1
|
Huerta-López C, Clemente-Manteca A, Velázquez-Carreras D, Espinosa FM, Sanchez JG, Martínez-del-Pozo Á, García-García M, Martín-Colomo S, Rodríguez-Blanco A, Esteban-González R, Martín-Zamora FM, Gutierrez-Rus LI, Garcia R, Roca-Cusachs P, Elosegui-Artola A, del Pozo MA, Herrero-Galán E, Sáez P, Plaza GR, Alegre-Cebollada J. Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing. SCIENCE ADVANCES 2024; 10:eadf9758. [PMID: 39546608 PMCID: PMC11567001 DOI: 10.1126/sciadv.adf9758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch-based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | - Juan G. Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María García-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sara Martín-Colomo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, Francis Crick Institute, London, 1 Midland Road, NW1 1AT, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
| | - Miguel A. del Pozo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya–BarcelonaTech, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Gustavo R. Plaza
- ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
2
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Dibus M, Joshi O, Ivaska J. Novel tools to study cell-ECM interactions, cell adhesion dynamics and migration. Curr Opin Cell Biol 2024; 88:102355. [PMID: 38631101 DOI: 10.1016/j.ceb.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Integrin-mediated cell adhesion is essential for cell migration, mechanotransduction and tissue integrity. In vivo, these processes are regulated by complex physicochemical signals from the extracellular matrix (ECM). These nuanced cues, including molecular composition, rigidity and topology, call for sophisticated systems to faithfully explore cell behaviour. Here, we discuss recent methodological advances in cell-ECM adhesion research and compile a toolbox of techniques that we expect to shape this field in future. We outline methodological breakthroughs facilitating the transition from rigid 2D substrates to more complex and dynamic 3D systems, as well as advances in super-resolution imaging for an in-depth understanding of adhesion nanostructure. Selected methods are exemplified with relevant biological findings to underscore their applicability in cell adhesion research. We expect this new "toolbox" of methods will allow for a closer approximation of in vitro experimental setups to in vivo conditions, providing deeper insights into physiological and pathophysiological processes associated with cell-ECM adhesion.
Collapse
Affiliation(s)
- Michal Dibus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omkar Joshi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Department of Life Technologies, University of Turku, FI-20520 Turku, Finland; Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
8
|
Guo Y, Yan J, Goult BT. Mechanotransduction through protein stretching. Curr Opin Cell Biol 2024; 87:102327. [PMID: 38301379 DOI: 10.1016/j.ceb.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.
Collapse
Affiliation(s)
- Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Rahikainen R, Vester SK, Turkki P, Janosko CP, Deiters A, Hytönen VP, Howarth M. Visible Light-Induced Specific Protein Reaction Delineates Early Stages of Cell Adhesion. J Am Chem Soc 2023; 145:24459-24465. [PMID: 38104267 PMCID: PMC10655181 DOI: 10.1021/jacs.3c07827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
Light is well-established for control of bond breakage but not for control of specific bond formation in complex environments. We previously engineered the diffusion-limited reactivity of the SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous isopeptide bond formation. This system enables precise and irreversible assembly of biological building blocks with applications from biomaterials to vaccines. Here we establish a system for the rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed a uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and the extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of the recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Susan K. Vester
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Paula Turkki
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Chasity P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Vesa P. Hytönen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| |
Collapse
|
10
|
Rahikainen R, Vester SK, Turkki P, Janosko CP, Deiters A, Hytönen VP, Howarth M. Visible light-induced specific protein reaction delineates early stages of cell adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549850. [PMID: 37503248 PMCID: PMC10370186 DOI: 10.1101/2023.07.21.549850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Light is well established for control of bond breakage, but not for control of specific bond formation in complex environments. We previously engineered diffusion-limited reactivity of SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous transamidation. This system enables precise and irreversible assembly of biological building blocks, with applications from biomaterials to vaccines. Here, we establish a system for rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Susan K. Vester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Current address: Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL, UK
| | - Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|