1
|
Zhou M, Liu D, Tan S, Mu Y, Zhou Z, Gu S, Zuo H. Sex differences in the association between plasma branched-chain amino acids and risk of ischemic stroke: A nested case-control study from China. J Stroke Cerebrovasc Dis 2024; 33:107870. [PMID: 39004238 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prospective associations between plasma branched-chain amino acids (BCAAs) and the risk of ischemic stroke in men and women. METHODS We conducted a nested case-control study within a community-based cohort in China. The cohort consisted of 15,926 participants in 2013-2018. A total of 321 ischemic stroke cases were identified during the follow up and individually matched with 321 controls by date of birth (±1 year) and sex. Females accounted for 55.8% (n = 358, 179 cases vs 179 controls) of the study population. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between plasma BCAAs and ischemic stroke risk by conditional logistic regression. RESULTS Elevated plasma isoleucine was associated with a higher risk of ischemic stroke in women. The OR for the highest compared to the lowest quartile was 2.22 (95% CI: 1.11-4.44, P trend = 0.005) after adjustment for body mass index, education attainment, smoking, hypertension, renal function, menopause and physical activity. A similar association was found for total BCAAs (adjusted OR = 2.03, 95% CI: 1.05-3.95, P trend = 0.04). In contrast, no significant association of plasma BCAAs with ischemic stroke risk was observed in men. CONCLUSIONS Plasma isoleucine and total BCAAs were significantly associated with ischemic stroke risk in women, but not in men, highlighting sex differences in BCAAs metabolism and stroke pathogenesis.
Collapse
Affiliation(s)
- Meng Zhou
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; School of Public Health, Nantong University, Nantong, China
| | - Siyue Tan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yingjun Mu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyuan Zhou
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Shuju Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Suzhou Medical College of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Qiu H, Wu X, Ma X, Li S, Cai Q, Ganzella M, Ge L, Zhang H, Zhang M. Short-distance vesicle transport via phase separation. Cell 2024; 187:2175-2193.e21. [PMID: 38552623 DOI: 10.1016/j.cell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/28/2024]
Abstract
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Collapse
Affiliation(s)
- Hua Qiu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qixu Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Benvenuto G, Leone S, Astoricchio E, Bormke S, Jasek S, D'Aniello E, Kittelmann M, McDonald K, Hartenstein V, Baena V, Escrivà H, Bertrand S, Schierwater B, Burkhardt P, Ruiz-Trillo I, Jékely G, Ullrich-Lüter J, Lüter C, D'Aniello S, Arnone MI, Ferraro F. Evolution of the ribbon-like organization of the Golgi apparatus in animal cells. Cell Rep 2024; 43:113791. [PMID: 38428420 DOI: 10.1016/j.celrep.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.
Collapse
Affiliation(s)
- Giovanna Benvenuto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Emanuele Astoricchio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | | | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Kent McDonald
- Electron Microscope Lab, University of California Berkeley, Berkeley, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Valentina Baena
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Héctor Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Bernd Schierwater
- Institute of Ecology and Evolution, Hannover University of Veterinary Medicine Foundation, Hannover, Germany
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | | | | | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy.
| |
Collapse
|
4
|
Oppermann H, Marcos-Grañeda E, Weiss LA, Gurnett CA, Jelsig AM, Vineke SH, Isidor B, Mercier S, Magnussen K, Zacher P, Hashim M, Pagnamenta AT, Race S, Srivastava S, Frazier Z, Maiwald R, Pergande M, Milani D, Rinelli M, Levy J, Krey I, Fontana P, Lonardo F, Riley S, Kretzer J, Rankin J, Reis LM, Semina EV, Reuter MS, Scherer SW, Iascone M, Weis D, Fagerberg CR, Brasch-Andersen C, Hansen LK, Kuechler A, Noble N, Gardham A, Tenney J, Rathore G, Beck-Woedl S, Haack TB, Pavlidou DC, Atallah I, Vodopiutz J, Janecke AR, Hsieh TC, Lesmann H, Klinkhammer H, Krawitz PM, Lemke JR, Jamra RA, Nieto M, Tümer Z, Platzer K. CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology. Eur J Hum Genet 2023; 31:1251-1260. [PMID: 37644171 PMCID: PMC10620399 DOI: 10.1038/s41431-023-01445-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.
