1
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Farrell KC, Wang JT, Stearns T. Spindle assembly checkpoint-dependent mitotic delay is required for cell division in absence of centrosomes. eLife 2024; 12:RP84875. [PMID: 39092485 PMCID: PMC11296703 DOI: 10.7554/elife.84875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.
Collapse
Affiliation(s)
- KC Farrell
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Jennifer T Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
3
|
Cantwell H, Nguyen H, Kettenbach A, Heald R. Spindle morphology changes between meiosis and mitosis driven by CK2 regulation of the Ran pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605073. [PMID: 39211121 PMCID: PMC11361180 DOI: 10.1101/2024.07.25.605073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The transition from meiotic divisions in the oocyte to embryonic mitoses is a critical step in animal development. Despite negligible changes to cell size and shape, following fertilization the small, barrel-shaped meiotic spindle is replaced by a large zygotic spindle that nucleates abundant astral microtubules at spindle poles. To probe underlying mechanisms, we applied a drug screening approach using Ciona eggs and found that inhibition of Casein Kinase 2 (CK2) caused a shift from meiotic to mitotic-like spindle morphology with nucleation of robust astral microtubules, an effect reproduced in cytoplasmic extracts prepared from Xenopus eggs. In both species, CK2 activity decreased at fertilization. Phosphoproteomic differences between Xenopus meiotic and mitotic extracts that also accompanied CK2 inhibition pointed to RanGTP-regulated factors as potential targets. Interfering with RanGTP-driven microtubule formation suppressed astral microtubule growth caused by CK2 inhibition. These data support a model in which CK2 activity attenuation at fertilization leads to activation of RanGTP-regulated microtubule effectors that induce mitotic spindle morphology.
Collapse
|
4
|
Wang H, Wang K, Bai S, Wei L, Gao Y, Zhi K, Guo X, Wang Y. Spatiotemporal control over self-assembly of supramolecular hydrogels through reaction-diffusion. J Colloid Interface Sci 2024; 664:938-945. [PMID: 38503079 DOI: 10.1016/j.jcis.2024.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Supramolecular self-assembly is ubiquitous in living system and is usually controlled to proceed in time and space through sophisticated reaction-diffusion processes, underpinning various vital cellular functions. In this contribution, we demonstrate how spatiotemporal self-assembly of supramolecular hydrogels can be realized through a simple reaction-diffusion-mediated transient transduction of pH signal. In the reaction-diffusion system, a relatively faster diffusion of acid followed by delayed enzymatic production and diffusion of base from the opposite site enables a transient transduction of pH signal in the substrate. By coupling such reaction-diffusion system with pH-sensitive gelators, dynamic supramolecular hydrogels with tunable lifetimes are formed at defined locations. The hydrogel fibers show interesting dynamic growing behaviors under the regulation of transient pH signal, reminiscent of their biological counterpart. We further demonstrate a proof-of-concept application of the developed methodology for dynamic information encoding in a soft substrate. We envision that this work may provide a potent approach to enable transient transduction of various chemical signals for the construction of new colloidal materials with the capability to evolve their structures and functionalities in time and space.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kainan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lai Wei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Gouveia B, Setru SU, King MR, Hamlin A, Stone HA, Shaevitz JW, Petry S. Acentrosomal spindles assemble from branching microtubule nucleation near chromosomes in Xenopus laevis egg extract. Nat Commun 2023; 14:3696. [PMID: 37344488 PMCID: PMC10284841 DOI: 10.1038/s41467-023-39041-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Microtubules are generated at centrosomes, chromosomes, and within spindles during cell division. Whereas microtubule nucleation at the centrosome is well characterized, much remains unknown about where, when, and how microtubules are nucleated at chromosomes. To address these questions, we reconstitute microtubule nucleation from purified chromosomes in meiotic Xenopus egg extract and find that chromosomes alone can form spindles. We visualize microtubule nucleation near chromosomes using total internal reflection fluorescence microscopy to find that this occurs through branching microtubule nucleation. By inhibiting molecular motors, we find that the organization of the resultant polar branched networks is consistent with a theoretical model where the effectors for branching nucleation are released by chromosomes, forming a concentration gradient that spatially biases branching microtbule nucleation. In the presence of motors, these branched networks are ultimately organized into functional spindles, where the number of emergent spindle poles scales with the number of chromosomes and total chromatin area.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Sagar U Setru
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Aaron Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Kraus J, Travis SM, King MR, Petry S. Augmin is a Ran-regulated spindle assembly factor. J Biol Chem 2023; 299:104736. [PMID: 37086784 DOI: 10.1016/j.jbc.2023.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αβ and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. InXenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is non-essential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and TIRF microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-β through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT binding site. Moreover, we show Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sophie M Travis
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Matthew R King
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sabine Petry
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA.
