1
|
Locarnini SA, Littlejohn M, Yuen LKW. Origins and Evolution of the Primate Hepatitis B Virus. Front Microbiol 2021; 12:653684. [PMID: 34108947 PMCID: PMC8180572 DOI: 10.3389/fmicb.2021.653684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Recent interest in the origins and subsequent evolution of the hepatitis B virus (HBV) has strengthened with the discovery of ancient HBV sequences in fossilized remains of humans dating back to the Neolithic period around 7,000 years ago. Metagenomic analysis identified a number of African non-human primate HBV sequences in the oldest samples collected, indicating that human HBV may have at some stage, evolved in Africa following zoonotic transmissions from higher primates. Ancestral genotype A and D isolates were also discovered from the Bronze Age, not in Africa but rather Eurasia, implying a more complex evolutionary and migratory history for HBV than previously recognized. Most full-length ancient HBV sequences exhibited features of inter genotypic recombination, confirming the importance of recombination and the mutation rate of the error-prone viral replicase as drivers for successful HBV evolution. A model for the origin and evolution of HBV is proposed, which includes multiple cross-species transmissions and favors subsequent recombination events that result in a pathogen and can successfully transmit and cause persistent infection in the primate host.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Abstract
Although viruses have threatened our ancestors for millions of years, prehistoric epidemics of viruses are largely unknown. Endogenous bornavirus-like elements (EBLs) are ancient bornavirus sequences derived from the viral messenger RNAs that were reverse transcribed and inserted into animal genomes, most likely by retrotransposons. These elements can be used as molecular fossil records to trace past bornaviral infections. In this study, we systematically identified EBLs in vertebrate genomes and revealed the history of bornavirus infections over nearly 100 My. We confirmed that ancient bornaviral infections have occurred in diverse vertebrate lineages, especially in primate ancestors. Phylogenetic analyses indicated that primate ancestors were infected with various bornaviral lineages during evolution. EBLs in primate genomes formed clades according to their integration ages, suggesting that bornavirus lineages infected with primate ancestors had changed chronologically. However, some bornaviral lineages may have coexisted with primate ancestors and underwent repeated endogenizations for tens of millions of years. Moreover, a bornaviral lineage that coexisted with primate ancestors also endogenized in the genomes of some ancestral bats. The habitats of these bat ancestors have been reported to overlap with the migration route of primate ancestors. These results suggest that long-term virus-host coexistence expanded the geographic distributions of the bornaviral lineage along with primate migration and may have spread their infections to these bat ancestors. Our findings provide insight into the history of bornavirus infections over geological timescales that cannot be deduced from research using extant viruses alone, thus broadening our perspective on virus-host coevolution.
Collapse
|
3
|
Marivaux L, Boivin M. Emergence of hystricognathous rodents: Palaeogene fossil record, phylogeny, dental evolution and historical biogeography. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractAlthough phylogenetic trees imply Asia as the ancestral homeland of the Hystricognathi clade (Rodentia: Ctenohystrica), curiously the oldest known fossil occurrences of hystricognathous rodents are not from Asia, but from Africa and South America, where they appear suddenly in the fossil record of both landmasses by the Late Middle Eocene. Here we performed cladistic and Bayesian (standard and tip-dating analyses) assessments of the dental evidence documenting early ctenohystricans, including several Asian ‘ctenodactyloids’, virtually all Palaeogene Asian and African hystricognaths known thus far and two representatives of the earliest known South American hystricognaths. Our results provide a phylogenetic context of early hystricognaths (with implications on systematics) and suggest that some Eocene Asian ‘ctenodactyloids’ could be considered as stem hystricognaths and pre-hystricognaths, although they were not recognized as such originally. However, this view does not fill the gap of the Eocene Asian hystricognath record, as the proposed results imply many ghost lineages extending back to the Middle Eocene for several Asian and African taxa. They also imply a complex early historical biogeography of the group, involving multiple dispersal events from Asia to Africa (and possibly from Africa back to Asia) and then to South America sometime during the Middle Eocene. Based on these phylogenetic considerations, we discuss the emergence of hystricognathous rodents from a morpho-anatomical perspective by analysing the differentiation of their masticatory apparatus and chewing movements, notably through the evolution of their dental patterns.
