1
|
Xiong D, Guo L, Liu C, Wang L, Liu Y, Tan X. Analytical effect of stabilizer volume and shape on zircon U–Pb dating by nanosecond LA-ICP-QMS. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this paper, we evaluated the effect of seven stabilizers with different shapes (including cylinder, cubic and ball shape) on zircon U–Pb dating analysis by laser ablation inductively coupled plasma quadrupole mass spectrometry (LA-ICP-QMS) in detail. In the case of stabilizer volume examined, the analytical efficiency of cylinder stabilizers (21.2, 25.1, 35.3 and 125 mL) were investigated in terms of signal stabilization, signal rising/washout time and U–Pb dating accuracy. By using zircon 91500 as reference material for external calibration, the 206Pb/238U age of zircon Plešovice was determined by a nanosecond LA-ICP-QMS, where the stabilizer was placed directly after the ablation cell and sample aerosols carried by helium passed through the stabilizer and subsequently mixed with make-up gas (argon) before ICP. It was found that transient signal oscillations were invisible and signal intensities were comparable using all the stabilizers, while signal rising time was 2.0-fold and washout time was 27.6-fold for stabilizer with volume of 125 mL to that of 21.2 mL. The obtained average 206Pb/238U age of zircon Plešovice was 335.53 ± 1.02, 361.73 ± 5.04, 340.10 ± 1.98 and 341.21 ± 5.17 Ma (2σ, n ≥ 5), respectively, giving average relative deviations of a single point of age (1σ) less than 2.0%. Among the corresponding 206Pb/238U ratios, it was also found that the value (0.05343 ± 0.87‰, 1σ, n = 5) obtained using 21.2 mL of cylinder stabilizer highly agreed with that of 0.05384 ± 0.74‰ (1σ, n = 5) using the commercially available “squid” stabilizer. The analytical efficiency of the 21.2 mL of cylinder stabilizer was then compared to that of cubic shape stabilizer (18.5 mL) and ball shape stabilizer (14.1 mL). Results showed that there were no significant differences of the obtained 206Pb/238U ages using stabilizers with volume in the range of 14.1–21.2 mL. But both cubic and ball shape stabilizers exhibited washout time over 270 s. We also studied the particle filter effect of the stabilizers by packing the 21.2 mL of cylinder stabilizer with 1.0 g of stainless wire. Despite the average 206Pb/238U age deviation was only − 0.81%, spiky signals occasionally occurred which might be ascribed to the use of a nanosecond laser and relatively low density of stainless wire in the stabilizer. This study confirmed that an empty stabilizer with volume of 21.2 mL and cylinder shape was preferred to produce smoothing signals. The improved analytical accuracy of zircon U–Pb dating using such a stabilizer ensured the future application to trace element analysis by LA-ICP-QMS.
Collapse
|
2
|
Schaltegger U, Ovtcharova M, Gaynor SP, Schoene B, Wotzlaw JF, Davies JFHL, Farina F, Greber ND, Szymanowski D, Chelle-Michou C. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2021; 36:1466-1477. [PMID: 34276120 PMCID: PMC8262554 DOI: 10.1039/d1ja00116g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Age determination of minerals using the U-Pb technique is widely used to quantify time in Earth's history. A number of geochronology laboratories produce the highest precision U-Pb dates employing the EARTHTIME 202Pb-205Pb-233U-235U tracer solution for isotope dilution, and the EARTHTIME ET100 and ET2000 solutions for system calibration and laboratory intercalibration. Here, we report ET100 and ET2000 solution data from the geochronology laboratory of University of Geneva obtained between 2008 and 2021 and compare the most recent data with results from the geochronology laboratories of Princeton University and ETH Zürich. This compilation demonstrates that (i) the choice of the thermal ionization mass spectrometer model has no influence on precision and accuracy of the data; (ii) the often observed excess scatter of apparent ET100 solution 206Pb/238U dates can be mitigated by more careful tracer-sample equilibration; and (iii) natural zircon reference materials are not suitable for evaluating intra-laboratory repeatability and inter-laboratory reproducibility, since they combine several phenomena of natural system complexities (especially domains of different age within the same zircon grain, and residual loss of radiogenic lead in domains of high decay damage after chemical abrasion pre-treatment). We provide our best estimates of apparent dates for the ET100 solution (206Pb/238U date, 100.173 ± 0.003 Ma), for ET2000 solution (207Pb/206Pb date, 1999.935 ± 0.063 Ma), as well as for natural reference zircon Temora-2 (206Pb/238U date, 417.353 ± 0.052 Ma). These data will allow U-Pb laboratories to evaluate their analytical performance and to independently calibrate non-EARTHTIME tracer solutions in use.
