1
|
Zhang B, Zhang M, Li Q, Yang Y, Shang Z, Luo J. TPX2 mediates prostate cancer epithelial-mesenchymal transition through CDK1 regulated phosphorylation of ERK/GSK3β/SNAIL pathway. Biochem Biophys Res Commun 2021; 546:1-6. [PMID: 33556637 DOI: 10.1016/j.bbrc.2021.01.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer with high Gleason grade is prone to metastasis, which is one of the factors that seriously threaten the survival of patients, and it is also a treatment difficulty. In this study, we first revealed the potential connection between TPX2 and prostate cancer metastasis. We found that TPX2 is highly expressed in high-grade prostate cancer and is significantly related to poor prognosis. Depletion of TPX2 can significantly inhibit cell activity and migration, and in vivo experiments show that knockdown of TPX2 can significantly inhibit tumor growth. In terms of mechanism, we found that knocking down TPX2 can inhibit the expression of CDK1, repress the phosphorylation of ERK/GSK3β/SNAIL signaling pathway, and thereby inhibit tumor epithelial-mesenchymal transition. Subsequently, we found that after rescuing TPX2, all related proteins and phenotype changes were restored, and this effect can be inhibited by CDK1 inhibitor, RO-3306. Our findings suggest the potential of TPX2 as an important target in anti-tumor metastasis therapy, which is conducive to precision medicine for prostate cancer.
Collapse
Affiliation(s)
- Boya Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qi Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yanjie Yang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Jun Luo
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Dilworth D, Gudavicius G, Xu X, Boyce AKJ, O’Sullivan C, Serpa JJ, Bilenky M, Petrochenko EV, Borchers CH, Hirst M, Swayne LA, Howard P, Nelson CJ. The prolyl isomerase FKBP25 regulates microtubule polymerization impacting cell cycle progression and genomic stability. Nucleic Acids Res 2018; 46:2459-2478. [PMID: 29361176 PMCID: PMC5861405 DOI: 10.1093/nar/gky008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25-DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases.
Collapse
Affiliation(s)
- David Dilworth
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Geoff Gudavicius
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Xiaoxue Xu
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Jason J Serpa
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Evgeniy V Petrochenko
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Perry Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
3
|
TPX2 impacts acetylation of histone H4 at lysine 16: implications for DNA damage response. PLoS One 2014; 9:e110994. [PMID: 25365214 PMCID: PMC4217740 DOI: 10.1371/journal.pone.0110994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
During interphase, the spindle assembly factor TPX2 is compartmentalized in the nucleus where its roles remain largely uncharacterized. Recently, we found that TPX2 regulates the levels of serine 139-phosphoryated H2AX (γ-H2AX) at chromosomal breaks induced by ionizing radiation. Here, we report that TPX2 readily associates with the chromatin in the absence of ionizing radiation. Overexpression of TPX2 alters the DAPI staining pattern of interphase cells and depletion of TPX2 constitutively decreases the levels of histone H4 acetylated at lysine16 (H4K16ac) during G1-phase. Upon ionizing irradiation, this constitutive TPX2 depletion-dependent decrease in H4K16ac levels correlates with increased levels of γ-H2AX. The inversely correlated levels of H4K16ac and γ-H2AX can also be modified by altering the levels of SIRT1, herein identified as a novel protein complex partner of TPX2. Furthermore, we find that TPX2 depletion also interferes with formation of 53BP1 ionizing radiation-induced foci, known to depend on γ-H2AX and the acetylation status of H4K16. In brief, our study is the first indication of a constitutive control of TPX2 on H4K16ac levels, with potential implications for DNA damage response.
