1
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Gheeraert A, Bailly T, Ren Y, Hamraoui A, Te J, Vander Meersche Y, Cretin G, Leon Foun Lin R, Gelly JC, Pérez S, Guyon F, Galochkina T. DIONYSUS: a database of protein-carbohydrate interfaces. Nucleic Acids Res 2025; 53:D387-D395. [PMID: 39436020 PMCID: PMC11701518 DOI: 10.1093/nar/gkae890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Protein-carbohydrate interactions govern a wide variety of biological processes and play an essential role in the development of different diseases. Here, we present DIONYSUS, the first database of protein-carbohydrate interfaces annotated according to structural, chemical and functional properties of both proteins and carbohydrates. We provide exhaustive information on the nature of interactions, binding site composition, biological function and specific additional information retrieved from existing databases. The user can easily search the database using protein sequence and structure information or by carbohydrate binding site properties. Moreover, for a given interaction site, the user can perform its comparison with a representative subset of non-covalent protein-carbohydrate interactions to retrieve information on its potential function or specificity. Therefore, DIONYSUS is a source of valuable information both for a deeper understanding of general protein-carbohydrate interaction patterns, for annotation of the previously unannotated proteins and for such applications as carbohydrate-based drug design. DIONYSUS is freely available at www.dsimb.inserm.fr/DIONYSUS/.
Collapse
Affiliation(s)
- Aria Gheeraert
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Thomas Bailly
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Yani Ren
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Ali Hamraoui
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Universite Paris, 75005 Paris, France
| | - Julie Te
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Yann Vander Meersche
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Gabriel Cretin
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Ravy Leon Foun Lin
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Jean-Christophe Gelly
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Serge Pérez
- Centre de Recherches sur les Macromolécules Végétales, University Grenoble Alpes, CNRS, UPR, 5301 Grenoble, France
| | - Frédéric Guyon
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, DSIMB, F-75015 Paris, France
| |
Collapse
|
3
|
Sun YS, Xu F, Zhu HP, Xia Y, Li QM, Luo YY, Lu HJ, Wu BB, Wang Z, Yao PP, Zhou Z. Development of a two-component recombinant vaccine for COVID-19. Front Immunol 2024; 15:1514226. [PMID: 39759508 PMCID: PMC11695372 DOI: 10.3389/fimmu.2024.1514226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Though COVID-19 as a public health emergency of international concern (PHEIC) was declared to be ended by the WHO, it continues to pose a significant threat to human society. Vaccination remains one of the most effective methods for preventing COVID-19. While most of the antigenic regions are found in the receptor binding domain (RBD), the N-terminal domain (NTD) of the S protein is another crucial region for inducing neutralizing antibodies (nAbs) against COVID-19. Methods In the two-dose immunization experiment, female BALB/c mice were intramuscularly immunized with different ratios of RBD-Fc and NTD-Fc proteins, with a total protein dose of 8 μg per mouse. Mice were immunized on day 0 and boosted on day 7. In the sequential immunization experiment, groups of female BALB/c mice were immunized with two doses of the inactivated SARS-CoV-2 vaccine (prototype strain) on day 0 and 7. On day 28, mice were boosted with RBD-Fc, NTD-Fc, RBD-Fc/NTD-Fc (9:1), RBD-Fc/NTD-Fc (3:1), inactivated SARS-CoV-2 vaccine (protoype strain), inactivated SARS-CoV-2 vaccine (omicron strain), individually. The IgG antibodies were detected using ELISA, while the neutralizing antibodies were measured through a microneutralization assay utilizing both the prototype and omicron strains. The ELISPOT assays were performed to measure the secretion of IL-4 and IFN-γ, and the concentrations of secreted IL-2 and IL-10 in the supernatants were measured by ELISA. Results We have first developed a two-component recombinant vaccine for COVID-19 based on RBD-Fc and NTD-Fc proteins, with an optimal RBD-Fc/NTD-Fc ratio of 3:1. This novel two-component vaccine demonstrated the ability to induce durable and potent IgG antibodies, as well as the neutralizing antibodies in both the two-dose homologous and sequential vaccinations. Heterologous booster with this two-component vaccine could induce higher neutralizing antibody titers than the homologous group. Additionally, the vaccine elicited relatively balanced Th1- and Th2-cell immune responses. Conclusion This novel two-component recombinant vaccine exhibits high immunogenicity and offers a potential booster strategy for COVID-19 vaccine development.