| |
Collapse
|
7
|
Shrestha S, Ems-McClung SC, Hazelbaker MA, Yount AL, Shaw SL, Walczak CE. Importin α/β promote Kif18B microtubule association and enhance microtubule destabilization activity. Mol Biol Cell 2023; 34:ar30. [PMID: 36790918 PMCID: PMC10092650 DOI: 10.1091/mbc.e22-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/β as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/β interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/β increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/β have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/β spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal-containing spindle assembly factors.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Medical Sciences, Indiana School of Medicine-Bloomington, Bloomington, IN 47405
| | | | - Mark A Hazelbaker
- Medical Sciences, Indiana School of Medicine-Bloomington, Bloomington, IN 47405
| | - Amber L Yount
- Medical Sciences, Indiana School of Medicine-Bloomington, Bloomington, IN 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Claire E Walczak
- Medical Sciences, Indiana School of Medicine-Bloomington, Bloomington, IN 47405
| |
Collapse
|
8
|
Oh W, Wu TT, Jeong SY, You HJ, Lee JH. CtIP Regulates Mitotic Spindle Assembly by Modulating the TPX2-Aurora A Signaling Axis. Cells 2022; 11:cells11182814. [PMID: 36139389 PMCID: PMC9497199 DOI: 10.3390/cells11182814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
CtBP-interacting protein (CtIP) plays a critical role in controlling the homologous recombination-mediated DNA double-stranded break (DSB) repair pathway through DNA end resection, and recent studies suggest that it also plays a role in mitosis. However, the mechanism by which CtIP contributes to mitosis regulation remains elusive. Here, we show that depletion of CtIP leads to a delay in anaphase progression resulting in misaligned chromosomes, an aberrant number of centrosomes, and defects in chromosome segregation. Additionally, we demonstrate that CtIP binds and colocalizes with Targeting protein for Xklp2 (TPX2) during mitosis to regulate the recruitment of TPX2 to the spindle poles. Furthermore, depletion of CtIP resulted in both a lower concentration of Aurora A, its downstream target, and very low microtubule intensity at the spindle poles, suggesting an important role for the CtIP-TPX2-Auroa A complex in microtubule dynamics at the centrosomal spindles. Our findings reveal a novel function of CtIP in regulating spindle dynamics through interactions with TPX2 and indicate that CtIP is involved in the proper execution of the mitotic program, where deregulation may lead to chromosomal instability.
Collapse
Affiliation(s)
- Wonkyung Oh
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Pharmacology, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
9
|
Behavior of Centromeres during Restitution of the First Meiotic Division in a Wheat–Rye Hybrid. PLANTS 2022; 11:plants11030337. [PMID: 35161318 PMCID: PMC8840579 DOI: 10.3390/plants11030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
In first division restitution (FDR)-type meiosis, univalents congregate on the metaphase I plate and separate sister chromatids in an orderly fashion, producing dyads with somatic chromosome numbers. The second meiotic division is abandoned. The separation of sister chromatids requires separation of otherwise fused sister centromeres and a bipolar attachment to the karyokinetic spindle. This study analyzed packaging of sister centromeres in pollen mother cells (PMCs) in a wheat–rye F1 hybrid with a mixture of standard reductional meiosis and FDR. No indication of sister centromere separation before MI was observed; such separation was clearly only visible in univalents placed on the metaphase plate itself, and only in PMCs undergoing FDR. Even in the FDR, PMCs univalents off the plate retained fused centromeres. Both the orientation and configuration of univalents suggest that some mechanism other than standard interactions with the karyokinetic spindle may be responsible for placing univalents on the plate, at which point sister centromeres are separated and normal amphitelic interaction with the spindle is established. At this point it is not clear at all what univalent delivery mechanism may be at play in the FDR.
Collapse
|
10
|
Pajpach F, Wu T, Shearwin-Whyatt L, Jones K, Grützner F. Flavors of Non-Random Meiotic Segregation of Autosomes and Sex Chromosomes. Genes (Basel) 2021; 12:genes12091338. [PMID: 34573322 PMCID: PMC8471020 DOI: 10.3390/genes12091338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Segregation of chromosomes is a multistep process occurring both at mitosis and meiosis to ensure that daughter cells receive a complete set of genetic information. Critical components in the chromosome segregation include centromeres, kinetochores, components of sister chromatid and homologous chromosomes cohesion, microtubule organizing centres, and spindles. Based on the cytological work in the grasshopper Brachystola, it has been accepted for decades that segregation of homologs at meiosis is fundamentally random. This ensures that alleles on chromosomes have equal chance to be transmitted to progeny. At the same time mechanisms of meiotic drive and an increasing number of other examples of non-random segregation of autosomes and sex chromosomes provide insights into the underlying mechanisms of chromosome segregation but also question the textbook dogma of random chromosome segregation. Recent advances provide a better understanding of meiotic drive as a prominent force where cellular and chromosomal changes allow autosomes to bias their segregation. Less understood are mechanisms explaining observations that autosomal heteromorphism may cause biased segregation and regulate alternating segregation of multiple sex chromosome systems or translocation heterozygotes as an extreme case of non-random segregation. We speculate that molecular and cytological mechanisms of non-random segregation might be common in these cases and that there might be a continuous transition between random and non-random segregation which may play a role in the evolution of sexually antagonistic genes and sex chromosome evolution.
Collapse
Affiliation(s)
- Filip Pajpach
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Tianyu Wu
- Department of Central Laboratory, Clinical Laboratory, Jing’an District Centre Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Keith Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
- Correspondence:
| |
Collapse
|
11
|
Petrova DP, Khabudaev KV, Bedoshvili YD, Likhoshway YV. Phylogeny and structural peculiarities of the EB proteins of diatoms. J Struct Biol 2021; 213:107775. [PMID: 34364984 DOI: 10.1016/j.jsb.2021.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
The end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A. thaliana and H. sapiens. Phylogenetically, diatom EB proteins are separated into six clades, generally corresponding to the phylogeny of their respective organisms. The domain structure of this family is highly variable, but the CH and EBH domains responsible for binding tubulin and other MAPs are mostly conserved. Homologous modelling of the F. cylindrus EB protein shows that conserved motifs of the CH domain are positioned on the protein surface, which is necessary for their functioning. We hypothesise that high variance of the diatom C-terminal domain is caused by previously unknown interactions with a CAP-GLY motif of dynactin subunit p150. Our findings contribute to wider possibilities for further investigations of the cytoskeleton in diatoms.