Collapse
Affiliation(s)
- Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Elia Marcos-Grañeda
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Linnea A Weiss
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Christina A Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anne Marie Jelsig
- Dpt. of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Susanne H Vineke
- Dpt. of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
- L'institut du thorax, Inserm, Cnrs, Univ Nantes, Nantes, France
| | - Kari Magnussen
- Randall Children's Hospital at Legacy Emanuel, Portland, OR, USA
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Mona Hashim
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simone Race
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | | | - Zoë Frazier
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Robert Maiwald
- MVZ for Coagulation Diagnostics and Medical Genetics Cologne, ÜBAG Zotz/Klimas, Cologne, Germany
| | | | - Donatella Milani
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jonathan Levy
- Genetics Department, CHU Robert-Debré, AP-HP, Paris, France
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Paolo Fontana
- Medical Genetics Unit, A.O.R.N. San Pio, Benevento, Italy
| | | | - Stephanie Riley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jasmine Kretzer
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, Linz, Austria
| | | | | | | | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Nathan Noble
- Blank Children's Developmental Center, Unity Point Health, Des Moines, IA, USA
| | - Alice Gardham
- North West Thames Regional Genetic Service, North West London Hospitals, London, UK
| | - Jessica Tenney
- Division of Medical Genetics, University of California, San Francisco, CA, USA
| | - Geetanjali Rathore
- Dvision of Pediatric Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Despoina C Pavlidou
- Division of Genetic Medicine, Lausanne Universitary Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne Universitary Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Andreas R Janecke
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institut für Humangenetik, Universitätsklinikum Bonn, Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicin, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
6
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
7
|
Satoh A, Hayashi-Nishino M, Nishino K. An Electron Tomographic Analysis of Giantin-Deficient Golgi Proposes a New Function of the Golgin Protein Family. Methods Mol Biol 2022; 2557:235-246. [PMID: 36512219 DOI: 10.1007/978-1-0716-2639-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi apparatus is an organelle that mediates modifications, sorting, and transport of proteins and lipids. Golgins are a group of proteins with coiled-coil structures that localize to the Golgi and are thought to function as tethers to facilitate the docking of vesicles, Rab GTPases, and cytoskeleton components to the Golgi stack. Giantin is the longest golgin and has been thought to function as a tether for COPI vesicles along with other golgins, such as p115 and GM130. Contrary to our expectation that the loss of the tether will result in an increase in untethered COPI vesicles in the cytoplasm, our electron microscopy observations showed that the fenestrae normally present in Golgi cisternae were reduced upon Giantin knockdown. We also found that this structural change is accompanied by altered secretion of cargo proteins and cell surface glycosylation. These results indicate that there exists a correlation between Golgi structural changes caused by the loss of Giantin and Golgi function. Here, we describe electron tomography methods for the detection of structural changes in the Golgi.
Collapse
Affiliation(s)
- Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | | | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
9
|
Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients 2022; 14:nu14132654. [PMID: 35807835 PMCID: PMC9268449 DOI: 10.3390/nu14132654] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-derived metabolites have recently attracted considerable attention due to their role in host-microbial crosstalk and their link with cardiovascular health. The MEDLINE-PubMed and Elsevier’s Scopus databases were searched up to June 2022 for studies evaluating the association of baseline circulating levels of trimethylamine N-oxide (TMAO), secondary bile acids, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), tryptophan and indole derivatives, with risk of cardiovascular disease (CVD). A total of twenty-one studies were included in the systematic review after evaluating 1210 non-duplicate records. There were nineteen of the twenty-one studies that were cohort studies and two studies had a nested case–control design. All of the included studies were of high quality according to the “Newcastle–Ottawa Scale”. TMAO was positively associated with adverse cardiovascular events and CVD/all-cause mortality in some, but not all of the included studies. Bile acids were associated with atrial fibrillation and CVD/all-cause mortality, but not with CVD. Positive associations were found between BCAAs and CVD, and between indole derivatives and major adverse cardiovascular events, while a negative association was reported between tryptophan and all-cause mortality. No studies examining the relationship between SCFAs and CVD risk were identified. Evidence from prospective studies included in the systematic review supports a role of microbial metabolites in CVD.