Collapse
|
4
|
Neumayer G, Belzil C, Gruss OJ, Nguyen MD. TPX2: of spindle assembly, DNA damage response, and cancer. Cell Mol Life Sci 2014; 71:3027-47. [PMID: 24556998 PMCID: PMC11114040 DOI: 10.1007/s00018-014-1582-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
For more than 15 years, TPX2 has been studied as a factor critical for mitosis and spindle assembly. These functions of TPX2 are attributed to its Ran-regulated microtubule-associated protein properties and to its control of the Aurora A kinase. Overexpressed in cancers, TPX2 is being established as marker for the diagnosis and prognosis of malignancies. During interphase, TPX2 resides preferentially in the nucleus where its function had remained elusive until recently. The latest finding that TPX2 plays a role in amplification of the DNA damage response, combined with the characterization of TPX2 knockout mice, open new perspectives to understand the biology of this protein. This review provides an historic overview of the discovery of TPX2 and summarizes its cytoskeletal and signaling roles with relevance to cancer therapies. Finally, the review aims to reconcile discrepancies between the experimental and pathological effects of TPX2 overexpression and advances new roles for compartmentalized TPX2.
Collapse
Affiliation(s)
- Gernot Neumayer
- Department of Clinical Neurosciences, Department of Cell Biology and Anatomy, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Canada,
| | | | | | | |
Collapse
|
5
|
Petrovská B, Jeřábková H, Kohoutová L, Cenklová V, Pochylová Ž, Gelová Z, Kočárová G, Váchová L, Kurejová M, Tomaštíková E, Binarová P. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4575-87. [PMID: 24006426 PMCID: PMC3808333 DOI: 10.1093/jxb/ert271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Hana Jeřábková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Lucie Kohoutová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- * These authors contributed equally to this manuscript
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Gabriela Kočárová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Váchová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Michaela Kurejová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Eva Tomaštíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Neumayer G, Helfricht A, Shim SY, Le HT, Lundin C, Belzil C, Chansard M, Yu Y, Lees-Miller SP, Gruss OJ, van Attikum H, Helleday T, Nguyen MD. Targeting protein for xenopus kinesin-like protein 2 (TPX2) regulates γ-histone 2AX (γ-H2AX) levels upon ionizing radiation. J Biol Chem 2012; 287:42206-22. [PMID: 23045526 DOI: 10.1074/jbc.m112.385674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G(0) and G(1) phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage.
Collapse
Affiliation(s)
- Gernot Neumayer
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary T2N4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zeng F, Tian Y, Shi S, Wu Q, Liu S, Zheng H, Yue L, Li Y. Identification of mouse MARVELD1 as a microtubule associated protein that inhibits cell cycle progression and migration. Mol Cells 2011; 31:267-74. [PMID: 21347699 PMCID: PMC3932696 DOI: 10.1007/s10059-011-0037-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/15/2010] [Accepted: 12/24/2010] [Indexed: 12/20/2022] Open
Abstract
MARVEL domain-containing 1 (MARVELD1) is a newly identified nuclear protein; however its function has not been clear until now. Here, we report that mouse MARVELD1 (mMARVELD1), which is highly conserved between mice and humans, exhibits cell cycle-dependent cellular localization. In NIH3T3 cells, MARVELD1 was observed in the nucleus and at the perinuclear region during interphase, but was localized at the mitotic spindle and midbody at metaphase, and a significant fraction of mMARVELD1 translocated to the plasma membrane during anaphase. In addition, treatment of cells with colchicine, a microtubule-depolymerizing agent, resulted in translocation of mMARVELD1 to the plasma membrane, and association of mMARVELD1 and α-tubulin was confirmed by co-immunoprecipitation. Finally, overexpression of mMARVELD1 resulted in a remarkable inhibition of cell proliferation, G1-phase arrest, and reduced cell migration. These findings indicate that mMARVELD1 is a microtubule-associated protein that plays an important role in cell cycle progression and migration.
Collapse
Affiliation(s)
- Fanli Zeng
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Yanyan Tian
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Shuliang Shi
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Qiong Wu
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Shanshan Liu
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Hongxia Zheng
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Lei Yue
- The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Yu Li
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| |
Collapse
|
8
|
Cho HP, Liu Y, Gomez M, Dunlap J, Tyers M, Wang Y. The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules. Mol Cell Biol 2005; 25:4541-51. [PMID: 15899858 PMCID: PMC1140622 DOI: 10.1128/mcb.25.11.4541-4551.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated alpha-tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.