Collapse
Affiliation(s)
- Urs Schaltegger
- Department of Earth Sciences, University of Geneva Geneva Switzerland
| | - Maria Ovtcharova
- Department of Earth Sciences, University of Geneva Geneva Switzerland
| | - Sean P Gaynor
- Department of Earth Sciences, University of Geneva Geneva Switzerland
| | - Blair Schoene
- Department of Geosciences, Princeton University Princeton USA
| | - Jörn-Frederik Wotzlaw
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich Zurich Switzerland
| | - Joshua F H L Davies
- Department of Earth and Atmospheric Sciences, Université de Québéc à Montréal Montreal Canada
| | - Federico Farina
- Earth Sciences, Università degli Studi di Milano Milano Italy
| | | | | | - Cyril Chelle-Michou
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich Zurich Switzerland
| |
Collapse
|
3
|
Schaen AJ, Schoene B, Dufek J, Singer BS, Eddy MP, Jicha BR, Cottle JM. Transient rhyolite melt extraction to produce a shallow granitic pluton. SCIENCE ADVANCES 2021; 7:7/21/eabf0604. [PMID: 34138741 PMCID: PMC8133745 DOI: 10.1126/sciadv.abf0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events. Here, U-Pb zircon petrochronology and 40Ar/39Ar thermochronology constrain silicic melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. Our findings suggest that ~50 km3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indicates the thermal viability of advanced magma differentiation in the upper crust.
Collapse
Affiliation(s)
- Allen J Schaen
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Blair Schoene
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Josef Dufek
- Earth Sciences Department, University of Oregon, Eugene, OR 97403, USA
| | - Brad S Singer
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael P Eddy
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brian R Jicha
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M Cottle
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Huang C, Ogg JG, Kemp DB. Cyclostratigraphy and astrochronology: Case studies from China. PALAEOGEOGRAPHY, PALAEOCLIMATOLOGY, PALAEOECOLOGY 2020; 560:110017. [PMID: 32934423 PMCID: PMC7483128 DOI: 10.1016/j.palaeo.2020.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A high-precision geologic time scale is the essential key for understanding the Earth's evolutionary history and geologic processes. Astronomical tuning of orbitally forced stratigraphic records to construct high-resolution Astronomical Time Scales (ATS) has led to a progressive refinement of the geologic time scale over the past two decades. In turn, these studies provide new insights regarding the durations and rates of major Earth events, evolutionary processes, and climate changes, all of which provide a scientific basis for contextualizing and predicting future global change trends. South China hosts some of the best-exposed and well-dated Neoproterozoic through Mesozoic stratigraphic sections in the world; many of which are suitable for cyclostratigraphy and calibrating the geologic time scale. In North China, several Cenozoic oil-bearing basins have deep boreholes with continuous sampling and/or well logging that enable derivation of astronomically tuned time scales for an improved understanding of basin evolution and hydrocarbon generation. This Special Issue focuses on case studies of astrochronology and applied cyclostratigraphy research using reference sections within China. In this introductory overview, we: (1) summarize all existing astrochronology studies of the Neoproterozoic through Cenozoic sections within China that have been used to enhance the international geologic time scale, (2) examine briefly the astronomically forced paleoclimate information recorded in various depositional systems and the modern techniques employed to analyze the periodicity of these signals encoded within the sedimentary record, and (3) summarize the 20 contributions to this Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology on 'Cyclostratigraphy and Astrochronology: Case studies from China'.