Collapse
|
10
|
CUX2 deficiency causes facilitation of excitatory synaptic transmission onto hippocampus and increased seizure susceptibility to kainate. Sci Rep 2022; 12:6505. [PMID: 35581205 PMCID: PMC9114133 DOI: 10.1038/s41598-022-10715-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/11/2022] [Indexed: 01/19/2023] Open
Abstract
CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). The CUX2 variants showed abnormal localization in human cell culture analysis. While wild-type CUX2 enhances dendritic arborization in fly neurons, the effect was compromised by some of the variants. Cux2- and Casp-specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.
Collapse
|
11
|
Koks S, Pfaff AL, Bubb VJ, Quinn JP. Longitudinal intronic RNA-Seq analysis of Parkinson's disease patients reveals disease-specific nascent transcription. Exp Biol Med (Maywood) 2022; 247:945-957. [PMID: 35289213 DOI: 10.1177/15353702221081027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcriptomic studies usually focus on either gene or exon-based annotations, and only limited experiments have reported changes in reads mapping to introns. The analysis of intronic reads allows the detection of nascent transcription that is not influenced by steady-state RNA levels and provides information on actively transcribed genes. Here, we describe substantial intronic transcriptional changes in Parkinson's disease (PD) patients compared to healthy controls (CO) at two different timepoints; at the time of diagnosis (BL) and three years later (V08). We used blood RNA-Seq data from the Parkinson's Progression Markers Initiative (PPMI) cohort and identified significantly changed transcription of intronic reads only in PD patients during this follow-up period. In CO subjects, only nine transcripts demonstrated differentially expressed introns between visits. However, in PD patients, 4873 transcripts had differentially expressed introns at visit V08 compared to BL, many of them in genes previously associated with neurodegenerative diseases, such as LRRK2, C9orf72, LGALS3, KANSL1AS1, and ALS2. In addition, at the time of diagnosis (BL visit), we identified 836 transcripts (e.g. SNCA, DNAJC19, PRRG4) and at visit V08, 2184 transcripts (e.g. PINK1, GBA, ALS2, PLEKHM1) with differential intronic expression specific to PD patients. In contrast, reads mapping to exonic regions demonstrated little variation indicating highly specific changes only in intronic transcription. Our study demonstrated that PD is characterized by substantial changes in the nascent transcription, and description of these changes could help to understand the molecular pathology underpinning this disease.
Collapse
Affiliation(s)
- Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
12
|
Krishnan M, Senagolage MD, Baeten JT, Wolfgeher DJ, Khan S, Kron SJ, McNerney ME. Genomic studies controvert the existence of the CUX1 p75 isoform. Sci Rep 2022; 12:151. [PMID: 34997000 PMCID: PMC8741762 DOI: 10.1038/s41598-021-03930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
CUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms. Others, however, have described oncogenic functions of CUX1 in solid tumors, often attributed to truncated CUX1 isoforms, p75 and p110, generated by an alternative transcriptional start site or post-translational cleavage, respectively. Given the clinical relevance, it is imperative to clarify these discrepant activities. Herein, we sought to determine the CUX1 isoforms expressed in hematopoietic cells and find that they express the full-length p200 isoform. Through the course of this analysis, we found no evidence of the p75 alternative transcript in any cell type examined. Using an array of orthogonal approaches, including biochemistry, proteomics, CRISPR/Cas9 genomic editing, and analysis of functional genomics datasets across a spectrum of normal and malignant tissue types, we found no data to support the existence of the CUX1 p75 isoform as previously described. Based on these results, prior studies of p75 require reevaluation, including the interpretation of oncogenic roles attributed to CUX1.