Collapse
Affiliation(s)
- Hyekyung P Cho
- Life Sciences Division, Oak Ridge National Laboratory, Bethel Valley Rd., Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
9
|
Brunet S, Sardon T, Zimmerman T, Wittmann T, Pepperkok R, Karsenti E, Vernos I. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol Biol Cell 2004; 15:5318-28. [PMID: 15385625 PMCID: PMC532013 DOI: 10.1091/mbc.e04-05-0385] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TPX2 has multiple functions during mitosis, including microtubule nucleation around the chromosomes and the targeting of Xklp2 and Aurora A to the spindle. We have performed a detailed domain functional analysis of TPX2 and found that a large N-terminal domain containing the Aurora A binding peptide interacts directly with and nucleates microtubules in pure tubulin solutions. However, it cannot substitute the endogenous TPX2 to support microtubule nucleation in response to Ran guanosine triphosphate (GTP) and spindle assembly in egg extracts. By contrast, a large C-terminal domain of TPX2 that does not bind directly to pure microtubules and does not bind Aurora A kinase rescues microtubule nucleation in response to RanGTP and spindle assembly in TPX2-depleted extract. These and previous results suggest that under physiological conditions, TPX2 is essential for microtubule nucleation around chromatin and functions in a network of other molecules, some of which also are regulated by RanGTP.
Collapse
Affiliation(s)
- Stéphane Brunet
- Cell Biology and Biophysics Program, European Molecular Biology Laboratory, Heidelberg 69 117, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Ou Y, Rattner JB. The Centrosome in Higher Organisms: Structure, Composition, and Duplication. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:119-82. [PMID: 15364198 DOI: 10.1016/s0074-7696(04)38003-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The centrosome found in higher organisms is an organelle with a complex and dynamic architecture and composition. This organelle not only functions as a microtubule-organizing center, but also is integrated with or impacts a number of cellular processes. Defects associated with this organelle have been linked to a variety of human diseases including several forms of cancer. Here we review the emerging picture of how the structure, composition, duplication, and function of the centrosome found in higher organisms are interrelated.
Collapse
Affiliation(s)
- Young Ou
- Department of Cell Biology and Anatomy, University of Calgary 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | |
Collapse
|
11
|
Raemaekers T, Ribbeck K, Beaudouin J, Annaert W, Van Camp M, Stockmans I, Smets N, Bouillon R, Ellenberg J, Carmeliet G. NuSAP, a novel microtubule-associated protein involved in mitotic spindle organization. J Cell Biol 2003; 162:1017-29. [PMID: 12963707 PMCID: PMC2172854 DOI: 10.1083/jcb.200302129] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we report on the identification of nucleolar spindle-associated protein (NuSAP), a novel 55-kD vertebrate protein with selective expression in proliferating cells. Its mRNA and protein levels peak at the transition of G2 to mitosis and abruptly decline after cell division. Microscopic analysis of both fixed and live mammalian cells showed that NuSAP is primarily nucleolar in interphase, and localizes prominently to central spindle microtubules during mitosis. Direct interaction of NuSAP with microtubules was demonstrated in vitro. Overexpression of NuSAP caused profound bundling of cytoplasmic microtubules in interphase cells, and this relied on a COOH-terminal microtubule-binding domain. In contrast, depletion of NuSAP by RNA interference resulted in aberrant mitotic spindles, defective chromosome segregation, and cytokinesis. In addition, many NuSAP-depleted interphase cells had deformed nuclei. Both overexpression and knockdown of NuSAP impaired cell proliferation. These results suggest a crucial role for NuSAP in spindle microtubule organization.