Collapse
Affiliation(s)
- Chunju Huang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - James G Ogg
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - David B Kemp
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Linking Siberian Traps LIP Emplacement and End-Permian Mass Extinction: Evidence from Magnetic Stratigraphy of the Maymecha-Kotuy Volcanic Section. GEOSCIENCES 2020. [DOI: 10.3390/geosciences10080295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Siberian Traps Large Igneous Provinces (LIP) emplacement is considered as one of possible triggers for the end-Permian global biotic crisis. However, relative timing of the onset of extinction and the main phase of the magmatic activity are not yet accurately constrained. We present the detailed paleomagnetic data for the thickest composite section of the Siberian Traps volcanics, located in the Maymecha-Kotuy region. The major part of the Maymecha-Kotuy section erupted in the beginning of Early Triassic period and postdate came the onset of the biotic crisis. However, the initial pulse of volcanic activity in this region took place at the end of the Permian period, and likely preceded the extinction event, being nearly coeval to the lowest part of tuff-lava sequence of Norilsk. The suggested correlation scheme of volcanic sections from different regions of the Siberian platform shows that explosive and extrusive events foregoing the onset of extinction can be identified in almost all regions of the Siberian Traps LIP. Finally, we estimate the total duration of magmatic activity in the Maymecha-Kotuy region as ~2 Myr and assume that this lasted after the termination of eruptions in other parts of the Siberian platform.
Collapse
|
6
|
Smithwick FM, Stubbs TL. Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events. Evolution 2019; 72:348-362. [PMID: 29315531 PMCID: PMC5817399 DOI: 10.1111/evo.13421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.
Collapse
Affiliation(s)
- Fiann M Smithwick
- Department of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Thomas L Stubbs
- Department of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
7
|
Early Triassic Griesbachian microbial mounds in the Upper Yangtze Region, southwest China: Implications for biotic recovery from the latest Permian mass extinction. PLoS One 2018; 13:e0201012. [PMID: 30089141 PMCID: PMC6082531 DOI: 10.1371/journal.pone.0201012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/07/2018] [Indexed: 11/19/2022] Open
Abstract
Early Triassic microbialites are distributed widely in the shallow marine facies of the Tethys Region, especially in the carbonate platform where they were deposited immediately after the latest Permian mass extinction (LPME). Ten Griesbachian domed microbial mounds were found in an outcrop of the uppermost first member of the Feixianguan (FXG) Formation at Baimiaozi, which is located in Beibei in the Upper Yangtze Region of southwest China. Field investigations and thin-sections analyses indicated that oolitic limestone, bioclastic limestone, microbialite, marl, and mudstone deposits are present in the first and second members of the FXG Formation, among which the thickness of the microbial mound above the massive oolitic limestone at the carbonate platform was approximately 3–4 m. Three facies were identified at the microbial mounds, namely, a mound base, mound body, and mound cap. Irregular laminae were found in the brown-colored microbialite of the mound base. The main mound body, which is composed of gray microbialite, is 1.0–1.5 m high and 2.0–3.0 m in diameter at the base. Dark gray grainstone found in the mound cap is covered by a thin layer of shelly limestone containing intact fossils of bivalves and gastropods, which are indicative of a simple ecosystem consisting of microbes and primary consumers. Brown-colored mudstone and marl layers of the second member of the FXG Formation overlie the microbialite, and this indicates that growth of the microbial mounds was halted by a sudden increase of terrestrial inputs and rapid transgression. Early Griesbachian conodonts of Hindeodus parvus? were identified from the mound limestone and the overlying strata of the second member of the FXG Formation, which is suggestive of the presence of a microbialite-dominated ocean in the Upper Yangtze Region during a certain interval after the LPME.
