1
|
Liu Z, Jiang H, Kan H, Zhang L, Rao Y, Jiang X, Li M, Wang Q. RIT1 Promotes the Proliferation of Gliomas Through the Regulation of the PI3K/AKT/c-Myc Signalling Pathway. J Cell Mol Med 2025; 29:e70362. [PMID: 39833023 PMCID: PMC11745823 DOI: 10.1111/jcmm.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, RIT1 has been implicated in a range of neurological disorders; however, its precise function in glioma pathogenesis is not yet well-defined. This study employed quantitative reverse transcription PCR (qRT-PCR), Western blotting (WB), immunohistochemistry (IHC) and additional methodologies to assess RIT1 expression levels in glioma tissues. Furthermore, the study investigated its influence on glioma progression through a series of functional experiments. Animal models were also utilised to elucidate the mechanistic role of RIT1, with a particular focus on its effects on the PI3K/AKT signalling pathway. Research findings showcased that RIT1 is significantly overexpressed in gliomas and exhibits a strong correlation with tumour grade and unfavourable clinical outcomes. Furthermore, RIT1 serves as an independent prognostic marker of poor prognosis. Functional assays demonstrate that RIT1 facilitates the aggressiveness of glioma cells by activating the PI3K/AKT signalling. Additionally, it promotes tumour proliferation by inhibiting apoptosis and accelerating cell cycle progression. This study demonstrates that RIT1 significantly contributes to the aggressive phenotype and unfavourable prognosis of glioma, indicating its ability as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hao‐dong Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hao‐yuan Kan
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Li Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yu‐xin Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiao‐bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ming‐hui Li
- Department of AnesthesiologyHubei University of Chinese Medicine Affiliated Hubei Hospital of Chinese MedicineWuhanChina
| | - Qi Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of EducationWuhanChina
| |
Collapse
|
2
|
Chennappan S, Kontaridis MI. RASopathies in Cardiac Disease. Annu Rev Med 2025; 76:301-314. [PMID: 39576684 DOI: 10.1146/annurev-med-042823-013552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
RASopathies are a group of clinically overlapping autosomal dominant disorders caused primarily by mutations in genes that reside along the canonical Ras-mitogen-activated protein kinase signaling cascade. Though individually rare, collectively, these disorders constitute one of the largest families of congenital disorders worldwide, particularly for infantile hypertrophic cardiomyopathy. Significantly, despite almost five decades of RASopathy research, therapeutic options remain limited and focused primarily on treating symptoms rather than disease etiology. Targeting the genes causal to these disorders, and the nodal pathways critical for their regulation, however, has been challenging. In this review, we highlight these challenges, particularly with respect to congenital heart defects and cardiac diseases and discuss limitations and future directions for approaches to new therapeutic strategies.
Collapse
Affiliation(s)
- Saravanakkumar Chennappan
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| | - Maria Irene Kontaridis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York, USA;
| |
Collapse
|
3
|
Abe T, Morisaki K, Niihori T, Terao M, Takada S, Aoki Y. Dysregulation of RAS proteostasis by autosomal-dominant LZTR1 mutation induces Noonan syndrome-like phenotypes in mice. JCI Insight 2024; 9:e182382. [PMID: 39352760 PMCID: PMC11601938 DOI: 10.1172/jci.insight.182382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Leucine-zipper-like posttranslational regulator 1 (LZTR1) is a member of the BTB-Kelch superfamily, which regulates the RAS proteostasis. Autosomal dominant (AD) mutations in LZTR1 have been identified in patients with Noonan syndrome (NS), a congenital anomaly syndrome. However, it remains unclear whether LZTR1 AD mutations regulate the proteostasis of the RAS subfamily molecules or cause NS-like phenotypes in vivo. To elucidate the pathogenesis of LZTR1 mutations, we generated 2 LZTR1 mutation knock-in mice (Lztr1G245R/+ and Lztr1R409C/+), which correspond to the human p.G248R and p.R412C mutations, respectively. LZTR1-mutant male mice exhibit low birth weight, distinctive facial features, and cardiac hypertrophy. Cardiomyocyte size and the expression of RAS subfamily members, including MRAS and RIT1, were significantly increased in the left ventricles (LVs) of mutant male mice. LZTR1 AD mutants did not interact with RIT1 and functioned as dominant-negative forms of WT LZTR1. Multi-omics analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway was activated in the LVs of mutant mice. Treatment with the MEK inhibitor trametinib ameliorated cardiac hypertrophy in mutant male mice. These results suggest that the MEK/ERK pathway is a therapeutic target for the NS-like phenotype resulting from dysfunction of RAS proteostasis by LZTR1 AD mutations.