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier, place Eugène Bataillon, France
| | - Myriam Boivin
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier, place Eugène Bataillon, France
- Laboratoire de Planétologie et Géodynamique (LPG, UMR 6112 CNRS, Université de Nantes), France
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, Argentina
| |
Collapse
|
4
|
Marivaux L, Essid EM, Marzougui W, Khayati Ammar H, Adnet S, Marandat B, Merzeraud G, Tabuce R, Vianey-Liaud M. A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late middle Eocene of Djebel el Kébar, Central Tunisia. ACTA ACUST UNITED AC 2014. [DOI: 10.18563/pv.38.1.e2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Marivaux L, Essid EM, Marzougui W, Khayati Ammar H, Adnet S, Marandat B, Merzeraud G, Ramdarshan A, Tabuce R, Vianey-Liaud M, Yans J. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: Macroevolutionary and paleobiogeographic implications of early anthropoids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 154:387-401. [DOI: 10.1002/ajpa.22523] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - El Mabrouk Essid
- Office National des Mines (ONM); Tunis BP: 215 - 1080 Tunis Tunisia
| | - Wissem Marzougui
- Office National des Mines (ONM); Tunis BP: 215 - 1080 Tunis Tunisia
| | | | - Sylvain Adnet
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Bernard Marandat
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Gilles Merzeraud
- Géosciences Montpellier (UMR-CNRS 5243); c.c. 060, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Anusha Ramdarshan
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Rodolphe Tabuce
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Monique Vianey-Liaud
- Laboratoire de Paléontologie; Institut des Sciences de l'Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2; F-34095 Montpellier Cedex 05 France
| | - Johan Yans
- Department of Geology; University of Namur; NaGRIDD B-5000 Namur Belgium
| |
Collapse
|
6
|
Marivaux L, Ramdarshan A, Essid EM, Marzougui W, Ammar HK, Lebrun R, Marandat B, Merzeraud G, Tabuce R, Vianey-Liaud M. Djebelemur, a tiny pre-tooth-combed primate from the Eocene of Tunisia: a glimpse into the origin of crown strepsirhines. PLoS One 2013; 8:e80778. [PMID: 24324627 PMCID: PMC3851781 DOI: 10.1371/journal.pone.0080778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years. METHODOLOGICAL/PRINCIPAL FINDINGS Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation ("pre-tooth-comb"). CONCLUSIONS/SIGNIFICANCE These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Anusha Ramdarshan
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Bernard Marandat
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Gilles Merzeraud
- Géosciences Montpellier (UMR-CNRS 5243), Université Montpellier 2, Montpellier, France
| | - Rodolphe Tabuce
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Monique Vianey-Liaud
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| |
Collapse
|
7
|
Locarnini S, Littlejohn M, Aziz MN, Yuen L. Possible origins and evolution of the hepatitis B virus (HBV). Semin Cancer Biol 2013; 23:561-75. [PMID: 24013024 DOI: 10.1016/j.semcancer.2013.08.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023]
Abstract
All members of the family Hepadnaviridae are primarily viruses which contain double-stranded DNA genomes that are replicated via reverse transcription of a pregenomic RNA template. There are two subgroups within this family: mammalian and avian. The avian member's include the duck hepatitis B virus (DHBV), heron hepatitis B virus, Ross goose hepatitis B virus, stork hepatitis B virus and the recently identified parrot hepatitis B virus. More recently, the detection of endogenous avian hepadnavirus DNA integrated into the genomes of zebra finches has revealed a deep evolutionary origin of hepadnaviruses that was not previously recognised, dating back over 40 million years ago. The non-primate mammalian members of the Hepadnaviridae include the woodchuck hepatitis virus (WHV), the ground squirrel hepatitis virus and arctic squirrel virus, as well as the recently described bat hepatitis virus. The identification of hepatitis B virus (HBV) in higher primates such as chimpanzee, gorilla, orangutan, and gibbons that cluster with the human genotypes further implies a more complex origin of this virus. By studying the molecular epidemiology of HBV in indigenous and relict populations in Asia-Pacific we propose a model for the origin and evolution of HBV that involves multiple cross-species transmissions and subsequent recombination events on a background of genotype C HBV infection.
Collapse
Affiliation(s)
- Stephen Locarnini
- Research & Molecular Development, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia.
| | | | | | | |
Collapse
|
8
|
Gebo DL, Dagosto M, Ni X, Beard KC. Species diversity and postcranial anatomy of eocene primates from Shanghuang, China. Evol Anthropol 2013; 21:224-38. [PMID: 23280920 DOI: 10.1002/evan.21336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The middle Eocene Shanghuang fissure-fillings, located in southern Jiangsu Province in China near the coastal city of Shanghai (Fig. 1), contain a remarkably diverse array of fossil primates that provide a unique window into the complex role played by Asia during early primate evolution.1 Compared to contemporaneous localities in North America or Europe, the ancient primate community sampled at the Shanghuang fissure-fillings is unique in several ways. Although Shanghuang has some typical Eocene primates (Omomyidae and Adapoidea), it also contains the earliest known members of the Tarsiidae and Anthropoidea (Fig. 2), and some new taxa that are not as yet known from elsewhere. It exhibits a large number of primate species, at least 18, most of which are very small (15-500 g), including some of the smallest primates that have ever been recovered.
