1
|
Zhang J, Fang X. Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs. Curr Opin Struct Biol 2024; 89:102944. [PMID: 39442417 DOI: 10.1016/j.sbi.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally >200 nts). Here, we briefly review the basics of these molecular rulers, how the NaM-TPT3 unnatural base pair system empower them, and their applications to explore conformational dynamics of large RNAs, especially in the context of flavivirus RNA genome.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianyang Fang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Lak A, Wang Y, Kolbeck PJ, Pauer C, Chowdhury MS, Cassani M, Ludwig F, Viereck T, Selbach F, Tinnefeld P, Schilling M, Liedl T, Tavacoli J, Lipfert J. Cooperative dynamics of DNA-grafted magnetic nanoparticles optimize magnetic biosensing and coupling to DNA origami. NANOSCALE 2024; 16:7678-7689. [PMID: 38533617 DOI: 10.1039/d3nr06253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.
Collapse
Affiliation(s)
- Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Yihao Wang
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Pauline J Kolbeck
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Christoph Pauer
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Marco Cassani
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience, LMU Munich, 81377 Munich, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, LMU Munich, 81377 Munich, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany.
| | - Tim Liedl
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Joe Tavacoli
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Jan Lipfert
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
3
|
Dong HL, Zhang C, Dai L, Zhang Y, Zhang XH, Tan ZJ. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations. Nucleic Acids Res 2024; 52:2519-2529. [PMID: 38321947 PMCID: PMC10954459 DOI: 10.1093/nar/gkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The subtle differences in the chemical structures of double-stranded (ds) RNA and DNA lead to significant variations in their biological roles and medical implications, largely due to their distinct biophysical properties, such as bending stiffness. Although it is well known that A-form dsRNA is stiffer than B-form dsDNA under physiological salt conditions, the underlying cause of this difference remains unclear. In this study, we employ high-precision magnetic-tweezer experiments along with molecular dynamics simulations and reveal that the relative bending stiffness between dsRNA and dsDNA is primarily determined by the structure- and salt-concentration-dependent ion distribution around their helical structures. At near-physiological salt conditions, dsRNA shows a sparser ion distribution surrounding its phosphate groups compared to dsDNA, causing its greater stiffness. However, at very high monovalent salt concentrations, phosphate groups in both dsRNA and dsDNA become fully neutralized by excess ions, resulting in a similar intrinsic bending persistence length of approximately 39 nm. This similarity in intrinsic bending stiffness of dsRNA and dsDNA is coupled to the analogous fluctuations in their total groove widths and further coupled to the similar fluctuation of base-pair inclination, despite their distinct A-form and B-form helical structures.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Roldán-Piñero C, Luengo-Márquez J, Assenza S, Pérez R. Systematic Comparison of Atomistic Force Fields for the Mechanical Properties of Double-Stranded DNA. J Chem Theory Comput 2024; 20:2261-2272. [PMID: 38411091 PMCID: PMC10938644 DOI: 10.1021/acs.jctc.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The response of double-stranded DNA to external mechanical stress plays a central role in its interactions with the protein machinery in the cell. Modern atomistic force fields have been shown to provide highly accurate predictions for the fine structural features of the duplex. In contrast, and despite their pivotal function, less attention has been devoted to the accuracy of the prediction of the elastic parameters. Several reports have addressed the flexibility of double-stranded DNA via all-atom molecular dynamics, yet the collected information is insufficient to have a clear understanding of the relative performance of the various force fields. In this work, we fill this gap by performing a systematic study in which several systems, characterized by different sequence contexts, are simulated with the most popular force fields within the AMBER family, bcs1 and OL15, as well as with CHARMM36. Analysis of our results, together with their comparison with previous work focused on bsc0, allows us to unveil the differences in the predicted rigidity between the newest force fields and suggests a roadmap to test their performance against experiments. In the case of the stretch modulus, we reconcile these differences, showing that a single mapping between sequence-dependent conformation and elasticity via the crookedness parameter captures simultaneously the results of all force fields, supporting the key role of crookedness in the mechanical response of double-stranded DNA.