Collapse
|
8
|
Kenny R. A geochemical view into continental palaeotemperatures of the end-Permian using oxygen and hydrogen isotope composition of secondary silica in chert rubble breccia: Kaibab Formation, Grand Canyon (USA). GEOCHEMICAL TRANSACTIONS 2018; 19:2. [PMID: 29340852 PMCID: PMC5770344 DOI: 10.1186/s12932-017-0047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The upper carbonate member of the Kaibab Formation in northern Arizona (USA) was subaerially exposed during the end Permian and contains fractured and zoned chert rubble lag deposits typical of karst topography. The karst chert rubble has secondary (authigenic) silica precipitates suitable for estimating continental weathering temperatures during the end Permian karst event. New oxygen and hydrogen isotope ratios of secondary silica precipitates in the residual rubble breccia: (1) yield continental palaeotemperature estimates between 17 and 22 °C; and, (2) indicate that meteoric water played a role in the crystallization history of the secondary silica. The continental palaeotemperatures presented herein are broadly consistent with a global mean temperature estimate of 18.2 °C for the latest Permian derived from published climate system models. Few data sets are presently available that allow even approximate quantitative estimates of regional continental palaeotemperatures. These data provide a basis for better understanding the end Permian palaeoclimate at a seasonally-tropical latitude along the western shoreline of Pangaea.
Collapse
Affiliation(s)
- Ray Kenny
- Geosciences Department, Fort Lewis College, Durango, CO, 81301, USA.
| |
Collapse
|
9
|
High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record: Progress and Promise. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600001339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
High-precision geochronological techniques have improved in the past decade to the point where volcanic ash beds interstratified with fossil-bearing rocks can be dated to a precision of 0.1% or better. The integration of high-precision U-Pb zircon geochronology with bio/chemo-stratigraphic data brings about new opportunities and challenges toward constructing a fully calibrated time scale for the geologic record, which is necessary for a thorough understanding of the distribution of time and life in Earth history. Successful implementation of geochronology as an integral tool for the paleontologist relies on a basic knowledge of its technical aspects, as well as an ability to properly evaluate and compare geochronologic results from different methods. This paper summarizes the methodology and new improvements in U-Pb zircon geochronology by isotope dilution thermal ionization mass spectrometry, specifically focused on its application to the stratigraphic record.
Collapse
|
10
|
Them TR, Gill BC, Selby D, Gröcke DR, Friedman RM, Owens JD. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Sci Rep 2017; 7:5003. [PMID: 28694487 PMCID: PMC5504049 DOI: 10.1038/s41598-017-05307-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/26/2017] [Indexed: 11/09/2022] Open
Abstract
Chemical weathering consumes atmospheric carbon dioxide through the breakdown of silicate minerals and is thought to stabilize Earth's long-term climate. However, the potential influence of silicate weathering on atmospheric pCO2 levels on geologically short timescales (103-105 years) remains poorly constrained. Here we focus on the record of a transient interval of severe climatic warming across the Toarcian Oceanic Anoxic Event or T-OAE from an open ocean sedimentary succession from western North America. Paired osmium isotope data and numerical modelling results suggest that weathering rates may have increased by 215% and potentially up to 530% compared to the pre-event baseline, which would have resulted in the sequestration of significant amounts of atmospheric CO2. This process would have also led to increased delivery of nutrients to the oceans and lakes stimulating bioproductivity and leading to the subsequent development of shallow-water anoxia, the hallmark of the T-OAE. This enhanced bioproductivity and anoxia would have resulted in elevated rates of organic matter burial that would have acted as an additional negative feedback on atmospheric pCO2 levels. Therefore, the enhanced weathering modulated by initially increased pCO2 levels would have operated as both a direct and indirect negative feedback to end the T-OAE.
Collapse
Affiliation(s)
- Theodore R Them
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA.
- Department of Earth, Ocean and Atmospheric Science & National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32306, USA.
| | - Benjamin C Gill
- Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - David Selby
- Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
| | - Darren R Gröcke
- Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
| | - Richard M Friedman
- Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jeremy D Owens
- Department of Earth, Ocean and Atmospheric Science & National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32306, USA
| |
Collapse
|
11
|
Severest crisis overlooked-Worst disruption of terrestrial environments postdates the Permian-Triassic mass extinction. Sci Rep 2016; 6:28372. [PMID: 27340926 PMCID: PMC4920029 DOI: 10.1038/srep28372] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022] Open
Abstract
Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises.
