1
|
Huang Z, Xu Z, Huang T, Gray V, Moth-Poulsen K, Lian T, Tang ML. Evolution from Tunneling to Hopping Mediated Triplet Energy Transfer from Quantum Dots to Molecules. J Am Chem Soc 2020; 142:17581-17588. [DOI: 10.1021/jacs.0c07727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhiyuan Huang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zihao Xu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tingting Huang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Victor Gray
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Chemistry − Ångström Laboratory, Uppsala University, Box
523, 751 20 Uppsala, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming Lee Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Landi A, Capobianco A, Peluso A. Coherent Effects in Charge Transport in Molecular Wires: Toward a Unifying Picture of Long-Range Hole Transfer in DNA. J Phys Chem Lett 2020; 11:7769-7775. [PMID: 32830977 PMCID: PMC8154848 DOI: 10.1021/acs.jpclett.0c01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the framework of a multistep mechanism in which environmental motion triggers comparatively faster elementary electron-transfer steps and stabilizes hole-transfer products, microscopic coherence is crucial for rationalizing the observed yield ratios of oxidative damage to DNA. Interference among probability amplitudes of indistinguishable electron-transfer paths is able to drastically change the final outcome of charge transport, even in DNA oligomers constituted by similar building blocks, and allows for reconciling apparently discordant experimental observations. Properly tailored DNA oligomers appear to be a promising workbench for studying tunneling in the presence of dissipation at the macroscopic level.
Collapse
|
3
|
Zhang Z, Wang J. Origin of long-lived quantum coherence and excitation dynamics in pigment-protein complexes. Sci Rep 2016; 6:37629. [PMID: 27876861 PMCID: PMC5120302 DOI: 10.1038/srep37629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
We explore the mechanism for the long-lived quantum coherence by considering the discrete phonon modes: these vibrational modes effectively weaken the exciton-environment interaction, due to the new composite (polaron) formed by excitons and vibrons. This subsequently demonstrates the role of vibrational coherence which greatly contributes to long-lived feature of the excitonic coherence that has been observed in femtosecond experiments. The estimation of the timescale of coherence elongated by vibrational modes is given in an analytical manner. To test the validity of our theory, we study the pigment-protein complex in detail by exploring the energy transfer and coherence dynamics. The ground-state vibrational coherence generated by incoherent radiations is shown to be long-survived and is demonstrated to be significant in promoting the excitation energy transfer. This is attributed to the nonequilibriumness of the system caused by the detailed-balance-breaking, which funnels the downhill migration of excitons.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jin Wang
- Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794, USA
- Department of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute for Applied Chemistry, Chinese, Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
4
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
5
|
Zhang Z, Wang J. Assistance of Molecular Vibrations on Coherent Energy Transfer in Photosynthesis from the View of a Quantum Heat Engine. J Phys Chem B 2015; 119:4662-7. [DOI: 10.1021/acs.jpcb.5b01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jin Wang
- State Key Laboratory
of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People’s Republic of China
| |
Collapse
|
6
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR. Controlling Electron Transfer in Donor−Bridge−Acceptor Molecules Using Cross-Conjugated Bridges. J Am Chem Soc 2010; 132:15427-34. [DOI: 10.1021/ja107420a] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Annie Butler Ricks
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Gemma C. Solomon
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael T. Colvin
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Amy M. Scott
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kun Chen
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A. Ratner
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
8
|
Scott AM, Miura T, Ricks AB, Dance ZEX, Giacobbe EM, Colvin MT, Wasielewski MR. Spin-Selective Charge Transport Pathways through p-Oligophenylene-Linked Donor−Bridge−Acceptor Molecules. J Am Chem Soc 2009; 131:17655-66. [DOI: 10.1021/ja907625k] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amy M. Scott
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Tomoaki Miura
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Annie Butler Ricks
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Zachary E. X. Dance
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Emilie M. Giacobbe
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael T. Colvin
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
9
|
Womick JM, Moran AM. Exciton Coherence and Energy Transport in the Light-Harvesting Dimers of Allophycocyanin. J Phys Chem B 2009; 113:15747-59. [DOI: 10.1021/jp907644h] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Womick JM, Miller SA, Moran AM. Probing the Dynamics of Intraband Electronic Coherences in Cylindrical Molecular Aggregates. J Phys Chem A 2009; 113:6587-98. [DOI: 10.1021/jp811064z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Stephen A. Miller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
Womick JM, Miller SA, Moran AM. Correlated Exciton Fluctuations in Cylindrical Molecular Aggregates. J Phys Chem B 2009; 113:6630-9. [DOI: 10.1021/jp810291d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan M. Womick
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stephen A. Miller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|