Collapse
Affiliation(s)
- Carlos Roldán-Piñero
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Juan Luengo-Márquez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
| | - Salvatore Assenza
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Rubén Pérez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
5
|
Zhang Z, Mou X, Zhang Y, He L, Li S. Influence of temperature on bend, twist and twist-bend coupling of dsDNA. Phys Chem Chem Phys 2024; 26:8077-8088. [PMID: 38224130 DOI: 10.1039/d3cp04932a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations. Furthermore, the couplings between these rotational parameters also exhibit a decline with increasing temperature, although the roll-twist coupling displays greater strength than the tilt-roll and tilt-twist couplings, attributed to its more robust correction component. We elucidated the influence of temperature on bend and twist elasticities based on the comparisons between various models and existing data.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Kawamukai H, Takishita S, Shimizu K, Kohda D, Ishimori K, Saio T. Conformational Distribution of a Multidomain Protein Measured by Single-Pair Small-Angle X-ray Scattering. J Phys Chem Lett 2024; 15:744-750. [PMID: 38221741 PMCID: PMC10823528 DOI: 10.1021/acs.jpclett.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Honoka Kawamukai
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shumpei Takishita
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazumi Shimizu
- Faculty
of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
| | - Daisuke Kohda
- Division
of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Tomohide Saio
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
- Fujii
Memorial Institute of Medical Sciences, Institute of Advanced Medical
Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Dohnalová H, Seifert M, Matoušková E, Klein M, Papini FS, Lipfert J, Dulin D, Lankaš F. Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:664-675. [PMID: 38197365 PMCID: PMC10823466 DOI: 10.1021/acs.jpcb.3c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = -14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = -11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA-RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure.
Collapse
Affiliation(s)
- Hana Dohnalová
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| | - Mona Seifert
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
| | - Eva Matoušková
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| | - Misha Klein
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Flávia S. Papini
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
| | - Jan Lipfert
- Soft
Condensed Matter and Biophysics, Department of Physics and Debye Institute, Utrecht University, Utrecht 3584 CC, The Netherlands
| | - David Dulin
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Filip Lankaš
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| |
Collapse
|
8
|
Rosenberg DJ, Cunningham FJ, Hubbard JD, Goh NS, Wang JWT, Nishitani S, Hayman EB, Hura GL, Landry MP, Pinals RL. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry. J Am Chem Soc 2024; 146:386-398. [PMID: 38158616 DOI: 10.1021/jacs.3c09549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)n-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT)n ssDNA oligomer lengths (n = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT)6, adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 ± 0.3 nm), compared to the longer (GT)15 oligomer (most probable 5'-to-5' distance of 14.3 ± 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey Wei-Ting Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Emily B Hayman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chan-Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovative Genomics Institute (IGI), Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rebecca L Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Kalsan M, Jabeen A, Ahmad S. Incorporating Sequence-Dependent DNA Shape and Dynamics into Transcriptome Data Analysis. Methods Mol Biol 2024; 2812:317-343. [PMID: 39068371 DOI: 10.1007/978-1-0716-3886-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Differentially expressed genes in a cellular context may be co-regulated by the same transcription factor. However, in the absence of a concurrent transcription factor binding data, such interactions are difficult to detect, especially at the single cell expression level. Motif enrichments in such genes can be used to gain insight into differential expressions caused by the shared upstream TFs. However, it is now established that many genes are co-regulated by the same TF due to a shared DNA shape or sequence-dependent conformational dynamics instead of sequence motif. In this work, we demonstrate how, starting from a gene expression data, such DNA shape and dynamics signatures can be potentially detected using publicly available tools, including DynaSeq, developed in our group for predicting the sequence-dependent components of these DNA shape features.
Collapse
Affiliation(s)
- Manisha Kalsan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Almas Jabeen
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
10
|
Lee S, Ki H, Lee SJ, Ihee H. Single-Molecule X-ray Scattering Used to Visualize the Conformation Distribution of Biological Molecules via Single-Object Scattering Sampling. Int J Mol Sci 2023; 24:17135. [PMID: 38138965 PMCID: PMC10743147 DOI: 10.3390/ijms242417135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Biological macromolecules, the fundamental building blocks of life, exhibit dynamic structures in their natural environment. Traditional structure determination techniques often oversimplify these multifarious conformational spectra by capturing only ensemble- and time-averaged molecular structures. Addressing this gap, in this work, we extend the application of the single-object scattering sampling (SOSS) method to diverse biological molecules, including RNAs and proteins. Our approach, referred to as "Bio-SOSS", leverages ultrashort X-ray pulses to capture instantaneous structures. In Bio-SOSS, we employ two gold nanoparticles (AuNPs) as labels, which provide strong contrast in the X-ray scattering signal, to ensure precise distance determinations between labeled sites. We generated hypothetical Bio-SOSS images for RNAs, proteins, and an RNA-protein complex, each labeled with two AuNPs at specified positions. Subsequently, to validate the accuracy of Bio-SOSS, we extracted distances between these nanoparticle labels from the images and compared them with the actual values used to generate the Bio-SOSS images. Specifically, for a representative RNA (1KXK), the standard deviation in distance discrepancies between molecular dynamics snapshots and Bio-SOSS retrievals was found to be optimally around 0.2 Å, typically within 1 Å under practical experimental conditions at state-of-the-art X-ray free-electron laser facilities. Furthermore, we conducted an in-depth analysis of how various experimental factors, such as AuNP size, X-ray properties, and detector geometry, influence the accuracy of Bio-SOSS. This comprehensive investigation highlights the practicality and potential of Bio-SOSS in accurately capturing the diverse conformation spectrum of biological macromolecules, paving the way for deeper insights into their dynamic natures.