Collapse
Affiliation(s)
- Manisha Krishnan
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Jeremy T Baeten
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Megan E McNerney
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA. .,Department of Pathology, The University of Chicago, Chicago, IL, USA. .,Department of Pediatrics, The University of Chicago, Chicago, IL, USA. .,The University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
15
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
16
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
17
|
Zhang X, Wang Y. Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond. Trends Biochem Sci 2020; 45:1065-1079. [PMID: 32893104 PMCID: PMC7641999 DOI: 10.1016/j.tibs.2020.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that two Golgi stacking proteins, GRASP55 and GRASP65, self-interact to form trans-oligomers that tether adjacent Golgi membranes into stacks and ribbons in mammalian cells. This ensures proper functioning of the Golgi apparatus in protein trafficking and processing. More recently, GRASP proteins have drawn extensive attention from researchers due to their diverse and essential roles in and out of the Golgi in different organisms. In this review, we summarize their established roles in Golgi structure formation and function under physiological conditions. We then highlight the emerging and divergent roles for individual GRASP proteins, focusing on GRASP65 in cell migration and apoptosis and GRASP55 in unconventional protein secretion and autophagy under stress or pathological conditions.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Vieira V, Pain C, Wojcik S, Spatola Rossi T, Denecke J, Osterrieder A, Hawes C, Kriechbaumer V. Living on the edge: the role of Atgolgin-84A at the plant ER-Golgi interface. J Microsc 2020; 280:158-173. [PMID: 32700322 DOI: 10.1111/jmi.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
The plant Golgi apparatus is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Golgi matrix components, such as golgins, have been identified and suggested to function as putative tethering factors to mediate the physical connections between Golgi bodies and the ER network. Golgins are proteins anchored to the Golgi membrane by the C-terminus either through transmembrane domains or interaction with small regulatory GTPases. The golgin N-terminus contains long coiled-coil domains, which consist of a number of α-helices wrapped around each other to form a structure similar to a rope being made from several strands, reaching into the cytoplasm. In animal cells, golgins are also implicated in specific recognition of cargo at the Golgi.Here, we investigate the plant golgin Atgolgin-84A for its subcellular localization and potential role as a tethering factor at the ER-Golgi interface. For this, fluorescent fusions of Atgolgin-84A and an Atgolgin-84A truncation lacking the coiled-coil domains (Atgolgin-84AΔ1-557) were transiently expressed in tobacco leaf epidermal cells and imaged using high-resolution confocal microscopy. We show that Atgolgin-84A localizes to a pre-cis-Golgi compartment that is also labelled by one of the COPII proteins as well as by the tether protein AtCASP. Upon overexpression of Atgolgin-84A or its deletion mutant, transport between the ER and Golgi bodies is impaired and cargo proteins are redirected to the vacuole. LAY DESCRIPTION: The Golgi apparatus is a specialised compartment found in mammalian and plant cells. It is the post office of the cell and packages proteins into small membrane boxes for transport to their destination in the cell. The plant Golgi apparatus consist of many separate Golgi bodies and is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Specialised proteins called golgins have been suggested to tether Golgi bodies and the ER. Here we investigate the plant golgin Atgolgin-84A for its exact within the Golgi body and its potential role as a tethering factor at the ER-Golgi interface. For this, we have fused Atgolgin-84A with a fluorescent protein from jellyfish and we are producing this combination in tobacco leaf cells. This allows us to see the protein using laser microscopy. We show that Atgolgin-84A localises to a compartment between the ER and Golgi that is also labelled by the tether protein AtCASP. When Atgolgin-84A is produced in high amounts in the cell, transport between the ER and Golgi bodies is inhibited and proteins are redirected to the vacuole.
Collapse
Affiliation(s)
- V Vieira
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, U.K
| | - C Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - S Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - T Spatola Rossi
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - J Denecke
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, U.K
| | - A Osterrieder
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Bioethics and Engagement, Mahidol Oxford Tropical Medicine Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - C Hawes
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| |
Collapse
|
19
|
Fakhree MAA, Blum C, Claessens MMAE. Shaping membranes with disordered proteins. Arch Biochem Biophys 2019; 677:108163. [PMID: 31672499 DOI: 10.1016/j.abb.2019.108163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.
