1
|
Wang X, Zhang Y, Zhang L, Gu Q, Liu Q, Ren Y, Lee CS, Zhang Q. A tetrathiafulvalene-containing covalent organic nanobelt: preparation, crystal structure and application for sodium-ion batteries. Chem Sci 2024; 15:20397-20402. [PMID: 39583562 PMCID: PMC11580028 DOI: 10.1039/d4sc06300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Developing single crystals of covalent organic polymers (COPs) is highly attractive as they can afford precise structural information for studying internal interactions. Employing dative boron-nitrogen (B-N) bonds to construct single-crystalline COPs is feasible since the dynamic linkages can self-correct errors, thus improving crystallization. In this project, we develop a single-crystal COP with a nanobelt structure, namely CityU-26, via B-N-driven-assembly between 4,4',5,5'-tetrakis(4-(pyridin-4-yl)phenyl)-2,2'-bi(1,3-dithiolylidene) and 1,4-bis(benzodioxaborole) benzene. The B-N coordination between these units gives rise to one-dimensional (1D) nanobelts, and hydrogen bonding interactions between the nanobelts lead to the formation of a three-dimensional (3D) supramolecular structure. CityU-26 demonstrates an impressive sodium storage capability of 365 mA h g-1 with a current density of 150 mA g-1, and the capability could reach 315 mA h g-1 at 750 mA g-1. The outstanding sodium storage behaviors of CityU-26 underscore the functionalization of B-N polymers, providing a promising platform for the development of efficient energy materials.
Collapse
Affiliation(s)
- Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Yuchan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Chun Sin Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
2
|
Wang C, Wang R, Li Y, Hou X, Han S, Zhao X. Dynamic and sustainable supramolecular biolubrication coatings through nanoarchitectonics with dynamic BN bonding. J Colloid Interface Sci 2024; 683:521-530. [PMID: 39700561 DOI: 10.1016/j.jcis.2024.11.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Biological lubricating materials play a crucial role in normal human activities due to their extremely low coefficients of friction (COFs). However, synthetic friction materials typically exhibit higher friction coefficients and wear rates compared to natural lubricating materials. To address this issue, we propose a novel lubrication strategy: reducing the friction coefficient of synthetic lubricating materials through supramolecular dynamic exchange. The incorporation of B-N supramolecular dynamic bonds enhances the stability of the polymer network structure, resulting in superior mechanical properties and resilience. The dynamic behavior of B-N bonds during friction reduces the frictional resistance of mechanical interlocking networks in motion, thereby significantly improving the frictional performance of supramolecular coatings. We anticipate that elucidating the dynamic structure-performance relationship in supramolecular coatings will advance the development of supramolecular lubricating materials and inspire innovative approaches to constructing new lubricating materials.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Rujiang Wang
- Department of Joint Surgery, Yangquan Coal Industry (Group) General Hospital, Yangquan 045008, Shanxi, China
| | - Yanan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Xiaozheng Hou
- Department of Joint Surgery, Yangquan Coal Industry (Group) General Hospital, Yangquan 045008, Shanxi, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Xin Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200041 Shanghai, China.
| |
Collapse
|
3
|
Xu J, Wang T, Deng S, Lai W, Shi Y, Zhao Y, Huang F, Wei P. Visible Light-Responsive Crystalline B←N Host Adducts with Solvent-Induced Allosteric Effect for Guest Release. Angew Chem Int Ed Engl 2024; 63:e202411880. [PMID: 39122652 DOI: 10.1002/anie.202411880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Photo-responsive organic crystals, capable of converting light energy into chemical energy to initiate conformational transitions, present an emerging strategy for developing lightweight and versatile smart materials. However, visible light-triggered tailored guests capture and release behaviors in all-organic solids are rarely reported. Here, we introduce a photoreactive crystalline boron-nitrogen (B←N) host adduct with the ability to undergo [2+2] photocycloaddition upon 447 nm light exposure. This process facilitates single-crystal-to-single-crystal (SCSC) photodimerization in the mother liquor, maintaining the original B←N host structure. Weakened intermolecular interactions within the photodimer host contribute to fast guest release in air under irradiation. Furthermore, the dynamic B←N bonds enable reversible transformations between organic host adducts and adduct cocrystals under the solvent-induced allosteric effect. As a result, four B←N host adduct crystals containing individual alkane guest are easily obtained and exhibited the ability of photo-controlled alkane release. Therefore, the integration of photo reactivity and structural transformation within B←N host adduct enables customized capture and release of guest molecules.
