1
|
Åqvist J, Brandsdal BO. Computer Simulations of the Temperature Dependence of Enzyme Reactions. J Chem Theory Comput 2025; 21:1017-1028. [PMID: 39884967 PMCID: PMC11823412 DOI: 10.1021/acs.jctc.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
In this review we discuss the development of methodology for calculating the temperature dependence and thermodynamic activation parameters for chemical reactions in solution and in enzymes, from computer simulations. We outline how this is done by combining the empirical valence bond method with molecular dynamics free energy simulations. In favorable cases it turns out that such simulations can even capture temperature optima for the catalytic rate. The approach turns out be very useful both for addressing questions regarding the roles of enthalpic and entropic effects in specific enzymes and also for attacking evolutionary problems regarding enzyme adaptation to different temperature regimes. In the latter case, we focus on cold-adaptation of enzymes from psychrophilic species and show how computer simulations have revealed the basic mechanisms behind such adaptation. Understanding these mechanisms also opens up the possibility of designing the temperature dependence, and we highlight a recent example of this.
Collapse
Affiliation(s)
- Johan Åqvist
- Department
of Cell & Molecular Biology, Uppsala
University, Biomedical Center, SE-751 24 Uppsala, Sweden
- Department
of Chemistry, University of Tromsø
− The Arctic University of Norway, N9037 Tromsø, Norway
| | - Bjørn O. Brandsdal
- Department
of Chemistry, University of Tromsø
− The Arctic University of Norway, N9037 Tromsø, Norway
| |
Collapse
|
2
|
Oh JS, Kim DS, So YS, Hong S, Yoo SH, Park CS, Park JH, Seo DH. Construction and enzymatic characterization of a monomeric variant of dimeric amylosucrase from Deinococcus geothermalis. Int J Biol Macromol 2024; 285:138249. [PMID: 39631600 DOI: 10.1016/j.ijbiomac.2024.138249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Amylosucrase (ASase; E.C. 2.4.1.4), a member of glycoside hydrolase family 13 (GH13), produces α-1,4-glucans and sucrose isomers using sucrose as its sole substrate. This study identifies and characterizes the dimeric structure of ASase from Deinococcus geothermalis (DgAS), highlighting essential amino acid residues for maintaining the dimeric state. The monomeric form, DgAS R30A, exhibited a higher affinity for sucrose compared to the wild-type (WT), especially during the formation of the ASase-glucose intermediate complex and subsequent hydrolysis. Notably, DgAS R30A produced a higher proportion of α-glucans with a degree of polymerization (DP) of ≤20 and fewer α-glucans with a DP of ≥31. This suggested that the reduced surface area of the oligosaccharide binding site in the monomeric form led to decreased binding of longer-chain maltooligosaccharides, favoring the formation of shorter DP α-glucans. Kinetic analysis revealed significantly lower Michaelis constants (Km) for DgAS R30A's total and hydrolysis activities, with the overall performance (kcat/Km) values for DgAS R30A exceeded those of the WT at all sucrose concentrations. Here, we report the first high-resolution homodimeric DgAS structure, revealing conserved active site residues and a unique dimerization interface. This study enhances our understanding of the molecular factors influencing the oligomeric state and enzyme activities.
Collapse
Affiliation(s)
- Ju-Seon Oh
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Da Som Kim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Yun-Sang So
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Koenekoop L, Åqvist J. Computational Analysis of Heat Capacity Effects in Protein-Ligand Binding. J Chem Theory Comput 2024; 20:5708-5716. [PMID: 38870420 PMCID: PMC11238534 DOI: 10.1021/acs.jctc.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat capacity effects in protein-ligand binding as measured by calorimetric experiments have recently attracted considerable attention, particularly in the field of enzyme inhibitor design. A significant negative heat capacity change upon ligand binding implies a marked temperature dependence of the binding enthalpy, which is of high relevance for attempts to optimize protein-ligand interactions. In this work, we address the question of how well such heat capacity changes can be predicted by computer simulations. We examine a series of human thrombin inhibitors that all bind with ΔCp values of about -0.4 kcal/mol/K and calculate heat capacity changes from plain molecular dynamics simulations of the bound and free states of the enzyme and ligand. The results show that accurate ΔCp estimates within a few tenths of a kcal/mol/K of the experimental values can be obtained with this approach. This allows us to address the structural and energetic origin of the negative heat capacity changes for the thrombin inhibitors, and it is found that conformational equilibria of the free ligands in solution make a major contribution to the observed effect.