Collapse
Affiliation(s)
| | - Christian Blum
- Nanobiophysics Group, University of Twente, 7522, NB, Enschede, the Netherlands
| | | |
Collapse
|
20
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Lowe M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol 2019; 7:94. [PMID: 31316978 PMCID: PMC6611411 DOI: 10.3389/fcell.2019.00094] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The golgins comprise a family of vesicle tethering proteins that act in a selective manner to tether transport vesicles at the Golgi apparatus. Tethering is followed by membrane fusion to complete the delivery of vesicle-bound cargo to the Golgi. Different golgins are localized to different regions of the Golgi, and their ability to selectively tether transport vesicles is important for the specificity of vesicle traffic in the secretory pathway. In recent years, our mechanistic understanding of golgin-mediated tethering has greatly improved. We are also beginning to appreciate how the loss of golgin function can impact upon physiological processes through the use of animal models and the study of human disease. These approaches have revealed that loss of a golgin causes tissue-restricted phenotypes, which can vary in severity and the cell types affected. In many cases, it is possible to attribute these phenotypes to a defect in vesicular traffic, although why certain tissues are sensitive to loss of a particular golgin is still, in most cases, unclear. Here, I will summarize recent progress in our understanding of golgins, focusing on the physiological roles of these proteins, as determined from animal models and the study of disease in humans. I will describe what these in vivo analyses have taught us, as well as highlight less understood aspects, and areas for future investigations.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Anderson NS, Barlowe C. Conserved juxtamembrane domains in the yeast golgin Coy1 drive assembly of a megadalton-sized complex and mediate binding to tethering and SNARE proteins. J Biol Chem 2019; 294:9690-9705. [PMID: 31073031 DOI: 10.1074/jbc.ra119.008107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
The architecture and organization of the Golgi complex depend on a family of coiled-coil proteins called golgins. Golgins are thought to form extended homodimers that are C-terminally anchored to Golgi membranes, whereas their N termini extend into the cytoplasm to initiate vesicle capture. Previously, we reported that the Saccharomyces cerevisiae golgin Coy1 contributes to intra-Golgi retrograde transport and binds to the conserved oligomeric Golgi (COG) complex and multiple retrograde Golgi Q-SNAREs (where SNARE is soluble NSF-attachment protein receptor). Here, using various engineered yeast strains, membrane protein extraction and fractionation methods, and in vitro binding assays, we mapped the Coy1 regions responsible for these activities. We also report that Coy1 assembles into a megadalton-size complex and that assembly of this complex depends on the most C-terminal coiled-coil and a conserved region between this coiled-coil and the transmembrane domain of Coy1. We found that this conserved region is necessary and sufficient for binding the SNARE protein Sed5 and the COG complex. Mutagenesis of conserved arginine residues within the C-terminal coiled-coil disrupted oligomerization, binding, and function of Coy1. Our findings indicate that the stable incorporation of Coy1 into a higher-order oligomer is required for its interactions and role in maintaining Golgi homeostasis. We propose that Coy1 assembles into a docking platform that directs COG-bound vesicles toward cognate SNAREs on the Golgi membrane.