Collapse
Affiliation(s)
- Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Kirill V Khabudaev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | | | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| |
Collapse
|
12
|
Tamemoto N, Noguchi H. Reaction-diffusion waves coupled with membrane curvature. SOFT MATTER 2021; 17:6589-6596. [PMID: 34166481 DOI: 10.1039/d1sm00540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction-diffusion waves of proteins are known to be involved in fundamental cellular functions, such as cell migration, cell division, and vesicular transportation. In some of these phenomena, pattern formation on the membranes is induced by the coupling between membrane deformation and the reaction-diffusion system through curvature-inducing proteins that bend the biological membranes. Although the membrane shape and the dynamics of the curvature-inducing proteins affect each other in these systems, the effect of such mechanochemical feedback loops on the waves has not been studied in detail. In this study, reaction-diffusion waves coupled with membrane deformation are investigated using simulations combining a dynamically triangulated membrane model with the Brusselator model extended to include the effect of membrane curvature. It is found that the propagating wave patterns change into nonpropageting patterns and spiral wave patterns due to the mechanochemical effects. Moreover, the wave speed is positively or negatively correlated with the local membrane curvature depending on the spontaneous curvature and bending rigidity. In addition, self-oscillation of the vesicle shape occurs, associated with the reaction-diffusion waves of curvature-inducing proteins. This agrees with the experimental observation of GUVs with a reconstituted Min system, which plays a key role in the cell division of Escherichia coli. The findings of this study demonstrate the importance of mechanochemical coupling in biological phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
13
|
Khetan N, Pruliere G, Hebras C, Chenevert J, Athale CA. Self-organized optimal packing of kinesin-5-driven microtubule asters scales with cell size. J Cell Sci 2021; 134:jcs257543. [PMID: 34080632 DOI: 10.1242/jcs.257543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/18/2021] [Indexed: 12/18/2022] Open
Abstract
Radial microtubule (MT) arrays or asters determine cell geometry in animal cells. Multiple asters interacting with motors, such as those in syncytia, form intracellular patterns, but the mechanical principles behind this are not clear. Here, we report that oocytes of the marine ascidian Phallusia mammillata treated with the drug BI-D1870 spontaneously form cytoplasmic MT asters, or cytasters. These asters form steady state segregation patterns in a shell just under the membrane. Cytaster centers tessellate the oocyte cytoplasm, that is divide it into polygonal structures, dominated by hexagons, in a kinesin-5-dependent manner, while inter-aster MTs form 'mini-spindles'. A computational model of multiple asters interacting with kinesin-5 can reproduce both tessellation patterns and mini-spindles in a manner specific to the number of MTs per aster, MT lengths and kinesin-5 density. Simulations predict that the hexagonal tessellation patterns scale with increasing cell size, when the packing fraction of asters in cells is ∼1.6. This self-organized in vivo tessellation by cytasters is comparable to the 'circle packing problem', suggesting that there is an intrinsic mechanical pattern-forming module that is potentially relevant to understanding the role of collective mechanics of cytoskeletal elements in embryogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Neha Khetan
- Division of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gérard Pruliere
- LBDV, Sorbonne Universite/CNRS, 06230 Villefranche-sur-Mer, France
| | - Celine Hebras
- LBDV, Sorbonne Universite/CNRS, 06230 Villefranche-sur-Mer, France
| | - Janet Chenevert
- LBDV, Sorbonne Universite/CNRS, 06230 Villefranche-sur-Mer, France
| | - Chaitanya A Athale
- Division of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
14
|
Cutillas V, Johnston CA. Mud binds the kinesin-14 Ncd in Drosophila. Biochem Biophys Rep 2021; 26:101016. [PMID: 34027137 PMCID: PMC8134030 DOI: 10.1016/j.bbrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/03/2022] Open
Abstract
Maintenance of proper mitotic spindle structure is necessary for error-free chromosome segregation and cell division. Spindle assembly is controlled by force-generating kinesin motors that contribute to its geometry and bipolarity, and balancing motor-dependent forces between opposing kinesins is critical to the integrity of this process. Non-claret dysjunctional (Ncd), a Drosophila kinesin-14 member, crosslinks and slides microtubule minus-ends to focus spindle poles and sustain bipolarity. However, mechanisms that regulate Ncd activity during mitosis are underappreciated. Here, we identify Mushroom body defect (Mud), the fly ortholog of human NuMA, as a direct Ncd binding partner. We demonstrate this interaction involves a short coiled-coil domain within Mud (MudCC) binding the N-terminal, non-motor microtubule-binding domain of Ncd (NcdnMBD). We further show that the C-terminal ATPase motor domain of Ncd (NcdCTm) directly interacts with NcdnMBD as well. Mud binding competes against this self-association and also increases NcdnMBD microtubule binding in vitro. Our results describe an interaction between two spindle-associated proteins and suggest a potentially new mode of minus-end motor protein regulation at mitotic spindle poles.
Collapse
Affiliation(s)
- Vincent Cutillas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
15
|
Setru SU, Gouveia B, Alfaro-Aco R, Shaevitz JW, Stone HA, Petry S. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. NATURE PHYSICS 2021; 17:493-498. [PMID: 35211183 PMCID: PMC8865447 DOI: 10.1038/s41567-020-01141-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Affiliation(s)
- Sagar U. Setru
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Galstyan V, Husain K, Xiao F, Murugan A, Phillips R. Proofreading through spatial gradients. eLife 2020; 9:60415. [PMID: 33357378 PMCID: PMC7813546 DOI: 10.7554/elife.60415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
Key enzymatic processes use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. The applicability of traditional proofreading schemes, however, is limited because they typically require dedicated structural features in the enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we explore an alternative conceptual mechanism that achieves error correction by having substrate binding and subsequent product formation occur at distinct physical locations. The time taken by the enzyme–substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not have the typical structural requirements, making it easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying spatial gradients as a possible route to specificity.