Collapse
|
12
|
Singh V, Pandita SK, Tewari R, van Hengstum PJ, Pillai SSK, Agnihotri D, Kumar K, Bhat GD. Thecamoebians (Testate Amoebae) Straddling the Permian-Triassic Boundary in the Guryul Ravine Section, India: Evolutionary and Palaeoecological Implications. PLoS One 2015; 10:e0135593. [PMID: 26288245 PMCID: PMC4546057 DOI: 10.1371/journal.pone.0135593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Exceptionally well-preserved organic remains of thecamoebians (testate amoebae) were preserved in marine sediments that straddle the greatest extinction event in the Phanerozoic: the Permian-Triassic Boundary. Outcrops from the Late Permian Zewan Formation and the Early Triassic Khunamuh Formation are represented by a complete sedimentary sequence at the Guryul Ravine Section in Kashmir, India, which is an archetypal Permian-Triassic boundary sequence. Previous biostratigraphic analysis provides chronological control for the section, and a perspective of faunal turnover in the brachiopods, ammonoids, bivalves, conodonts, gastropods and foraminifera. Thecamoebians were concentrated from bulk sediments using palynological procedures, which isolated the organic constituents of preserved thecamoebian tests. The recovered individuals demonstrate exceptional similarity to the modern thecamoebian families Centropyxidae, Arcellidae, Hyalospheniidae and Trigonopyxidae, however, the vast majority belong to the Centropyxidae. This study further confirms the morphologic stability of the thecamoebian lineages through the Phanerozoic, and most importantly, their apparent little response to an infamous biological crisis in Earth's history.
Collapse
Affiliation(s)
- Vartika Singh
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | | | - Rajni Tewari
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
- * E-mail:
| | - Peter J van Hengstum
- Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, 77553, United States of America
| | - Suresh S. K. Pillai
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - Deepa Agnihotri
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - Kamlesh Kumar
- Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226007, India
| | - G. D. Bhat
- Directorate of Geology and Mining, Jammu and Kashmir Government, Srinagar, 190002, India
| |
Collapse
|
13
|
Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR, Gertsch B. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 2014; 347:182-4. [PMID: 25502315 DOI: 10.1126/science.aaa0118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions.
Collapse
Affiliation(s)
- Blair Schoene
- Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.
| | - Kyle M Samperton
- Department of Geosciences, Princeton University, Princeton, NJ 08540, USA
| | - Michael P Eddy
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerta Keller
- Department of Geosciences, Princeton University, Princeton, NJ 08540, USA
| | - Thierry Adatte
- Institut des Sciences de la Terre (ISTE), Université de Lausanne, GEOPOLIS, CH-1015 Lausanne, Switzerland
| | - Samuel A Bowring
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Brian Gertsch
- Institut des Sciences de la Terre (ISTE), Université de Lausanne, GEOPOLIS, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Time-calibrated Milankovitch cycles for the late Permian. Nat Commun 2014; 4:2452. [PMID: 24030138 PMCID: PMC3778519 DOI: 10.1038/ncomms3452] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/16/2013] [Indexed: 11/08/2022] Open
Abstract
An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition.
Collapse
|
15
|
Abstract
The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.
Collapse
|
16
|
Abstract
AbstractNon-crocodyliform crocodylomorphs, often called ‘sphenosuchians’, were the earliest-diverging lineages of Crocodylomorpha, and document the stepwise acquisition of many of the features that characterize extant crocodylians. The first crocodylomorph fossils are approximately 230 million years old (upper Carnian, Late Triassic), and at least one of these early lineages persisted until at least 150 million years ago (Late Jurassic). These taxa occupied a wide variety of terrestrial environments from equatorial regions to high-paleolatitudes during the early Mesozoic. Despite a quarter-century of quantitative phylogenetic work, the interrelationships of early crocodylomorphs remain in a state of flux, though recent studies suggest that these lineages are paraphyletic with respect to Crocodyliformes, rather than forming a monophyletic early offshoot of Crocodylomorpha as some previously hypothesized. Nearly all early crocodylomorphs were upright quadrupedal small-bodied taxa, but lumping them all together as small cursorial faunivores masks ecological and morphological disparity in diet and limb functional morphology. With the accelerated pace of recent discovery of new specimens and taxa, future consensus on early crocodylomorph phylogeny will provide a solid framework for understanding their change in diversity and disparity through time, potential biogeographic patterns, and the morphological transformation leading to Crocodyliformes.