Collapse
Affiliation(s)
- Nadine S Anderson
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Charles Barlowe
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
23
|
Lopes-da-Silva M, McCormack JJ, Burden JJ, Harrison-Lavoie KJ, Ferraro F, Cutler DF. A GBF1-Dependent Mechanism for Environmentally Responsive Regulation of ER-Golgi Transport. Dev Cell 2019; 49:786-801.e6. [PMID: 31056345 PMCID: PMC6764485 DOI: 10.1016/j.devcel.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
How can anterograde membrane trafficking be modulated by physiological cues? A screen of Golgi-associated proteins revealed that the ARF-GEF GBF1 can selectively modulate the ER-Golgi trafficking of prohaemostatic von Willebrand factor (VWF) and extracellular matrix (ECM) proteins in human endothelial cells and in mouse fibroblasts. The relationship between levels of GBF1 and the trafficking of VWF into forming secretory granules confirmed GBF1 is a limiting factor in this process. Further, GBF1 activation by AMPK couples its control of anterograde trafficking to physiological cues; levels of glucose control GBF1 activation in turn modulating VWF trafficking into secretory granules. GBF1 modulates both ER and TGN exit, the latter dramatically affecting the size of the VWF storage organelles, thereby influencing the hemostatic capacity of the endothelium. The role of AMPK as a central integrating element of cellular pathways with intra- and extra-cellular cues can now be extended to modulation of the anterograde secretory pathway. The Arf-GEF GBF1 modulates anterograde trafficking of VWF and ECM proteins Loss of GBF1 slows ER and TGN exit, producing swollen ER and giant WPBs Activation of GBF1 via AMPK reduces endothelial WPB size and secretion Metabolic change alters anterograde trafficking and cargo secretion via AMPK-GBF1
Collapse
Affiliation(s)
- Mafalda Lopes-da-Silva
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Jessica J McCormack
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jemima J Burden
- Electron Microscopy Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Kimberly J Harrison-Lavoie
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Francesco Ferraro
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
24
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
26
|
Giantin is required for coordinated production of aggrecan, link protein and type XI collagen during chondrogenesis. Biochem Biophys Res Commun 2018; 499:459-465. [PMID: 29577904 DOI: 10.1016/j.bbrc.2018.03.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) constitutes a proper micro-environment for cell proliferation, migration and differentiation, as well as playing pivotal roles in developmental processes including endochondral ossification. Cartilage ECM is mainly composed of fibrous proteins, including collagen, proteoglycan, and hyaluronan. Because almost all ECM components are transported by intracellular vesicular transport systems, molecules that mediate vesicle transport are also important for endochondral ossification. Giantin, encoded by the Golgb1 gene, is a tethering factor for coatomer 1 (COPI) vesicles and functions in the cis-medial Golgi compartments. An insertion mutation in the Golgb1 gene, resulting in a lack of giantin protein expression, has been detected in ocd/ocd rats that exhibit a pleiotropic phenotype including osteochondrodysplasia. To reveal the function of giantin in chondrogenesis, the present study assessed the effects of loss of giantin expression on cartilage ECM and Golgi morphology. Giantin was expressed in normal, but not in ocd/ocd, chondrocytes in the epiphyseal areas of embryonic femurs, whereas GM130 was expressed in both normal and ocd/ocd chondrocytes. The staining intensities of safranin O and azan (aniline blue) were reduced and enhanced, respectively, in epiphyseal cartilage of ocd/ocd femurs. Immunostaining showed that levels of type II collagen and fibronectin were comparable in normal and ocd/ocd cartilage. Levels of type XI collagen were higher, while levels of aggrecan, link protein and hyaluronan were lower, in ocd/ocd than in normal cartilage, although semi-quantitative RT-PCR showed similar levels of type XI collagen, aggrecan and link protein mRNAs in normal and ocd/ocd cartilage. Isolated chondrocytes of ocd/ocd and normal rats showed similar immunostaining patterns for cis-, medial-, and trans-Golgi marker proteins, whereas monolayers of ocd/ocd chondrocytes showed reduced levels of aggrecan and link protein and increased level of type XI collagen in spite of similar transcripts levels. These findings suggest that giantin plays a pivotal role in coordinated production of aggrecan, link protein and type XI collagen in chondrocytes, and that loss of giantin causes osteochondrodysplasia with disturbance of these ECM components.
Collapse
|
27
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
29
|
At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi. Biochem Soc Trans 2017; 46:43-50. [PMID: 29273618 DOI: 10.1042/bst20170188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Cells face a complex problem: how to transfer lipids and proteins between membrane compartments in an organized, timely fashion. Indeed, many thousands of membrane and secretory proteins must traffic out of the ER to different organelles to function, while others are retrieved from the plasma membrane having fulfilled their roles [Nat. Rev. Mol. Cell Biol. (2013) 14, 382-392]. This process is highly dynamic and failure to target cargo accurately leads to catastrophic consequences for the cell, as is clear from the numerous human diseases associated with defects in membrane trafficking [Int. J. Mol. Sci. (2013) 14, 18670-18681; Traffic (2000) 1, 836-851]. How then does the cell organize this enormous transfer of material in its crowded internal environment? And how specifically do vesicles carrying proteins and lipids recognize and fuse with the correct compartment?