Collapse
Affiliation(s)
- Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, United States
| | - Kabir Husain
- Department of Physics and the James Franck Institute, University of Chicago, Chicago, United States
| | - Fangzhou Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Arvind Murugan
- Department of Physics and the James Franck Institute, University of Chicago, Chicago, United States
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Physics, California Institute of Technology, Pasadena, United States
| |
Collapse
|
17
|
Ems-McClung SC, Emch M, Zhang S, Mahnoor S, Weaver LN, Walczak CE. RanGTP induces an effector gradient of XCTK2 and importin α/β for spindle microtubule cross-linking. J Cell Biol 2020; 219:133528. [PMID: 31865374 PMCID: PMC7041689 DOI: 10.1083/jcb.201906045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
High RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin α/β. Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin α/β form an effector gradient that is highest at the poles and diminishes toward the chromatin, which is opposite the RanGTP gradient. Importin α and β preferentially inhibit XCTK2 antiparallel microtubule cross-linking and sliding by decreasing the microtubule affinity of the XCTK2 tail domain. This change in microtubule affinity enables RanGTP to target endogenous XCTK2 to the spindle. We propose that these combined actions of the Ran pathway are critical to promote Kinesin-14 parallel microtubule cross-linking to help focus spindle poles for efficient bipolar spindle assembly. Furthermore, our work illustrates that RanGTP regulation in the spindle is not simply a switch, but rather generates effector gradients where importins α and β gradually tune the activities of spindle assembly factors.
Collapse
Affiliation(s)
| | - Mackenzie Emch
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Serena Mahnoor
- Indiana University International Summer Undergraduate Research Program, Bloomington, IN
| | | | | |
Collapse
|
18
|
Wnt/β-catenin Signaling in Tissue Self-Organization. Genes (Basel) 2020; 11:genes11080939. [PMID: 32823838 PMCID: PMC7464740 DOI: 10.3390/genes11080939] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Across metazoans, animal body structures and tissues exist in robust patterns that arise seemingly out of stochasticity of a few early cells in the embryo. These patterns ensure proper tissue form and function during early embryogenesis, development, homeostasis, and regeneration. Fundamental questions are how these patterns are generated and maintained during tissue homeostasis and regeneration. Though fascinating scientists for generations, these ideas remain poorly understood. Today, it is apparent that the Wnt/β-catenin pathway plays a central role in tissue patterning. Wnt proteins are small diffusible morphogens which are essential for cell type specification and patterning of tissues. In this review, we highlight several mechanisms described where the spatial properties of Wnt/β-catenin signaling are controlled, allowing them to work in combination with other diffusible molecules to control tissue patterning. We discuss examples of this self-patterning behavior during development and adult tissues' maintenance. The combination of new physiological culture systems, mathematical approaches, and synthetic biology will continue to fuel discoveries about how tissues are patterned. These insights are critical for understanding the intricate interplay of core patterning signals and how they become disrupted in disease.
Collapse
|
19
|
New insights into molecular and cellular mechanisms of zoledronate in human osteosarcoma. Pharmacol Ther 2020; 214:107611. [PMID: 32565177 DOI: 10.1016/j.pharmthera.2020.107611] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant tumor of the skeleton in teenagers and young adults and continues to confer a generally poor prognosis in patients who do not respond to chemotherapy or who present with metastatic diseases at diagnosis. The nitrogen-containing zoledronate, the third generation bisphosphonate (BP), effectively inhibits osteoclastic bone resorption and is widely utilized in the treatment of metabolic and metastatic bone diseases nowadays. Owing to an acceptable safety profile and tolerability, zoledronate is the only BP currently approved for the prevention and treatment of skeletal relevant events in patients with metastatic bone lesions, especially bone metastases from advanced renal cell carcinoma and prostate cancer, and breast cancer, due to all solid malignancy. Moreover, zoledronate possesses diverse anti-osteosarcoma properties and may have potential to become an adjunctive treatment for high-grade osteosarcoma to enhance survival rates and to obliterate complications of the chemotherapy. Herein we highlighted the pharmacology of BPs and its underlying molecular mechanisms in osteoclasts and various cancer cells. We further provided the available literature on in vitro studies to illustrate the new insights into the intracellular molecular mechanisms of zoledronate in human osteosarcoma cell lines and in vivo animal models that led to the development and regulatory approval of zoledronate in patients with human osteosarcoma. This review also addresses clinical trials to focus on the efficacy of zoledronate on human osteosarcoma.
Collapse
|
20
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
21
|
Wang H, Li Y, Yang J, Duan X, Kalab P, Sun SX, Li R. Symmetry breaking in hydrodynamic forces drives meiotic spindle rotation in mammalian oocytes. SCIENCE ADVANCES 2020; 6:eaaz5004. [PMID: 32284983 PMCID: PMC7124937 DOI: 10.1126/sciadv.aaz5004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Patterned cell divisions require a precisely oriented spindle that segregates chromosomes and determines the cytokinetic plane. In this study, we investigated how the meiotic spindle orients through an obligatory rotation during meiotic division in mouse oocytes. We show that spindle rotation occurs at the completion of chromosome segregation, whereby the separated chromosome clusters each define a cortical actomyosin domain that produces cytoplasmic streaming, resulting in hydrodynamic forces on the spindle. These forces are initially balanced but become unbalanced to drive spindle rotation. This force imbalance is associated with spontaneous symmetry breaking in the distribution of the Arp2/3 complex and myosin-II on the cortex, brought about by feedback loops comprising Ran guanosine triphosphatase signaling, Arp2/3 complex activity, and myosin-II contractility. The torque produced by the unbalanced hydrodynamic forces, coupled with a pivot point at the spindle midzone cortical contract, constitutes a unique mechanical system for meiotic spindle rotation.