Collapse
Affiliation(s)
- Randall B. Irmis
- Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
- Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112-0102, USA
| | - Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, NHB MRC 121, P.O. Box 37012, Washington, DC 20013-7012, USA
| |
Collapse
|
17
|
Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS, Morgan LE, Mundil R, Smit J. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 2013; 339:684-7. [PMID: 23393261 DOI: 10.1126/science.1230492] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.
Collapse
Affiliation(s)
- Paul R Renne
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X. Lethally Hot Temperatures During the Early Triassic Greenhouse. Science 2012; 338:366-70. [DOI: 10.1126/science.1224126] [Citation(s) in RCA: 693] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Takehara L, Chemale Júnior F, Hartmann LA, Dussin IA, Kawashita K. U-Pb dating by zircon dissolution method using chemical abrasion. AN ACAD BRAS CIENC 2012. [DOI: 10.1590/s0001-37652012000200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-MultiCollector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3±4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using 235U-205Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7±1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I – 416.75±1.3 Ma; Temora II – 416.78±0.33 Ma) and established as 416±0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences.
Collapse
|
20
|
Chemale Jr F, Kawashita K, Dussin IA, Ávila JN, Justino D, Bertotti A. U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration. AN ACAD BRAS CIENC 2012. [DOI: 10.1590/s0001-37652012005000032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Collapse
|
21
|
Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ. Best practices for justifying fossil calibrations. Syst Biol 2012; 61:346-59. [PMID: 22105867 PMCID: PMC3280042 DOI: 10.1093/sysbio/syr107] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/22/2011] [Accepted: 11/14/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- James F Parham
- Alabama Museum of Natural History, University of Alabama, 427 6th Avenue, Smith Hall, Box 870340, Tuscaloosa, AL 35487, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mata SA, Bottjer DJ. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. GEOBIOLOGY 2012; 10:3-24. [PMID: 22051154 DOI: 10.1111/j.1472-4669.2011.00305.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia.
Collapse
Affiliation(s)
- S A Mata
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
23
|
Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG. Calibrating the end-Permian mass extinction. Science 2011; 334:1367-72. [PMID: 22096103 DOI: 10.1126/science.1213454] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 ± 0.08 million years ago, after a decline of 2 per mil (‰) in δ(13)C over 90,000 years, and coincided with a δ(13)C excursion of -5‰ that is estimated to have lasted ≤20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.
Collapse
Affiliation(s)
- Shu-zhong Shen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Irmis RB, Whiteside JH. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proc Biol Sci 2011; 279:1310-8. [PMID: 22031757 PMCID: PMC3282377 DOI: 10.1098/rspb.2011.1895] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.
Collapse
Affiliation(s)
- Randall B Irmis
- Utah Museum of Natural History, 1390 E. Presidents Circle, Salt Lake City, UT 84112-0050, USA.