Collapse
|
30
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
31
|
Abstract
Activation and inactivation of Rab GTPases by GEFs and GAPs promotes or terminates vesicle tethering to organelles, respectively. This simple model is challenged by new evidence revealing that a catalytically inactive Rab GAP promotes rather than terminates vesicle tethering at the trans-Golgi.
Collapse
Affiliation(s)
- Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Bykov YS, Schaffer M, Dodonova SO, Albert S, Plitzko JM, Baumeister W, Engel BD, Briggs JA. The structure of the COPI coat determined within the cell. eLife 2017; 6:32493. [PMID: 29148969 PMCID: PMC5716667 DOI: 10.7554/elife.32493] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath β'-COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Svetlana O Dodonova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
33
|
Anderson NS, Mukherjee I, Bentivoglio CM, Barlowe C. The Golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol Biol Cell 2017; 28:mbc.E17-03-0137. [PMID: 28794270 PMCID: PMC5620376 DOI: 10.1091/mbc.e17-03-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Indrani Mukherjee
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Christine M Bentivoglio
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
34
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
35
|
Wong M, Gillingham AK, Munro S. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 2017; 15:3. [PMID: 28122620 PMCID: PMC5267433 DOI: 10.1186/s12915-016-0345-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background The internal organization of cells depends on mechanisms to ensure that transport carriers, such as vesicles, fuse only with the correct destination organelle. Several types of proteins have been proposed to confer specificity to this process, and we have recently shown that a set of coiled-coil proteins on the Golgi, called golgins, are able to capture specific classes of carriers when relocated to an ectopic location. Results Mapping of six different golgins reveals that, in each case, a short 20–50 residue region is necessary and sufficient to capture specific carriers. In all six of GMAP-210, golgin-84, TMF, golgin-97, golgin-245, and GCC88, this region is located at the extreme N-terminus of the protein. The vesicle-capturing regions of GMAP-210, golgin-84, and TMF capture intra-Golgi vesicles and share some sequence features, suggesting that they act in a related, if distinct, manner. In the case of GMAP-210, this shared feature is in addition to a previously characterized “amphipathic lipid-packing sensor” motif that can capture highly curved membranes, with the two motifs being apparently involved in capturing distinct types of vesicles. Of the three GRIP domain golgins that capture endosome-to-Golgi carriers, golgin-97 and golgin-245 share a closely related capture motif, whereas that in GCC88 is distinct, suggesting that it works by a different mechanism and raising the possibility that the three golgins capture different classes of endosome-derived carriers that share many cargos but have distinct features for recognition at the Golgi. Conclusions For six different golgins, the capture of carriers is mediated by a short region at the N-terminus of the protein. There appear to be at least four different types of motif, consistent with specific golgins capturing specific classes of carrier and implying the existence of distinct receptors present on each of these different carrier classes.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
36
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Magdeleine M, Gautier R, Gounon P, Barelli H, Vanni S, Antonny B. A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. eLife 2016; 5. [PMID: 27458799 PMCID: PMC4961469 DOI: 10.7554/elife.16988] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022] Open
Abstract
When small phosphatidylcholine liposomes are added to perforated cells, they bind preferentially to the Golgi suggesting an exceptional avidity of this organelle for curved membranes without stereospecific interactions. We show that the cis golgin GMAP-210 accounts for this property. First, the liposome tethering properties of the Golgi resembles that of the amphipathic lipid-packing sensor (ALPS) motif of GMAP-210: both preferred small (radius < 40 nm) liposomes made of monounsaturated but not saturated lipids. Second, reducing GMAP-210 levels or redirecting its ALPS motif to mitochondria decreased liposome capture by the Golgi. Extensive mutagenesis analysis suggests that GMAP-210 tethers authentic transport vesicles via the same mechanism whereby the ALPS motif senses lipid-packing defects at the vesicle surface through its regularly spaced hydrophobic residues. We conclude that the Golgi uses GMAP-210 as a filter to select transport vesicles according to their size and bulk lipid composition. DOI:http://dx.doi.org/10.7554/eLife.16988.001