Collapse
Affiliation(s)
- HaiYang Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yizeng Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jing Yang
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Duan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X. Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
23
|
Drutovic D, Duan X, Li R, Kalab P, Solc P. RanGTP and importin β regulate meiosis I spindle assembly and function in mouse oocytes. EMBO J 2020; 39:e101689. [PMID: 31617608 PMCID: PMC6939199 DOI: 10.15252/embj.2019101689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Homologous chromosome segregation during meiosis I (MI) in mammalian oocytes is carried out by the acentrosomal MI spindles. Whereas studies in human oocytes identified Ran GTPase as a crucial regulator of the MI spindle function, experiments in mouse oocytes questioned the generality of this notion. Here, we use live-cell imaging with fluorescent probes and Förster resonance energy transfer (FRET) biosensors to monitor the changes in Ran and importin β signaling induced by perturbations of Ran in mouse oocytes while examining the MI spindle dynamics. We show that unlike RanT24N employed in previous studies, a RanT24N, T42A double mutant inhibits RanGEF without perturbing cargo binding to importin β and disrupts MI spindle function in chromosome segregation. Roles of Ran and importin β in the coalescence of microtubule organizing centers (MTOCs) and MI spindle assembly are further supported by the use of the chemical inhibitor importazole, whose effects are partially rescued by the GTP hydrolysis-resistant RanQ69L mutant. These results indicate that RanGTP is essential for MI spindle assembly and function both in humans and mice.
Collapse
Affiliation(s)
- David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Xing Duan
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rong Li
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Petr Kalab
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
24
|
Bendriem RM, Singh S, Aleem AA, Antonetti DA, Ross ME. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. eLife 2019; 8:49376. [PMID: 31794381 PMCID: PMC6890460 DOI: 10.7554/elife.49376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Occludin (OCLN) mutations cause human microcephaly and cortical malformation. A tight junction component thought absent in neuroepithelium after neural tube closure, OCLN isoform-specific expression extends into corticogenesis. Full-length and truncated isoforms localize to neuroprogenitor centrosomes, but full-length OCLN transiently localizes to plasma membranes while only truncated OCLN continues at centrosomes throughout neurogenesis. Mimicking human mutations, full-length OCLN depletion in mouse and in human CRISPR/Cas9-edited organoids produce early neuronal differentiation, reduced progenitor self-renewal and increased apoptosis. Human neural progenitors were more severely affected, especially outer radial glial cells, which mouse embryonic cortex lacks. Rodent and human mutant progenitors displayed reduced proliferation and prolonged M-phase. OCLN interacted with mitotic spindle regulators, NuMA and RAN, while full-length OCLN loss impaired spindle pole morphology, astral and mitotic microtubule integrity. Thus, early corticogenesis requires full-length OCLN to regulate centrosome organization and dynamics, revealing a novel role for this tight junction protein in early brain development.
Collapse
Affiliation(s)
- Raphael M Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, United States
| | - Shawn Singh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | | | - David A Antonetti
- Kellogg Eye Center, Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, United States
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, United States
| |
Collapse
|
25
|
Guo L, Mohd KS, Ren H, Xin G, Jiang Q, Clarke PR, Zhang C. Phosphorylation of importin-α1 by CDK1-cyclin B1 controls mitotic spindle assembly. J Cell Sci 2019; 132:jcs232314. [PMID: 31434716 PMCID: PMC6765185 DOI: 10.1242/jcs.232314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Importin-α serves as an adaptor linking importin-β to proteins carrying a nuclear localization sequence (NLS). During interphase, this interaction enables nuclear protein import, while in mitosis it regulates spindle assembly factors (SAFs) and controls microtubule nucleation, stabilization and spindle function. Here, we show that human importin-α1 is regulated during the cell cycle and is phosphorylated at two sites (threonine 9 and serine 62) during mitosis by the major mitotic protein kinase CDK1-cyclin B. Mutational analysis indicates that the mitotic phosphorylation of importin-α1 inhibits its binding to importin-β and promotes the release of TPX2 and KIFC1, which are then targeted like importin-β to the spindle. Loss of importin-α1 or expression of a non-phosphorylated mutant of importin-α1 results in the formation of shortened spindles with reduced microtubule density and induces a prolonged metaphase, whereas phosphorylation-mimicking mutants are functional in mitosis. We propose that phosphorylation of importin-α1 is a general mechanism for the spatial and temporal control of mitotic spindle assembly by CDK1-cyclin B1 that acts through the release of SAFs such as TPX2 and KIFC1 from inhibitory complexes that restrict spindle assembly.
Collapse
Affiliation(s)
- Li Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Khamsah Suryati Mohd
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - He Ren
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Paul R Clarke
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Chuanmao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Abstract
The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.
Collapse
Affiliation(s)
- David Oriola
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 021382, USA
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| |
Collapse
|
27
|
Turoverov KK, Kuznetsova IM, Fonin AV, Darling AL, Zaslavsky BY, Uversky VN. Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends Biochem Sci 2019; 44:716-728. [PMID: 31023505 DOI: 10.1016/j.tibs.2019.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
At the turn of this century, cardinal changes took place in the perceptions of the structure and function of proteins, as well as in the organizational principles of membrane-less organelles. As a result, the model of the organization of living matter is changing to one described by highly dynamic biological soft matter positioned at the edge of chaos. Intrinsically disordered proteins (IDPs) and membrane-less organelles are key examples of this new outlook and may represent a critical foundation of life, defining its complexity and the evolution of living things.