| | | |
Collapse
|
25
|
Nesbitt SJ. The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2011. [DOI: 10.1206/352.1] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
DESOJO JULIAB, EZCURRA MARTIND, SCHULTZ CESARL. An unusual new archosauriform from the Middle-Late Triassic of southern Brazil and the monophyly of Doswelliidae. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kent DV, Irving E. Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jb007205] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Kozur HW, Weems RE. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. ACTA ACUST UNITED AC 2010. [DOI: 10.1144/sp334.13] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractConchostracans or clam shrimp (order Conchostraca Sars) are arthropods with a carapace consisting of two chitinous lateral valves. Triassic conchostracans range in size from 2 to 12.5 mm long and are common in deposits that formed in fresh water lakes, isolated ponds and brackish areas. Their dessication- and freeze-resistant eggs can be dispersed by wind over long distances. Therefore many conchostracan species are distributed throughout the entire northern hemisphere. In the Late Permian to Middle Triassic interval, several of these forms are also found in Gondwana. Many wide-ranging conchostracan species have short stratigraphic ranges, making them excellent guide forms for subdivision of Triassic time and for long-range correlations. The stratigraphic resolution that can be achieved with conchostracan zones is often as high as for ammonoid and conodont zones found in pelagic marine deposits. This makes conchostracans the most useful group available for biostratigraphic subdivision and correlation in continental lake deposits. Upper Triassic Gondwanan conchostracan faunas are different from conchostracan faunas of the northern hemisphere. In the Norian, some slight provincialism can be observed even within the northern hemisphere. For example, the Sevatian Redondestheria seems to be restricted to North America and Acadiestheriella n. gen. so far has been found only in the Sevatian deposits from the Fundy Basin of southeastern Canada. Here we establish a conchostracan zonation for the Changhsingian (Late Permian) to Hettangian (Early Jurassic) of the northern hemisphere that, for the most part, is very well correlated with the marine scale. This zonation is especially robust for the Changhsingian to early Anisian, late Ladinian to Cordevolian and Rhaetian to Hettangian intervals. For most of the Middle and Upper Triassic, this zonation is still preliminary. Five new genera, six new species and a new subspecies of conchostracans are described that are stratigraphically important.
Collapse
Affiliation(s)
| | - Robert E. Weems
- 926A National Center, U.S. Geological Survey, Reston VA 20192, USA
| |
Collapse
|
29
|
Mundil R, Pálfy J, Renne PR, Brack P. The Triassic timescale: new constraints and a review of geochronological data. ACTA ACUST UNITED AC 2010. [DOI: 10.1144/sp334.3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractA review of geochronological data underlying the geological timescale for the Triassic yields a significantly different timescale calibration than that published in the most recent compilation (Geologic TimeScale 2004). This is partly due to the availability of new radio–isotopic data, but mostly because strict selection criteria are applied and complications arising from biases (both systematic and random) are accounted for in this contribution. The ages for the base and the top of the Triassic are constrained by U–Pb ages to 252.3 and 201.5 Ma, respectively. These dates also constrain the ages of major extinction events at the Permian–Triassic and Triassic–Jurassic boundaries, and are statistically indistinguishable from ages obtained for the Siberian Traps and volcanic products from the Central Atlantic Magmatic Province, respectively, suggesting a causal link. Ages for these continental volcanics, however, are mostly from the K–Ar (40Ar/39Ar) system, which requires accounting and correcting for a systematic bias of c. 1% between U–Pb and 40Ar/39Ar isotopic ages (the 40Ar/39Ar ages being younger).Robust age constraints also exist for the Induan–Olenekian boundary (251.2 Ma) and the Early–Middle Triassic (Olenekian–Anisian) boundary (247.2 Ma), resulting in a surprisingly short duration of the Early Triassic, which has implications for the timing of biotic recovery and major changes in ocean chemistry during this time. Furthermore, the Anisian–Ladinian boundary is constrained to 242.0 Ma by new U–Pb and 40Ar/39Ar ages. Radio–isotopic ages for the Late Triassic are scarce, and the only reliable and biostratigraphically-controlled age is from an upper Carnian tuff dated to 230.9 Ma, yielding a duration of more than 35 Ma for the Late Triassic. All of these ages are from U–Pb analyses applied to zircons with uncertainties at the permil level or better. The resulting compilation can only serve as a guideline and must be considered a snapshot, resolving some of the issues mainly associated with inaccurate and misinterpreted data in previous publications. However, further advances will require revision of some of the data presented here.
Collapse
Affiliation(s)
- Roland Mundil
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
| | - József Pálfy
- Research Group for Paleontology, Hungarian Academy of Sciences-Hungarian Natural History Museum, POB 137, Budapest, H-1431 Hungary
| | - Paul R. Renne
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Peter Brack
- Departement Erdwissenschaften, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
30
|
Payne JL, Turchyn AV, Paytan A, Depaolo DJ, Lehrmann DJ, Yu M, Wei J. Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci U S A 2010; 107:8543-8. [PMID: 20421502 PMCID: PMC2889361 DOI: 10.1073/pnas.0914065107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (delta(13)C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (delta(44/40)Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report delta(44/40)Ca across the Permian-Triassic boundary from marine limestone in south China. The delta(44/40)Ca exhibits a transient negative excursion of approximately 0.3 per thousand over a few hundred thousand years or less, which we interpret to reflect a change in the global delta(44/40)Ca composition of seawater. CO(2)-driven ocean acidification best explains the coincidence of the delta(44/40)Ca excursion with negative excursions in the delta(13)C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average delta(13)C of CO(2) released was heavier than -28 per thousand and more likely near -15 per thousand; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction.