Collapse
Affiliation(s)
- Lucien Koenekoop
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Pei R, Liu J, Jing C, Zhang M. A Multienzyme Cascade Pathway Immobilized in a Hydrogen-Bonded Organic Framework for the Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306117. [PMID: 37994262 DOI: 10.1002/smll.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.
Collapse
Affiliation(s)
- Rui Pei
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
5
|
Tang P, Harding CJ, Dickson AL, da Silva RG, Harrison DJ, Czekster CM. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase. ACS Catal 2024; 14:3090-3102. [PMID: 38449528 PMCID: PMC10913048 DOI: 10.1021/acscatal.3c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/08/2024]
Abstract
Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step. Here, we characterize the structure and function of a thermophilic dNDT, the protein from Chroococcidiopsis thermalis (CtNDT). We combined enzyme kinetics with structural and biophysical studies to dissect mechanistic features in the reaction coordinate, leading to product formation. Bell-shaped pH-rate profiles demonstrate activity in a broad pH range of 5.5-9.5, with two very distinct pKa values. A pronounced viscosity effect on the turnover rate indicates a diffusional step, likely product (nucleobase1) release, to be rate-limiting. Temperature studies revealed an extremely curved profile, suggesting a large negative activation heat capacity. We trapped a 2'-fluoro-2'-deoxyarabinosyl-enzyme intermediate by mass spectrometry and determined high-resolution structures of the protein in its unliganded, substrate-bound, ribosylated, 2'-difluoro-2'-deoxyribosylated, and in complex with probable transition-state analogues. We reveal key features underlying (2'-deoxy)ribonucleoside selection, as CtNDT can also use ribonucleosides as substrates, albeit with a lower efficiency. Ribonucleosides are the building blocks of RNA and other key intracellular metabolites participating in energy and metabolism, expanding the scope of use of CtNDT in biocatalysis.
Collapse
Affiliation(s)
- Peijun Tang
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Christopher J. Harding
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Alison L. Dickson
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - David J. Harrison
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Clarissa Melo Czekster
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
6
|
Sahu S, Ghosh S, Sinha SK, Datta S, Sengupta N. Thermal Sensitivity of the Enzymatic Activity of β-Glucosidase: Simulations Lend Mechanistic Insights into Experimental Observations. Biochemistry 2023; 62:3440-3452. [PMID: 37997958 DOI: 10.1021/acs.biochem.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A crucial prerequisite for industrial applications of enzymes is the maintenance of specific activity across wide thermal ranges. β-Glucosidase (EC 3.2.1.21) is an essential enzyme for converting cellulose in biomass to glucose. While the reaction mechanisms of β-glucosidases from various thermal ranges (hyperthermophilic, thermophilic, and mesophilic) are similar, the factors underlying their thermal sensitivity remain obscure. The work presented here aims to unravel the molecular mechanisms underlying the thermal sensitivity of the enzymatic activity of the β-glucosidase BglB from the bacterium Paenibacillus polymyxa. Experiments reveal a maximum enzymatic activity at 315 K, with a marked decrease in the activity below and above this temperature. Employing in silico simulations, we identified the crucial role of the active site tunnel residues in the thermal sensitivity. Specific tunnel residues were identified via energetic decomposition and protein-substrate hydrogen bond analyses. The experimentally observed trends in specific activity with temperature coincide with variations in overall binding free energy changes, showcasing a predominantly electrostatic effect that is consistent with enhanced catalytic pocket-substrate hydrogen bonding (HB) at Topt. The entropic advantage owing to the HB substate reorganization was found to facilitate better substrate binding at 315 K. This study elicits molecular-level insights into the associative mechanisms between thermally enabled fluctuations and enzymatic activity. Crucial differences emerge between molecular mechanisms involving the actual substrate (cellobiose) and a commonly employed chemical analogue. We posit that leveraging the role of fluctuations may reveal unexpected insights into enzyme behavior and offer novel paradigms for enzyme engineering.
Collapse
Affiliation(s)
- Sneha Sahu
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sayani Ghosh
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sushant K Sinha
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|