Collapse
Affiliation(s)
- Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; Peter the Great St. Petersburg Polytechnic University, Department of Biophysics, Polytechnicheskaya Av. 29, St. Petersburg 195251, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Colin A, Singaravelu P, Théry M, Blanchoin L, Gueroui Z. Actin-Network Architecture Regulates Microtubule Dynamics. Curr Biol 2018; 28:2647-2656.e4. [PMID: 30100343 DOI: 10.1016/j.cub.2018.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
Abstract
Coordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14]. In vitro reconstitutions have provided detailed insights in the biochemical and physical interactions between microtubules and actin filaments [15-20]. Yet how actin meshwork architecture affects microtubule dynamics is still unclear. Here, we reconstituted microtubule aster in the presence of a meshwork of actin filaments using confined actin-intact Xenopus egg extracts. We found that actin filament branching reduces the lengths and growth rates of microtubules and constrains the mobility of microtubule asters. By reconstituting the interaction between dynamic actin filaments and microtubules in a minimal system based on purified proteins, we found that the branching of actin filaments is sufficient to block microtubule growth and trigger microtubule disassembly. In a further exploration of Xenopus egg extracts, we found that dense and static branched actin meshwork perturbs monopolar spindle assembly by constraining the motion of the spindle pole. Interestingly, monopolar spindle assembly was not constrained in conditions supporting dynamic meshwork rearrangements. We propose that branched actin filament meshwork provides physical barriers that limit microtubule growth.
Collapse
Affiliation(s)
- Alexandra Colin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavithra Singaravelu
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
29
|
Rosas-Salvans M, Cavazza T, Espadas G, Sabido E, Vernos I. Proteomic Profiling of Microtubule Self-organization in M-phase. Mol Cell Proteomics 2018; 17:1991-2004. [PMID: 29970457 DOI: 10.1074/mcp.ra118.000745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Microtubules (MTs) and associated proteins can self-organize into complex structures such as the bipolar spindle, a process in which RanGTP plays a major role. Addition of RanGTP to M-phase Xenopus egg extracts promotes the nucleation and self-organization of MTs into asters and bipolar-like structures in the absence of centrosomes or chromosomes. We show here that the complex proteome of these RanGTP-induced MT assemblies is similar to that of mitotic spindles. Using proteomic profiling we show that MT self-organization in the M-phase cytoplasm involves the non-linear and non-stoichiometric recruitment of proteins from specific functional groups. Our study provides for the first time a temporal understanding of the protein dynamics driving MT self-organization in M-phase.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Tommaso Cavazza
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Guadalupe Espadas
- **Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabido
- **Proteomics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- From the ‡Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; .,§Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.,‡‡Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Nandi SK, Safran SA. Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion. J Chem Phys 2018; 148:205101. [PMID: 29865807 DOI: 10.1063/1.5021086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sam A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
31
|
Jevtić P, Milunović-Jevtić A, Dilsaver MR, Gatlin JC, Levy DL. Use of Xenopus cell-free extracts to study size regulation of subcellular structures. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:277-288. [PMID: 27759156 DOI: 10.1387/ijdb.160158dl] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Striking size variations are prominent throughout biology, at the organismal, cellular, and subcellular levels. Important fundamental questions concern organelle size regulation and how organelle size is regulated relative to cell size, also known as scaling. Uncovering mechanisms of organelle size regulation will inform the functional significance of size as well as the implications of misregulated size, for instance in the case of nuclear enlargement in cancer. Xenopus egg and embryo extracts are powerful cell-free systems that have been utilized extensively for mechanistic and functional studies of various organelles and subcellular structures. The open biochemical nature of the extract permits facile manipulation of its composition, and in recent years extract approaches have illuminated mechanisms of organelle size regulation. This review largely focuses on in vitro Xenopus studies that have identified regulators of nuclear and spindle size. We also discuss potential relationships between size scaling of the nucleus and spindle, size regulation of other subcellular structures, and extract experiments that have clarified developmental timing mechanisms. We conclude by offering some future prospects, notably the integration of Xenopus extract with microfluidic technology.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | | | | | | |
Collapse
|
32
|
Decker F, Oriola D, Dalton B, Brugués J. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles. eLife 2018; 7:31149. [PMID: 29323637 PMCID: PMC5814149 DOI: 10.7554/elife.31149] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 01/27/2023] Open
Abstract
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.
Collapse
Affiliation(s)
- Franziska Decker
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - David Oriola
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Benjamin Dalton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| |
Collapse
|
33
|
Bury L, Coelho PA, Simeone A, Ferries S, Eyers CE, Eyers PA, Zernicka-Goetz M, Glover DM. Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J Cell Biol 2017; 216:3571-3590. [PMID: 28972102 PMCID: PMC5674873 DOI: 10.1083/jcb.201606077] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/27/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.
Collapse
Affiliation(s)
- Leah Bury
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Paula A Coelho
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Claire E Eyers
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
34
|
Montembault E, Claverie MC, Bouit L, Landmann C, Jenkins J, Tsankova A, Cabernard C, Royou A. Myosin efflux promotes cell elongation to coordinate chromosome segregation with cell cleavage. Nat Commun 2017; 8:326. [PMID: 28835609 PMCID: PMC5569077 DOI: 10.1038/s41467-017-00337-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a “chromatid separation checkpoint” that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone. Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.
Collapse
Affiliation(s)
- Emilie Montembault
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| | - Marie-Charlotte Claverie
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Lou Bouit
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Cedric Landmann
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - James Jenkins
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France
| | - Anna Tsankova
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Anne Royou
- University of Bordeaux, CNRS, UMR5095, Institut Européen de Chimie et Biologie, 2 Rue Robert Escarpit, Pessac, 33607, France.
| |
Collapse
|
35
|
Mooney P, Sulerud T, Pelletier J, Dilsaver M, Tomschik M, Geisler C, Gatlin JC. Tau-based fluorescent protein fusions to visualize microtubules. Cytoskeleton (Hoboken) 2017; 74:221-232. [PMID: 28407416 PMCID: PMC5592782 DOI: 10.1002/cm.21368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule (MT)-dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho-deficient version of the MT-binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decorated Xenopus egg extract spindles more homogenously than similar constructs containing the MT-binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, MT dynamics were not grossly perturbed by the presence of Tau-based FP fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau-based FP fusions as minimally perturbing tools to accurately visualize MTs in living systems.