Collapse
Affiliation(s)
- Jonathan L Payne
- Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Mata SA, Bottjer DJ. Development of lower Triassic wrinkle structures: implications for the search for life on other planets. ASTROBIOLOGY 2009; 9:895-906. [PMID: 19968465 DOI: 10.1089/ast.2008.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.
Collapse
Affiliation(s)
- Scott A Mata
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740, USA.
| | | |
Collapse
|
32
|
|
33
|
Jalasvuori M, Bamford JKH. Did the ancient crenarchaeal viruses from the dawn of life survive exceptionally well the eons of meteorite bombardment? ASTROBIOLOGY 2009; 9:131-137. [PMID: 19317626 DOI: 10.1089/ast.2007.0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The viruses of Crenarchaeota are unexpectedly diverse in their morphologies, and most have no, or few, genes related to bacterial, eukaryal, euryarchaeal, or other crenarchaeal viruses. Though several different virus morphotypes have been discovered in enrichment cultures of microbial communities collected from geothermally heated environments around the world, the origins of such differences are unknown. We present a model that combines consideration of Earth's geological history, the early emergence of hyperthermophiles, and the early formation of viruses from primordial genes with the intent to explain this vast diversity of crenarchaeal viruses. Several meteorite- or flood basalt-induced extinction events in the past resulted in a reduction in the numbers of cellular organisms. Acidophilic hyperthermophiles survived the global thermal rises and, therefore, still host a wide variety of ancient virus morphotypes. In contrast, other, more "recent" cellular lineages have lost the majority of their original viruses, as they have been separated geologically and genetically, and have gone through several near-extinction-level episodes of decimation. This view suggests that, among crenarchaeal viruses, the direct descendants of very early genetic elements are well preserved; thus, their examination would improve our understanding as to how life actually evolved from its origins to the complex cellular systems we see today. We also present a hypothesis that describes the role of viral armadas and extinctions during evolution, as extinctions may have episodically eliminated most of the abusive parasites.
Collapse
Affiliation(s)
- Matti Jalasvuori
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
| | | |
Collapse
|
34
|
Fröbisch J. Global taxonomic diversity of anomodonts (tetrapoda, therapsida) and the terrestrial rock record across the Permian-Triassic boundary. PLoS One 2008; 3:e3733. [PMID: 19011684 PMCID: PMC2581439 DOI: 10.1371/journal.pone.0003733] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/10/2008] [Indexed: 11/23/2022] Open
Abstract
The end-Permian biotic crisis (~252.5 Ma) represents the most severe extinction event in Earth's history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids ('mammal-like reptiles'), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.
Collapse
Affiliation(s)
- Jörg Fröbisch
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada.
| |
Collapse
|
35
|
Griffith JD, Willcox S, Powers DW, Nelson R, Baxter BK. Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. ASTROBIOLOGY 2008; 8:215-228. [PMID: 18366344 DOI: 10.1089/ast.2007.0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.
Collapse
Affiliation(s)
- Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | |
Collapse
|
36
|
Evolution and global correlation for strontium isotopic composition of marine Triassic from Huaying Mountains, eastern Sichuan, China. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11430-008-0031-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Huang S, Qing H, Huang P, Hu Z, Wang Q, Zou M, Liu H. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11430-008-0034-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
|
39
|
Telling the time. Nature 2006; 444:134-5. [PMID: 17093421 DOI: 10.1038/444134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
41
|
Chapter 10 late permian double-phased mass extinction and volcanism: an oceanographic perspective. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0920-5446(05)80010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|