Collapse
Affiliation(s)
- Taiki Abe
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Kaho Morisaki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Whaby M, Ketavarapu G, Koide A, Mazzei M, Mintoo M, Glasser E, Patel U, Nasarre C, Sale MJ, McCormick F, Koide S, O'Bryan JP. Inhibition and degradation of NRAS with a pan-NRAS monobody. Oncogene 2024; 43:3489-3497. [PMID: 39379700 PMCID: PMC11584388 DOI: 10.1038/s41388-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The RAS family GTPases are the most frequently mutated oncogene family in human cancers. Activating mutations in either of the three RAS isoforms (HRAS, KRAS, or NRAS) are found in nearly 20% of all human tumors with NRAS mutated in ~25% of melanomas. Despite remarkable advancements in therapies targeted against mutant KRAS, NRAS-specific pharmacologics are lacking. Thus, development of inhibitors of NRAS would address a critical unmet need to treating primary tumors harboring NRAS mutations as well as BRAF-mutant melanomas, which frequently develop resistance to clinically approved BRAF inhibitors through NRAS mutation. Building upon our previous studies with the monobody NS1 that recognizes HRAS and KRAS but not NRAS, here we report the development of a monobody that specifically binds to both GDP and GTP-bound states of NRAS and inhibits NRAS-mediated signaling in a mutation-agnostic manner. Further, this monobody can be formatted into a genetically encoded NRAS-specific degrader. Our study highlights the feasibility of developing NRAS selective inhibitors for therapeutic efforts.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mubashir Mintoo
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Unnatiben Patel
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Cecile Nasarre
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
5
|
Riley AK, Grant M, Snell A, Cromwell E, Vichas A, Moorthi S, Rominger C, Modukuri SP, Urisman A, Castel P, Wan L, Berger AH. The deubiquitinase USP9X regulates RIT1 protein abundance and oncogenic phenotypes. iScience 2024; 27:110499. [PMID: 39161959 PMCID: PMC11332844 DOI: 10.1016/j.isci.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
RIT1 is a rare and understudied oncogene in lung cancer. Despite structural similarity to other RAS GTPase proteins such as KRAS, oncogenic RIT1 activity does not appear to be tightly regulated by nucleotide exchange or hydrolysis. Instead, there is a growing understanding that the protein abundance of RIT1 is important for its regulation and function. We previously identified the deubiquitinase USP9X as a RIT1 dependency in RIT1-mutant cells. Here, we demonstrate that both wild-type and mutant forms of RIT1 are substrates of USP9X. Depletion of USP9X leads to decreased RIT1 protein stability and abundance and resensitizes cells to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in vitro and in vivo. Our work expands upon the current understanding of RIT1 protein regulation and presents USP9X as a key regulator of RIT1-driven oncogenic phenotypes.
Collapse
Affiliation(s)
- Amanda K. Riley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Michael Grant
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Snell
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Elizabeth Cromwell
- Preclinical Modeling Shared Resource, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Athea Vichas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Callie Rominger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shrikar P. Modukuri
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Anatoly Urisman
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lixin Wan
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Singh S, Bernal Astrain G, Hincapie AM, Goudreault M, Smith MJ. Complex interplay between RAS GTPases and RASSF effectors regulates subcellular localization of YAP. EMBO Rep 2024; 25:3574-3600. [PMID: 39009833 PMCID: PMC11316025 DOI: 10.1038/s44319-024-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.