Collapse
Affiliation(s)
- Paul Mooney
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - Taylor Sulerud
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - James Pelletier
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA,
02115, USA
| | - Matthew Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| |
Collapse
|
36
|
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size. Biophys J 2017; 112:1503-1516. [PMID: 28402892 DOI: 10.1016/j.bpj.2017.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper organelle size is critical for many cell functions. However, how cells sense and control their organelle size remains elusive. Here, we develop a general model to study the size control of mitotic spindles by considering both extrinsic and intrinsic factors, such as the limited number of building blocks of the spindle, the interaction between the spindle and cell boundary, the DNA content, the forces generated by various molecular motors, and the dynamics of microtubules. We show that multiple pairs of chromatids, two centrosomes, and microtubules can self-assemble to form a mitotic spindle robustly. We also show that the boundary-sensing and volume-sensing mechanisms coexist in small cells, but both break down in large cells. Strikingly, we find that the upper limit of spindle length naturally arises from the geometric asymmetry of the spindle structure. Thus, our findings reveal, to our knowledge, a novel intrinsic mechanism that limits the organelle size.
Collapse
|
37
|
Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci 2017; 130:1251-1262. [PMID: 28193732 DOI: 10.1242/jcs.196188] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA .,Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
38
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
39
|
Merindol R, Walther A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem Soc Rev 2017; 46:5588-5619. [DOI: 10.1039/c6cs00738d] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A broad overview of functional aspects in biological and synthetic out-of-equilibrium systems.
Collapse
Affiliation(s)
- Rémi Merindol
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| |
Collapse
|
40
|
Teves SS, An L, Hansen AS, Xie L, Darzacq X, Tjian R. A dynamic mode of mitotic bookmarking by transcription factors. eLife 2016; 5. [PMID: 27855781 PMCID: PMC5156526 DOI: 10.7554/elife.22280] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI:http://dx.doi.org/10.7554/eLife.22280.001 A kidney cell functions differently from a skin cell despite the fact that all the cells in one organism share the same DNA. This is because not all of the genes encoded within the DNA are active in the cells. Instead, cells can turn on just those genes that are specific to how that cell type works. One way that cells can regulate their genes is by using proteins called transcription factors that can bind to DNA to turn nearby genes on and off. When cells divide to form new cells, the DNA is condensed and gene activity is turned off. However, each dividing cell also has to ‘remember’ the program of genes that specifies its identity. After division, how do the cells know which genes to turn on and which ones to keep off? It was thought that the transcription factors attached to the DNA were all detached from it during cell division. Through studies in mouse embryonic stem cells, Teves et al. now show that this finding is largely an artifact of the methods used to study the process. In fact, many transcription factors still bind to and interact with DNA during cell division. This provides an efficient way for the newly formed cells to quickly reset to the pattern of gene activity appropriate for their cell type. Having found that many key transcription factors are still bound to DNA during cell division, the next challenge is to find out what role this binding plays in allowing cells to ‘remember’ their identity. DOI:http://dx.doi.org/10.7554/eLife.22280.002
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Luye An
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
41
|
Colin A, Bonnemay L, Gayrard C, Gautier J, Gueroui Z. Triggering signaling pathways using F-actin self-organization. Sci Rep 2016; 6:34657. [PMID: 27698406 PMCID: PMC5048156 DOI: 10.1038/srep34657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.
Collapse
Affiliation(s)
- A. Colin
- Ecole Normale Supérieure, Department of Chemistry PSL Research University-CNRS-ENS-UPMC 24, rue Lhomond, 75005, Paris, France
| | - L. Bonnemay
- Ecole Normale Supérieure, Department of Chemistry PSL Research University-CNRS-ENS-UPMC 24, rue Lhomond, 75005, Paris, France
| | - C. Gayrard
- Ecole Normale Supérieure, Department of Chemistry PSL Research University-CNRS-ENS-UPMC 24, rue Lhomond, 75005, Paris, France
| | - J. Gautier
- Ecole Normale Supérieure, Department of Chemistry PSL Research University-CNRS-ENS-UPMC 24, rue Lhomond, 75005, Paris, France
| | - Z. Gueroui
- Ecole Normale Supérieure, Department of Chemistry PSL Research University-CNRS-ENS-UPMC 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
42
|
Khetan N, Athale CA. A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes. PLoS Comput Biol 2016; 12:e1005102. [PMID: 27706163 PMCID: PMC5051731 DOI: 10.1371/journal.pcbi.1005102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.
Collapse
Affiliation(s)
- Neha Khetan
- Division of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Chaitanya A. Athale
- Division of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
43
|
Xu B, Bressloff PC. Model of Growth Cone Membrane Polarization via Microtubule Length Regulation. Biophys J 2016; 109:2203-14. [PMID: 26588578 DOI: 10.1016/j.bpj.2015.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 01/18/2023] Open
Abstract
We present a mathematical model of membrane polarization in growth cones. We proceed by coupling an active transport model of cytosolic proteins along a two-dimensional microtubule (MT) network with a modified Dogterom-Leibler model of MT growth. In particular, we consider a Rac1-stathmin-MT pathway in which the growth and catastrophe rates of MTs are regulated by cytosolic stathmin, while the stathmin is regulated by Rac1 at the membrane. We use regular perturbation theory and numerical simulations to determine the steady-state stathmin concentration, the mean MT length distribution, and the resulting distribution of membrane-bound proteins. We thus show how a nonuniform Rac1 distribution on the membrane generates a polarized distribution of membrane proteins. The mean MT length distribution and hence the degree of membrane polarization are sensitive to the precise form of the Rac1 distribution and parameters such as the catastrophe-promoting constant and tubulin association rate. This is a consequence of the fact that the lateral diffusion of stathmin tends to weaken the effects of Rac1 on the distribution of mean MT lengths.