Collapse
Affiliation(s)
- Jieqiong Xu
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Tao Wang
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Shengyong Deng
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, 410082, Changsha, Hunan, China
| | - Yadong Shi
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Yanyu Zhao
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Peifa Wei
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang L, Chen Z, Li XX, Wang X, Gu Q, Wang X, Lee CS, Lan YQ, Zhang Q. A Covalent Organic Nanoribbon: Preparation, Single-Crystal Structure with Chinese Luban Lock Configuration, and Photocatalytic Behavior. Angew Chem Int Ed Engl 2024; 63:e202411018. [PMID: 38932606 DOI: 10.1002/anie.202411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The multiple mortise-and-tenon joint parts are the core factors to provide the structural stability and diversity of Chinese Luban locks; however, constructing such structures is very challenging. Herein, single crystals of a covalent organic nanoribbon (named CityU-27) are prepared through the assembly of hexahydroxytriphenylene (HHTP), 4,4'-vinylenedipyridine (BYE), and phenylboronic acid (BA) together through dative boron←nitrogen (B←N) bonds. The single-crystal X-ray diffraction analysis indicates that CityU-27 has a covalent organic nanoribbon structure, where each nanoribbon forms multiple and tight π-π interactions with four neighboring others to generate a Luban lock-like configuration. CityU-27 has been demonstrated to be an efficient photocatalyst in a one-pot tandem reaction of hydrogen evolution reaction (HER) and semi-hydrogenation reaction of alkynes in series to produce olefins without any additional photosensitizers and co-catalysts (metal-free).
Collapse
Affiliation(s)
- Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xiao-Xin Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510000, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510000, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
5
|
Li Y, Chen H, Huang J, Zhang H, Lin S, Ye ZM, Xiang S, Chen B, Zhang Z. Self-Healing B ← N-Based Hydrogen-Bonded Organic Framework for Exclusive Recognition and Separation of Toluene from Methyl-Cyclohexane. J Am Chem Soc 2024; 146:19425-19433. [PMID: 38950413 DOI: 10.1021/jacs.4c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The effective separation of aromatic and aliphatic hydrocarbons remains a notable challenge in the petrochemical industry. Herein, we report a self-healing three-dimensional B ← N-based hydrogen-bonded organic framework (HOF), BN-HOF-1, constructed from discrete B ← N inclusive dimers through weak C-H···F and C-H···N hydrogen-bonding interactions. To make use of the specific recognition of the B ← N inclusive dimers for the toluene molecules and the reversible ad/desorption nature of this novel HOF, BN-HOF-1 can exclusively recognize and separate toluene from the mixtures of toluene-methylcyclohexane, thus generating 99.6% pure toluene from its mixtures after gentle heating, the recorded value among any reported materials for toluene purification. After the toluene molecules were released from the framework, it becomes the condensed BN-HOF-1a, which can be further reused for the highly selective recognition and purification of toluene from its binary mixtures, through the reversible structural recovery back to BN-HOF-1. Single-crystal X-ray diffraction and molecular modeling studies reveal that the high specific toluene recognition is attributed to the complementary electrostatic potential between the host B ← N inclusive dimers and the guest toluene, while the self-healing and recovery nature of this HOF is attributed to weak intermolecular hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Yunbin Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Hang Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Jiali Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Hao Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Si Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|
6
|
Liu B, Guo P, Guan X, Tian X, Du F, Xie W, Jiang HL. Crystalline Porous Organic Frameworks Based on Multiple Dynamic Linkages. Angew Chem Int Ed Engl 2024; 63:e202405027. [PMID: 38656532 DOI: 10.1002/anie.202405027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford B3O3-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs). The CPOFs display excellent solution processability, allowing dissolution and subsequent crystallization to their original structures, independent of recrystallization conditions, possibly due to the diverse bond energies of the involved interactions. Significantly, the CPOFs can be synthesized on a gram-scale using cost-effective monomers. In addition, the numerous acidic sites endow the CPOFs with high NH3 capacity, surpassing most porous organic materials and commercial materials.
Collapse
Affiliation(s)
- Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Panyue Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Xinyu Guan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Xuexue Tian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Fei Du
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Weiqing Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Wang J, You W, Chen L, Xiao D, Xiao X, Shan T, Liu Y, Liu M, Li G, Yu W, Huang F. Adaptive and Robust Vitrimers Fabricated by Synergy of Traditional and Supramolecular Polymers. Angew Chem Int Ed Engl 2024; 63:e202405761. [PMID: 38587998 DOI: 10.1002/anie.202405761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron-ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liya Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ding Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuedong Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yang Liu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ming Liu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangfeng Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
8
|
Sheng X, Wang Z, Sheng G, Zhu C, Xiao D, Shan T, Xiao X, Liu M, Li G, Zhu Y, Sessler JL, Huang F. Three-Dimensional Crystalline Organic Framework Stabilized by Molecular Mortise-and-Tenon Jointing. J Am Chem Soc 2024; 146:12547-12555. [PMID: 38656766 DOI: 10.1021/jacs.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.
Collapse
Affiliation(s)
- Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, P. R. China
| | - Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chongzhi Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ming Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
9
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|