Collapse
Affiliation(s)
- Maud Magdeleine
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Romain Gautier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Pierre Gounon
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Stefano Vanni
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Bruno Antonny
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
38
|
Saraste J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front Cell Dev Biol 2016; 4:28. [PMID: 27148530 PMCID: PMC4834429 DOI: 10.3389/fcell.2016.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen Bergen, Norway
| |
Collapse
|
39
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
40
|
Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends Cell Biol 2016; 26:399-408. [PMID: 26972448 DOI: 10.1016/j.tcb.2016.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/27/2023]
Abstract
The Golgi apparatus lies at the centre of the secretory pathway. It consists of a series of flattened compartments typically organised into a stack that, in mammals, is connected to additional stacks to form a Golgi ribbon. The Golgi is responsible for the maturation and modification of proteins and lipids, and receives and exports vesicles to and from multiple destinations within the cell. This complex trafficking network requires that only the correct vesicles fuse with the correct destination membrane. Recently, a group of coiled-coil proteins called golgins were shown to not only capture incoming vesicles but to also provide specificity to the tethering step. This raises many interesting questions about how they interact with other components of membrane traffic, some of which may also contribute to specificity.
Collapse
|
41
|
Fisher P, Ungar D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front Cell Dev Biol 2016; 4:15. [PMID: 27014691 PMCID: PMC4781848 DOI: 10.3389/fcell.2016.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York York, UK
| | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
42
|
Toh WH, Gleeson PA. Emerging Insights into the Roles of Membrane Tethers from Analysis of Whole Organisms: The Tip of an Iceberg? Front Cell Dev Biol 2016; 4:12. [PMID: 26973835 PMCID: PMC4770024 DOI: 10.3389/fcell.2016.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/08/2016] [Indexed: 12/02/2022] Open
Abstract
Membrane tethers have been identified throughout different compartments of the endomembrane system. It is now well established that a number of membrane tethers mediate docking of membrane carriers in anterograde and retrograde transport and in regulating the organization of membrane compartments. Much of our information on membrane tethers have been obtained from the analysis of individual membrane tethers in cultured cells. In the future it will be important to better appreciate the network of interactions mediated by tethers and the potential co-ordination of their collective functions in vivo. There are now a number of studies which have analyzed membrane tethers in tissues and organisms which are providing new insights into the role of this class of membrane protein at the physiological level. Here we review recent advances in the understanding of the function of membrane tethers from knock outs (or knock downs) in whole organisms and from mutations in tethers associated with disease.
Collapse
Affiliation(s)
- Wei Hong Toh
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
43
|
Witkos TM, Lowe M. The Golgin Family of Coiled-Coil Tethering Proteins. Front Cell Dev Biol 2016; 3:86. [PMID: 26793708 PMCID: PMC4707255 DOI: 10.3389/fcell.2015.00086] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023] Open
Abstract
The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.
Collapse
Affiliation(s)
- Tomasz M Witkos
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
44
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
46
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
47
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
48
|
Wong M, Munro S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 2014; 346:1256898. [PMID: 25359980 DOI: 10.1126/science.1256898] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
49
|
Abstract
Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- National Institute of Dental and Craniofacial Research, National Institutes of Health30 Convent Drive, Bethesda, MD 20892-4340USA
| | - Paul A. Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute30 Flemington Road, The University of Melbourne, Victoria 3010Australia
| |
Collapse
|
50
|
Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. TRENDS IN PLANT SCIENCE 2014; 19:508-15. [PMID: 24794130 DOI: 10.1016/j.tplants.2014.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 05/18/2023]
Abstract
Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yejun Wang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N5E3, Canada
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|