Collapse
Affiliation(s)
- Bin Xu
- Mathematics, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
44
|
Abstract
Concentration gradients of soluble proteins are believed to be responsible for control of morphogenesis of subcellular systems, but the mechanisms that generate the spatial organization of these subcellular gradients remain poorly understood. Here, we use a newly developed multipoint fluorescence fluctuation spectroscopy technique to study the ras-related nuclear protein (Ran) pathway, which forms soluble gradients around chromosomes in mitosis and is thought to spatially regulate microtubule behaviors during spindle assembly. We found that the distribution of components of the Ran pathway that influence microtubule behaviors is determined by their interactions with microtubules, resulting in microtubule nucleators being localized by the microtubules whose formation they stimulate. Modeling and perturbation experiments show that this feedback makes the length of the spindle insensitive to the length scale of the Ran gradient, allows the spindle to assemble outside the peak of the Ran gradient, and explains the scaling of the spindle with cell size. Such feedback between soluble signaling pathways and the mechanics of the cytoskeleton may be a general feature of subcellular organization.
Collapse
|
45
|
Hashimoto S, Nakano T, Yamagata K, Inoue M, Morimoto Y, Nakaoka Y. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil Steril 2016; 106:133-139.e6. [DOI: 10.1016/j.fertnstert.2016.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
|
46
|
Cavazza T, Peset I, Vernos I. From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus. J Cell Sci 2016; 129:2538-47. [PMID: 27179073 DOI: 10.1242/jcs.183624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bipolar spindle assembly in the vertebrate oocyte relies on a self-organization chromosome-dependent pathway. Upon fertilization, the male gamete provides a centrosome, and the first and subsequent embryonic divisions occur in the presence of duplicated centrosomes that act as dominant microtubule organizing centres (MTOCs). The transition from meiosis to embryonic mitosis involves a necessary adaptation to integrate the dominant chromosome-dependent pathway with the centrosomes to form the bipolar spindle. Here, we took advantage of the Xenopus laevis egg extract system to mimic in vitro the assembly of the first embryonic spindle and investigate the respective contributions of the centrosome and the chromosome-dependent pathway to the kinetics of the spindle bipolarization. We found that centrosomes control the transition from the meiotic to the mitotic spindle assembly mechanism. By defining the kinetics of spindle bipolarization, the centrosomes ensure their own positioning to each spindle pole and thereby their essential correct inheritance to the two first daughter cells of the embryo for the development of a healthy organism.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabel Peset
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Doctor Aiguader, 88 Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona 08003, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
47
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
48
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
49
|
Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen JQ, Herrmann MA, Kumar S, Kalab P. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell 2016; 27:1346-57. [PMID: 26864624 PMCID: PMC4831887 DOI: 10.1091/mbc.e16-01-0025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/05/2016] [Indexed: 11/11/2022] Open
Abstract
The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage.
Collapse
Affiliation(s)
- Pavol Cekan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keisuke Hasegawa
- Department of Physics, Grinnell College, Grinnell, IA 50112 Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Yu Pan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emily Tubman
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Odde
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michelle A Herrmann
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sheetal Kumar
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Petr Kalab
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
50
|
Maya-Bernal JL, Ramírez-Santiago G. Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:28. [PMID: 26987732 DOI: 10.1140/epje/i2016-16028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
We studied the spatio-temporal dynamics of a cell signal cascade with negative feedback that quantitatively emulates the regulative process that occurs in the Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK) pathway. The model consists of a set of six coupled reaction-diffusion equations that describes the dynamics of the six-module pathway. In the basic module the active form of the protein transmits the signal to the next pathway’s module. As suggested by experiments, the model considers that the fifth module's kinase down-regulates the first and third modules. The feedback parameter is defined as, μ(r)( j)= k(kin)5/k(kin)(j), (j = 1, 3). We analysed the pathway's dynamics for μ(r)( j) = 0.10, 1.0, and 10 in the kinetic regimes: i) saturation of both kinases and phosphatases, ii) saturation of the phosphatases and iii) saturation of the kinases. For a regulated pathway the Total Activated Protein Profiles (TAPPs) as a function of time develop a maximum during the transient stage in the three kinetic regimes. These maxima become higher and their positions shift to longer times downstream. This scenario also applies to the TAPP's regulatory kinase that sums up its inhibitory action to that of the phosphatases leading to a maximum. Nevertheless, when μ(r)(j)= 1.0 , the TAPPs develop two maxima, with the second maximum being almost imperceptible. These results are in qualitative agreement with experimental data obtained from NIH 3T3 mouse fibroblasts. In addition, analyses of the stationary states as a function of position indicate that in the kinetic regime i) which is of physiological interest, signal transduction occurs with a relatively large propagation length for the three values of the regulative parameter. However, for μ(r)(j)= 0.10 , the sixth module concentration profile is transmitted with approximately 45% of its full value. The results obtained for μ(r)(j) = 10 , indicate that the first five concentration profiles are small with a short propagation length; nonetheless, the last concentration profile, c6, attains more than 90% of its full value with a relatively large propagation length as an indication of signal transduction. Signal transduction also occurred favourably in the kinetic regimes ii) and iii), but the signal was longer-ranged in the regime ii).
Collapse
Affiliation(s)
- José Luis Maya-Bernal
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Coyoacán D.F., Mexico
| | - Guillermo Ramírez-Santiago
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 76230, Juriquilla Querétaro, Mexico.
| |
Collapse
|