different stimuli to autonomously transform their shapes, and mimic flowers, vines, mimosas, and flytraps. It is demonstrated that MSRs can climb slopes, switch locomotion modes, self-adapt between air-liquid environments, and transport cargo between different environments. This multimaterial integration strategy enables creating untethered soft millirobots that have multifunctionality, such as environmental sensing, self-propulsion, and self-adaptation, paving the way for their future operation in complex real-world environments.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jie Han
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Sinan Ozgun Demir
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Huaping Wang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology)Ministry of EducationBeijing100081China
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
26
|
Huang D, Cai L, Li N, Zhao Y. Ultrasound-trigged micro/nanorobots for biomedical applications. SMART MEDICINE 2023; 2:e20230003. [PMID: 39188275 PMCID: PMC11235770 DOI: 10.1002/smmd.20230003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 08/28/2024]
Abstract
Micro- and nanorobots (MNRs) propelled by external actuations have broad potential in biomedical applications. Among the numerous external excitations, ultrasound (US) features outstanding practical significance with merits of its noninvasiveness, tunability, penetrability, and biocompatibility. Attributing to various physiochemical effects of US, it can propel the MNRs with sophisticated structures through asymmetric acoustic streaming, bubble oscillation, and so on. In this review, we introduce several advanced and representative US-propelled MNRs with inhomogeneous density distribution, asymmetric shape, hollow cavity, etc. The potential biomedical applications of these cutting-edge MNRs are also presented, including intracellular delivery, harmful substances collection, and so on. Furthermore, we conclude the advantages and limitations of US-propelled MNRs and prospect their future developments in multidisciplinary fields.
Collapse
Affiliation(s)
- Danqing Huang
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lijun Cai
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ning Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Institute of Translational MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|