Collapse
Affiliation(s)
- Yi-Sheng Sun
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Han-Ping Zhu
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiao-Min Li
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan-Yuan Luo
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hang-Jing Lu
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Bei-Bei Wu
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhen Wang
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ping-Ping Yao
- Zhejiang Key Lab of Vaccine, Infectious Disease Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
4
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
5
|
Chen P, Wu L, Qin B, Yao H, Xu D, Cui S, Zhao L. Computational Insights into Acrylamide Fragment Inhibition of SARS-CoV-2 Main Protease. Curr Issues Mol Biol 2024; 46:12847-12865. [PMID: 39590359 PMCID: PMC11592536 DOI: 10.3390/cimb46110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The pathogen of COVID-19, SARS-CoV-2, has caused a severe global health crisis. So far, while COVID-19 has been suppressed, the continuous evolution of SARS-CoV-2 variants has reduced the effectiveness of vaccines such as mRNA-1273 and drugs such as Remdesivir. To uphold the effectiveness of vaccines and drugs prior to potential coronavirus outbreaks, it is necessary to explore the underlying mechanisms between biomolecules and nanodrugs. The experimental study reported that acrylamide fragments covalently attached to Cys145, the main protease enzyme (Mpro) of SARS-CoV-2, and occupied the substrate binding pocket, thereby disrupting protease dimerization. However, the potential mechanism linking them is unclear. The purpose of this work is to complement and validate experimental results, as well as to facilitate the study of novel antiviral drugs. Based on our experimental studies, we identified two acrylamide fragments and constructed corresponding protein-ligand complex models. Subsequently, we performed molecular dynamics (MD) simulations to unveil the crucial interaction mechanisms between these nanodrugs and SARS-CoV-2 Mpro. This approach allowed the capture of various binding conformations of the fragments on both monomeric and dimeric Mpro, revealing significant conformational dissociation between the catalytic and helix domains, which indicates the presence of allosteric targets. Notably, Compound 5 destabilizes Mpro dimerization and acts as an effective inhibitor by specifically targeting the active site, resulting in enhanced inhibitory effects. Consequently, these fragments can modulate Mpro's conformational equilibrium among extended monomeric, compact, and dimeric forms, shedding light on the potential of these small molecules as novel inhibitors against coronaviruses. Overall, this research contributes to a broader understanding of drug development and fragment-based approaches in antiviral covalent therapeutics.
Collapse
Affiliation(s)
- Ping Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (B.Q.); (S.C.)
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (B.Q.); (S.C.)
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (P.C.); (L.W.); (H.Y.); (D.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xu W, Han Y, Lu M. Multi-step shapeshifting of SARS-CoV-2 Omicron spikes during fusion. Structure 2024; 32:1850-1851. [PMID: 39515302 DOI: 10.1016/j.str.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In this issue of Structure, Dey et al.1 employ single-molecule FRET to map the conformational trajectory of Omicron spikes during fusion, revealing a transition from pre-fusion to post-fusion through two intermediates. This study highlights the roles of acidic environments, Ca2+, and receptors in promoting SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Wang Xu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
7
|
Díaz-Salinas MA, Chatterjee D, Nayrac M, Medjahed H, Prévost J, Pazgier M, Finzi A, Munro JB. Conformational dynamics of the HIV-1 envelope glycoprotein from CRF01_AE is associated with susceptibility to antibody-dependent cellular cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609179. [PMID: 39229074 PMCID: PMC11370484 DOI: 10.1101/2024.08.22.609179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The HIV-1 envelope glycoprotein (Env) is expressed at the surface of infected cells and as such can be targeted by non-neutralizing antibodies (nnAbs) that mediate antibody-dependent cellular cytotoxicity (ADCC). Previous single-molecule Förster resonance energy transfer (smFRET) studies demonstrated that Env from clinical isolates predominantly adopt a "closed" conformation (State 1), which is resistant to nnAbs. After interacting with the cellular receptor CD4, the conformational equilibrium of Env shifts toward States 2 and 3, exposing the coreceptor binding site (CoRBS) and permitting binding of antibodies targeting this site. We showed that the binding of anti-CoRBS Abs enables the engagement of other nnAbs that target the cluster A epitopes on Env. Anti-cluster A nnAbs stabilize an asymmetric Env conformation, State 2A, and have potent ADCC activity. CRF01_AE strains were suggested to be intrinsically susceptible to ADCC mediated by nnAbs. This may be due to the presence of a histidine at position 375, known to shift Env towards more "open" conformations. In this work, through adaptation of an established smFRET imaging approach, we report that the conformational dynamics of native, unliganded HIV-1CRF01_AE Env indicates frequent sampling of the State 2A conformation. This is in striking contrast with Envs from clades A and B, for example HIV-1JR-FL, which do not transition to State 2A in the absence of ligands. These findings inform on the conformational dynamics of HIV-1CRF01_AE Env, which are relevant for structure-based design of both synthetic inhibitors of receptor binding, and enhancers of ADCC as therapeutic alternatives.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - James B. Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|