Collapse
Affiliation(s)
- Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Chaput D, Andelfinger G. MEK Inhibition for RASopathy-Associated Hypertrophic Cardiomyopathy: Clinical Application of a Basic Concept. Can J Cardiol 2024; 40:789-799. [PMID: 38432396 DOI: 10.1016/j.cjca.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.
Collapse
Affiliation(s)
- Dominic Chaput
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
9
|
Saint-Laurent C, Mazeyrie L, Yart A, Edouard T. Novel therapeutic perspectives in Noonan syndrome and RASopathies. Eur J Pediatr 2024; 183:1011-1019. [PMID: 37863846 PMCID: PMC10951041 DOI: 10.1007/s00431-023-05263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia). Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.
Collapse
Affiliation(s)
- Céline Saint-Laurent
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France
| | - Laurène Mazeyrie
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Armelle Yart
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Thomas Edouard
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France.
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
10
|
Feng Z, Zhang N, Bai J, Lin QY, Xie Y, Xia YL. Biochanin A inhibits cardiac hypertrophy and fibrosis in vivo and in vitro. Biomed Pharmacother 2024; 170:116002. [PMID: 38091641 DOI: 10.1016/j.biopha.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The heart undergoes pathological cardiac hypertrophy as an adaptive response to prolonged pathological stimulation, leading to cardiomyocyte hypertrophy, fibroblast proliferation, and an increase in extracellular matrix. Chinese medicine monomers are now receiving much attention for the treatment of cardiac hypertrophy and myocardial remodeling. Biochanin A (BCA) is a kind of flavonoid structural monomer, which has a certain therapeutic effect on bone thinning disease, aging syndrome, lung cancer, etc. Moreover, it exhibits hypoglycemic, anti-inflammatory, anti-oxidation, anti-bacteria and other pharmacological properties. It is still unknown whether BCA has an impact on the mechanism of TAC-induced cardiac hypertrophy. Here, cardiac remodeling was induced by TAC. BCA was injected intraperitoneally at 25 and 50 mg/kg/day one week in advance. Masson, WGA, DHE and other pathological staining and serum were used to detect the inhibitory effect of BCA on cardiac hypertrophy in mice. The anti-hypertrophic effect of BCA was demonstrated by studying the pathological manifestations of Neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) in vitro. The results showed that BCA significantly reduced TAC-induced fibrosis, inflammation, oxidative stress, and myocardial hypertrophy. BCA inhibited Ang II-induced cell hypertrophy and oxidative stress in NRCMs in vitro and Ang II-induced CF migration, proliferation, and collagen secretion. This suggests that BCA plays a key role in inhibiting the progression of myocardial remodeling, suggesting that BCA may be a promising agent for the treatment of myocardial hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Zhenyu Feng
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Ningning Zhang
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jie Bai
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
11
|
Riley AK, Grant M, Snell A, Vichas A, Moorthi S, Urisman A, Castel P, Wan L, Berger AH. The deubiquitinase USP9X regulates RIT1 protein abundance and oncogenic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569313. [PMID: 38077017 PMCID: PMC10705424 DOI: 10.1101/2023.11.30.569313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
RIT1 is a rare and understudied oncogene in lung cancer. Despite structural similarity to other RAS GTPase proteins such as KRAS, oncogenic RIT1 activity does not appear to be tightly regulated by nucleotide exchange or hydrolysis. Instead, there is a growing understanding that the protein abundance of RIT1 is important for its regulation and function. We previously identified the deubiquitinase USP9X as a RIT1 dependency in RIT1-mutant cells. Here, we demonstrate that both wild-type and mutant forms of RIT1 are substrates of USP9X. Depletion of USP9X leads to decreased RIT1 protein stability and abundance and resensitizes cells to EGFR tyrosine kinase inhibitors. Our work expands upon the current understanding of RIT1 protein regulation and presents USP9X as a key regulator of RIT1-driven oncogenic phenotypes.
Collapse
Affiliation(s)
- Amanda K. Riley
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Michael Grant
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Snell
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Athea Vichas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sitapriya Moorthi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, CA, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lixin Wan
- Department of Molecular Oncology, Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Herbold Computational Biology Program, Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Lead contact:
| |
Collapse
|