1
|
Zhao C, Bo J, Li T, Tian J, Long T, He Y, Chen S, Liu C. Blue light-driven cell cycle arrest in thyroid cancer via Retinal-OPN3 complex. Cell Commun Signal 2024; 22:530. [PMID: 39487504 PMCID: PMC11531186 DOI: 10.1186/s12964-024-01908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with a rising incidence. Traditional treatments, such as thyroidectomy and radiotherapy, often lead to significant side effects, including impaired thyroid function. Therefore, there is an urgent need for non-invasive therapeutic approaches. This study aims to explore the potential of photobiomodulation therapy (PBMT), a non-invasive treatment using specific wavelengths of light, in the management of PTC. METHODS We investigated the effects of blue light PBMT on PTC cells, focusing on the Retinal-OPSIN 3 (OPN3) complex's role in mediating cellular responses. Blue light exposure was applied to PTC cells, and subsequent changes in cellular proliferation, cell cycle progression, and protein expression were analyzed. Statistical tests, including one-way ANOVA and t-tests, were used to evaluate the significance of the findings. RESULTS Blue light exposure led to the dissociation of 11-cis-retinal from OPN3, resulting in the accumulation of all-trans retinal. This accumulation disrupted cellular proliferation pathways and induced G0/G1 cell cycle arrest in PTC cells. The Retinal-OPN3 complex was found to be a key mediator in these processes, demonstrating that thyroid cells can respond to specific light wavelengths and utilize their photoreceptive potential for therapeutic purposes. CONCLUSIONS Our findings suggest that PBMT, through the modulation of the Retinal-OPN3 complex, offers a promising non-invasive approach for treating PTC. This study highlights the therapeutic potential of light signal transduction in non-ocular tissues and opens new avenues for non-invasive cancer therapies.
Collapse
Affiliation(s)
- Changrui Zhao
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaqiang Bo
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianyu Li
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Long
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying He
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases (China Pharmaceutical University), Nanjing, China.
| |
Collapse
|
2
|
Lee T, Weinberg-Wolf H, Zapadka TE, Rudenko A, Demb JB, Kim IJ. Specific retinal neurons regulate context-dependent defensive responses to visual threat. PNAS NEXUS 2024; 3:pgae423. [PMID: 39359403 PMCID: PMC11443969 DOI: 10.1093/pnasnexus/pgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
While encountering a visual threat, an animal assesses multiple factors to choose an appropriate defensive strategy. For example, when a rodent detects a looming aerial predator, its behavioral response can be influenced by a specific environmental context, such as the availability of a shelter. Indeed, rodents typically escape from a looming stimulus when a shelter is present; otherwise, they typically freeze. Here we report that context-dependent behavioral responses can be initiated at the earliest stage of the visual system by distinct types of retinal ganglion cells (RGCs), the retina's output neurons. Using genetically defined cell ablation in mature mice, we discovered that some RGC types were necessary for either escaping (alpha RGCs) or freezing (intrinsically photosensitive RGCs) in response to a looming stimulus but not for both behaviors; whereas other RGC types were not required for either behavior (direction-selective RGCs preferring vertical motion). Altogether, our results suggest that specific RGC types regulate distinct behavioral responses elicited by the same threatening stimulus depending on contextual signals in the environment. These findings emphasize the unique contribution of early visual pathways to evolutionally conserved behavioral reactions.
Collapse
Affiliation(s)
- Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY 10031, USA
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Guindon GE, Murphy CA, Milano ME, Seggio JA. Turn off that night light! Light-at-night as a stressor for adolescents. Front Neurosci 2024; 18:1451219. [PMID: 39145296 PMCID: PMC11321986 DOI: 10.3389/fnins.2024.1451219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Light-at-night is known to produce a wide variety of behavioral outcomes including promoting anxiety, depression, hyperactivity, abnormal sociability, and learning and memory deficits. Unfortunately, we all live in a 24-h society where people are exposed to light-at-night or light pollution through night-shift work - the need for all-hours emergency services - as well as building and street-lights, making light-at-night exposure practically unavoidable. Additionally, the increase in screentime (tvs and smart devices) during the night also contributes to poorer sleep and behavioral impairments. Compounding these factors is the fact that adolescents tend to be "night owls" and prefer an evening chronotype compared to younger children and adults, so these teenagers will have a higher likelihood of being exposed to light-at-night. Making matters worse is the prevalence of high-school start times of 8 am or earlier - a combination of too early school start times, light exposure during the night, and preference for evening chronotypes is a recipe for reduced and poorer sleep, which can contribute to increased susceptibility for behavioral issues for this population. As such, this mini-review will show, using both human and rodent model studies, how light-at-night affects behavioral outcomes and stress responses, connecting photic signaling and the circadian timing system to the hypothalamic-pituitary adrenal axis. Additionally, this review will also demonstrate that adolescents are more likely to exhibit abnormal behavior in response to light-at-night due to changes in development and hormone regulation during this time period, as well as discuss potential interventions that can help mitigate these negative effects.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, United States
| |
Collapse
|
4
|
Zangen E, Hadar S, Lawrence C, Obeid M, Rasras H, Hanzin E, Aslan O, Zur E, Schulcz N, Cohen-Hatab D, Samama Y, Nir S, Li Y, Dobrotvorskia I, Sabbah S. Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nat Commun 2024; 15:5501. [PMID: 38951486 PMCID: PMC11217280 DOI: 10.1038/s41467-024-49794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.
Collapse
Affiliation(s)
- Elyashiv Zangen
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shira Hadar
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Christopher Lawrence
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Mustafa Obeid
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Hala Rasras
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ella Hanzin
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Ori Aslan
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Eyal Zur
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Nadav Schulcz
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Daniel Cohen-Hatab
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yona Samama
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Sarah Nir
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Yi Li
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Irina Dobrotvorskia
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
5
|
Bonilla P, Shanks A, Nerella Y, Porcu A. Effects of chronic light cycle disruption during adolescence on circadian clock, neuronal activity rhythms, and behavior in mice. Front Neurosci 2024; 18:1418694. [PMID: 38952923 PMCID: PMC11215055 DOI: 10.3389/fnins.2024.1418694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
Collapse
Affiliation(s)
| | | | | | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
6
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
7
|
Liu Q, Cheng L, Li F, Zhu H, Lu X, Huang C, Yuan X. NSC689857, an inhibitor of Skp2, produces antidepressant-like effects in mice. Behav Pharmacol 2024; 35:227-238. [PMID: 38651981 DOI: 10.1097/fbp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pharmacy, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|