Collapse
Affiliation(s)
- Tim Raemaekers
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Radisavljevic ZM, González-Flecha B, Manasija-Radisavljevic Z. Signaling through Cdk2, importin-alpha and NuMA is required for H2O2-induced mitosis in primary type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:163-70. [PMID: 12729926 DOI: 10.1016/s0167-4889(03)00044-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proliferation of alveolar type II pneumocytes, the multipotent stem cells of the alveoli, has been implicated in the development of lung adenocarcinoma. Hydrogen peroxide (H(2)O(2)), a potent promoter of signaling cascades, can mediate the transmission of many intracellular signals including those involved in cell proliferation. In this study using rat primary type II pneumocytes, we demonstrate that H(2)O(2) significantly increases mitosis through a pathway that includes cyclin-dependent kinase 2 (Cdk2); importin-alpha, a nuclear trafficking regulator; and nuclear mitotic apparatus protein (NuMA), an essential component in mitotic spindle pole formation. Upon H(2)O(2) treatment, Cdk2 is phosphorylated at position thr-160 leading to increases in importin-alpha and NuMA protein levels and resulting in a significant increase of G(2)/M phase in a roscovatine-dependent manner. Type II pneumocytes transfected with NuMA cDNA also show significant increases in G(2)/M phase, NuMA, Cdk2 thr-160 and importin-alpha expression. These effects were prevented by catalase. These results demonstrate that H(2)O(2) orchestrates a complex signaling network regulating S phase entry, nuclear trafficking and spindle pole formation through activation of Cdk2, importin-alpha, and NuMA. This pathway is essential for H(2)O(2)-induced mitosis in type II pneumocytes.
Collapse
Affiliation(s)
- Ziv Manasija Radisavljevic
- Department of Environmental Health, Physiology Program, Harvard University, School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
13
|
Abstract
Higher plants have developed a unique pathway to control their cytoskeleton assembly and dynamics. In most other eukaryotes, microtubules are nucleated in vivo at the nucleation and organizing centers and are involved in the establishment of polarity. Although the major cytoskeletal components are common to plant and animal cells, which suggests conserved regulation mechanisms, plants do not possess centrosome-like organelles. Nevertheless, they are able to build spindles and have developed their own specific cytoskeletal arrays: the cortical arrays, the preprophase band, and the phragmoplast, which all participate in basic developmental processes, as shown by defective mutants. New approaches provide essential clues to understanding the fundamental mechanisms of microtubule nucleation. Gamma-tubulin, which is considered to be the universal nucleator, is the essential component of microtubule-nucleating complexes identified as gamma-tubulin ring complexes (gamma-TuRC) in centriolar cells. A gamma-tubulin small complex (gamma-TuSC) forms a minimal nucleating unit recruited at specific sites of activity. These components--gamma-tubulin, Spc98p, and Spc97p--are present in higher plants. They play a crucial role in microtubule nucleation at the nuclear surface, which is known as the main functional plant microtubule-organizing center, and also probably at the cell cortex and at the phragmoplast, where secondary nucleation sites may exist. Surprisingly, plant gamma-tubulin is distributed along the microtubule length. As it is not associated with Spc98p, it may not be involved in microtubule nucleation, but may preferably control microtubule dynamics. Understanding the mechanisms of microtubule nucleation is the major challenge of the current research.
Collapse
Affiliation(s)
- Anne-Catherine Schmit
- Plant Molecular Biology Institute, National Center of Scientific Research, UPR 2357, Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
14
|
Giarrè M, Török I, Schmitt R, Gorjánácz M, Kiss I, Mechler BM. Patterns of importin-alpha expression during Drosophila spermatogenesis. J Struct Biol 2002; 140:279-90. [PMID: 12490175 DOI: 10.1016/s1047-8477(02)00543-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Importin-alpha proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-alpha genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-alpha proteins identified in Drosophila, namely, Imp-alpha1, -alpha2, and -alpha3. We found that each Imp-alpha is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-alpha2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-alpha2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-alpha2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-alpha1 and -alpha3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-alpha1 expression extends up to the onset of the elongation phase, whereas that of Imp-alpha3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-alpha1 and -alpha3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-alpha1 and -alpha3 are nuclear. These data indicate that each Imp-alpha protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.