Collapse
Affiliation(s)
- Daniel L Gebo
- Department of Anthropology, Northern Illinois University, IL, USA.
| | | | | | | |
Collapse
|
9
|
Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janečka JE, Fisher CA, Murphy WJ. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 2012; 7:e49521. [PMID: 23166696 PMCID: PMC3500307 DOI: 10.1371/journal.pone.0049521] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023] Open
Abstract
Phylogenetic relationships, divergence times, and patterns of biogeographic descent among primate species are both complex and contentious. Here, we generate a robust molecular phylogeny for 70 primate genera and 367 primate species based on a concatenation of 69 nuclear gene segments and ten mitochondrial gene sequences, most of which were extracted from GenBank. Relaxed clock analyses of divergence times with 14 fossil-calibrated nodes suggest that living Primates last shared a common ancestor 71-63 Ma, and that divergences within both Strepsirrhini and Haplorhini are entirely post-Cretaceous. These results are consistent with the hypothesis that the Cretaceous-Paleogene mass extinction of non-avian dinosaurs played an important role in the diversification of placental mammals. Previous queries into primate historical biogeography have suggested Africa, Asia, Europe, or North America as the ancestral area of crown primates, but were based on methods that were coopted from phylogeny reconstruction. By contrast, we analyzed our molecular phylogeny with two methods that were developed explicitly for ancestral area reconstruction, and find support for the hypothesis that the most recent common ancestor of living Primates resided in Asia. Analyses of primate macroevolutionary dynamics provide support for a diversification rate increase in the late Miocene, possibly in response to elevated global mean temperatures, and are consistent with the fossil record. By contrast, diversification analyses failed to detect evidence for rate-shift changes near the Eocene-Oligocene boundary even though the fossil record provides clear evidence for a major turnover event ("Grande Coupure") at this time. Our results highlight the power and limitations of inferring diversification dynamics from molecular phylogenies, as well as the sensitivity of diversification analyses to different species concepts.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Robert W. Meredith
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey, United States of America
| | - John Gatesy
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher A. Emerling
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Jong Park
- Department of Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Daniel L. Rabosky
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanja Stadler
- Institut für Integrative Biologie, Eidgenössiche Technische Hochschule Zurich, Zurich, Switzerland
| | - Cynthia Steiner
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, San Diego, California, United States of America
| | - Oliver A. Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, San Diego, California, United States of America
| | - Jan E. Janečka
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Colleen A. Fisher
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Marivaux L, Beard KC, Chaimanee Y, Dagosto M, Gebo DL, Guy F, Marandat B, Khaing K, Kyaw AA, Oo M, Sein C, Soe AN, Swe M, Jaeger JJ. Talar morphology, phylogenetic affinities, and locomotor adaptation of a large-bodied amphipithecid primate from the late middle eocene of Myanmar. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143:208-22. [DOI: 10.1002/ajpa.21307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Zollikofer CPE, Ponce De León MS, Chaimanee Y, Lebrun R, Tafforeau P, Khansubhaand S, Jaeger JJ. The face of Siamopithecus: new geometric-morphometric evidence for its anthropoid status. Anat Rec (Hoboken) 2010; 292:1734-44. [PMID: 19718713 DOI: 10.1002/ar.20998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amphipithecids assume a key position in early primate evolution in Asia. Here we report on new maxillofacial and associated mandibular remains of Siamopithecus eocaenus, an amphipithecid primate from the Late Eocene of Krabi (Thailand) that currently represents the most complete specimen belonging to this group. We used synchrotron microtomography and techniques of virtual reconstruction to recover the three-dimensional morphology of the specimen. Geometric-morphometric analysis of the reconstructed specimen within a comparative sample of recent and fossil primates clearly associates Siamopithecus with the anthropoids. Like modern anthropoids, Siamopithecus displays a relatively short face and highly convergent and frontated orbits, the lower rim of which lies well above the alveolar plane. The cooccurrence of spatially correlated anthropoid features and classical anthropoid dental characters in one individual represents a strong argument to support the anthropoid status of Siamopithecus. It is, thus, highly unlikely that amphipithecids are specialized adapiforms exhibiting complete convergence with anthropoids.
Collapse
|
12
|
Tabuce R, Marivaux L, Lebrun R, Adaci M, Bensalah M, Fabre PH, Fara E, Gomes Rodrigues H, Hautier L, Jaeger JJ, Lazzari V, Mebrouk F, Peigné S, Sudre J, Tafforeau P, Valentin X, Mahboubi M. Anthropoid versus strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proc Biol Sci 2009; 276:4087-94. [PMID: 19740889 DOI: 10.1098/rspb.2009.1339] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent fossil discoveries have demonstrated that Africa and Asia were epicentres for the origin and/or early diversification of the major living primate lineages, including both anthropoids (monkeys, apes and humans) and crown strepsirhine primates (lemurs, lorises and galagos). Competing hypotheses favouring either an African or Asian origin for anthropoids rank among the most hotly contested issues in paleoprimatology. The Afrocentric model for anthropoid origins rests heavily on the >45 Myr old fossil Algeripithecus minutus from Algeria, which is widely acknowledged to be one of the oldest known anthropoids. However, the phylogenetic position of Algeripithecus with respect to other primates has been tenuous because of the highly fragmentary fossils that have documented this primate until now. Recently recovered and more nearly complete fossils of Algeripithecus and contemporaneous relatives reveal that they are not anthropoids. New data support the idea that Algeripithecus and its sister genus Azibius are the earliest offshoots of an Afro-Arabian strepsirhine clade that embraces extant toothcombed primates and their fossil relatives. Azibius exhibits anatomical evidence for nocturnality. Algeripithecus has a long, thin and forwardly inclined lower canine alveolus, a feature that is entirely compatible with the long and procumbent lower canine included in the toothcomb of crown strepsirhines. These results strengthen an ancient African origin for crown strepsirhines and, in turn, strongly challenge the role of Africa as the ancestral homeland for anthropoids.
Collapse
Affiliation(s)
- Rodolphe Tabuce
- Institut des Sciences de l'Evolution UMR5554, cc064, Université Montpellier II, place Eugène Bataillon, 34095 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marivaux L, Beard KC, Chaimanee Y, Jaeger JJ, Marandat B, Soe AN, Tun ST, Kyaw AA. Proximal femoral anatomy of a sivaladapid primate from the late middle Eocene Pondaung formation (central Myanmar). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 137:263-73. [DOI: 10.1002/ajpa.20866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Marivaux L, Beard KC, Chaimanee Y, Jaeger JJ, Marandat B, Soe AN, Tun ST, Aung HH, Htoon W. Anatomy of the bony pelvis of a relatively large-bodied strepsirrhine primate from the late middle Eocene Pondaung Formation (central Myanmar). J Hum Evol 2007; 54:391-404. [PMID: 17996275 DOI: 10.1016/j.jhevol.2007.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 07/16/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
Recent survey of the fossiliferous variegated mudstones of the PK1 locality (Sabapondaung) in the late middle Eocene Pondaung Formation (central Myanmar) has led to the recovery of a partial right innominate of a relatively large-bodied primate. Given its size and provenance, this bone probably belongs to the same individual represented by the NMMP 20 primate partial skeleton described previously from the same locality. The new fossil, which preserves the region around the acetabulum and the adjacent part of the ilium, clearly exhibits strepsirrhine rather than anthropoid affinities. This addition to our knowledge of the NMMP 20 partial skeleton allows us to reassess the different locomotor interpretations that have been proposed for this specimen. Aspects of pelvic morphology suggest that the NMMP 20 partial skeleton documents a primate that probably engaged in active arboreal quadrupedalism similar to that practiced by medium-sized Malagasy lemurids rather than lorislike slow moving and climbing. Given the conflicting phylogenetic signals provided by NMMP 39 (a talus showing anthropoid affinities) and NMMP 20 (a partial skeleton bearing adapiform affinities), it appears that two higher-level taxonomic groups of relatively large-bodied primates are documented in the Pondaung Formation. The recent discovery of two taxa of sivaladapid adapiforms from the Pondaung Formation indicates that the assumption that the NMMP 20 partial skeleton belongs to an amphipithecid can no longer be sustained. Instead, this specimen apparently documents a third large-bodied sivaladapid species in the Pondaung Formation.
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l'Evolution (ISE-M, UMR - CNRS 5554), c.c. 64, Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dumas F, Stanyon R, Sineo L, Stone G, Bigoni F. Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol Biol 2007; 7 Suppl 2:S11. [PMID: 17767727 PMCID: PMC1963484 DOI: 10.1186/1471-2148-7-s2-s11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets. Results The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset. Conclusion The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
Collapse
Affiliation(s)
- Francesca Dumas
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Roscoe Stanyon
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Luca Sineo
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Gary Stone
- Comparative Molecular Cytogenetics Core, National Cancer Institute, Frederick Maryland, USA
| | - Francesca Bigoni
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| |
Collapse
|