Collapse
Affiliation(s)
- Marianna Giarrè
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P. Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:699-709. [PMID: 12061901 DOI: 10.1046/j.1365-313x.2002.01324.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In animals and yeast, the small GTP-binding protein Ran has multiple functions - it is involved in mediating (i) the directional passage of proteins and RNA through the nuclear pores in interphase cells; and (ii) the formation of spindle asters, the polymerization of microtubules, and the re-assembly of the nuclear envelope in mitotic cells. Nucleotide binding of Ran is modulated by a series of accessory proteins. For instance, the hydrolysis of RanGTP requires stimulation by the RanGTPase protein RanGAP. Here we report the complementation of the yeast RanGAP mutant rna1 with Medicago sativa and Arabidopsis thaliana cDNAs encoding RanGAP-like proteins. Confocal laser microscopy of Arabidopsis plants overexpressing chimeric constructs of GFP with AtRanGAP1 and 2 demonstrated that the fusion protein is localized to patchy areas at the nuclear envelope of interphase cells. In contrast, the cellular distribution of RanGAPs in synchronized tobacco cells undergoing mitosis is characteristically different. Double-immunofluorescence shows that RanGAPs are co-localized with spindle microtubules during anaphase, with the microtubular phragmoplast and the surface of the daughter nuclei during telophase. Co-assembly of RanGAPs with tubulin correlates with these in vivo observations. The detected localization pattern is consistent with the postulated function of plant RanGAPs in the regulation of nuclear transport during interphase, and suggests a role for these proteins in the organization of the microtubular mitotic structures.
Collapse
Affiliation(s)
- Aniko Pay
- Plant Biology Institute, Biological Research Center, H-6701 Szeged, PO Box 521, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Dubois T, Howell S, Zemlickova E, Aitken A. Identification of casein kinase Ialpha interacting protein partners. FEBS Lett 2002; 517:167-71. [PMID: 12062430 DOI: 10.1016/s0014-5793(02)02614-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Casein kinase Ialpha (CKIalpha) belongs to a family of serine/threonine protein kinases involved in membrane trafficking, RNA processing, mitotic spindle formation and cell cycle progression. In this report, we identified several CKIalpha interacting proteins including RCC1, high mobility group proteins 1 and 2 (HMG1, HMG2), Erf, centaurin-alpha1, synaptotagmin IX and CPI-17 that were isolated from brain as CKIalpha co-purifying proteins. Actin, importin-alpha(1), importin-beta, PP2Ac, centaurin-alpha1, and HMG1 were identified by affinity chromatography using a peptide column comprising residues 214-233 of CKIalpha. We have previously shown that centaurin-alpha1 represents a CKIalpha partner both in vitro and in vivo. The nuclear protein regulator of chromosome condensation 1 (RCC1) is a guanosine nucleotide exchange factor for Ran which is involved in nuclear transport and mitotic spindle formation. Here we show that CKIalpha and RCC1 interact in brain and in cultured cells. However, the interaction does not involve residues 217-233 of CKIalpha which are proposed from X-ray structures to represent an anchoring site for CKI partners. Formation of the RCC1/CKIalpha complex is consistent with the association of the kinase with mitotic spindles. In conclusion, we have identified a number of novel CKIalpha protein partners and their relations to CKI are discussed.
Collapse
Affiliation(s)
- Thierry Dubois
- The University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | | | |
Collapse
|
17
|
Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 2002; 156:595-602. [PMID: 11854305 PMCID: PMC2174074 DOI: 10.1083/jcb.200110109] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1's mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1-conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.
Collapse
Affiliation(s)
- Jomon Joseph
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001; 29:160-5. [PMID: 11586297 DOI: 10.1038/ng1001-160] [Citation(s) in RCA: 515] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are neurodegenerative conditions that affect large motor neurons of the central nervous system. We have identified a familial juvenile PLS (JPLS) locus overlapping the previously identified ALS2 locus on chromosome 2q33. We report two deletion mutations in a new gene that are found both in individuals with ALS2 and those with JPLS, indicating that these conditions have a common genetic origin. The predicted sequence of the protein (alsin) may indicate a mechanism for motor-neuron degeneration, as it may include several cell-signaling motifs with known functions, including three associated with guanine-nucleotide exchange factors for GTPases (GEFs).
Collapse
Affiliation(s)
- Y Yang
- Department of Neurology, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|