Collapse
Affiliation(s)
- Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; (S.L.); (H.K.); (S.J.L.)
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; (S.L.); (H.K.); (S.J.L.)
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; (S.L.); (H.K.); (S.J.L.)
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; (S.L.); (H.K.); (S.J.L.)
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Torkan E, Salmani-Tehrani M. Conformational dynamics and mechanical properties of biomimetic RNA, DNA, and RNA-DNA hybrid nanotubes: an atomistic molecular dynamics study. Phys Chem Chem Phys 2023. [PMID: 37309220 DOI: 10.1039/d3cp01028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the nanotechnology boom, artificially designed nucleic acid nanotubes have aroused interest due to their practical applications in nanorobotics, vaccine design, membrane channels, drug delivery, and force sensing. In this paper, computational study was performed to investigate the structural dynamics and mechanical properties of RNA nanotubes (RNTs), DNA nanotubes (DNTs), and RNA-DNA hybrid nanotubes (RDHNTs). So far, the structural and mechanical properties of RDHNTs have not been examined in experiments or theoretical calculations, and there is limited knowledge regarding these properties for RNTs. Here, the simulations were carried out using the equilibrium molecular dynamics (MD) and steered molecular dynamics (SMD) approaches. Using in-house scripting, we modeled hexagonal nanotubes composed of six double-stranded molecules connected by four-way Holliday junctions. Classical MD analyses were performed on the collected trajectory data to investigate structural properties. Analyses of the microscopic structural parameters of RDHNT indicated a structural transition from the A-form to a conformation between the A- and B-forms, which may be attributable to the increased rigidity of RNA scaffolds compared to DNA staples. Comprehensive research on the elastic mechanical properties was also conducted based on spontaneous thermal fluctuations of nanotubes and employing the equipartition theorem. The Young's modulus of RDHNT (E = 165 MPa) and RNT (E = 144 MPa) was found to be almost the same and nearly half of that found for DNT (E = 325 MPa). Furthermore, the results showed that RNT was more resistant to bending, torsional, and volumetric deformations than DNT and RDHNT. We also used non-equilibrium SMD simulations to acquire comprehensive knowledge of the mechanical response of nanotubes to tensile stress.
Collapse
Affiliation(s)
- Ehsan Torkan
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mehdi Salmani-Tehrani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
12
|
Luengo-Márquez J, Zalvide-Pombo J, Pérez R, Assenza S. Force-dependent elasticity of nucleic acids. NANOSCALE 2023; 15:6738-6744. [PMID: 36942727 DOI: 10.1039/d2nr06324g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The functioning of double-stranded (ds) nucleic acids (NAs) in cellular processes is strongly mediated by their elastic response. These processes involve proteins that interact with dsDNA or dsRNA and distort their structures. The perturbation of the elasticity of NAs arising from these deformations is not properly considered by most theoretical frameworks. In this work, we introduce a novel method to assess the impact of mechanical stress on the elastic response of dsDNA and dsRNA through the analysis of the fluctuations of the double helix. Application of this approach to atomistic simulations reveals qualitative differences in the force dependence of the mechanical properties of dsDNA with respect to those of dsRNA, which we relate to structural features of these molecules by means of physically-sound minimalistic models.
Collapse
Affiliation(s)
- Juan Luengo-Márquez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Zalvide-Pombo
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Zhang Y, He L, Li S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J Chem Phys 2023; 158:094902. [PMID: 36889965 DOI: 10.1063/5.0138940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature. However, the twist-stretch coupling behaves in a positive correction and enhances as the temperature increases. The potential mechanisms of how temperature affects dsDNA elasticity and coupling were investigated by using the trajectories from atomistic simulation, in which thermal fluctuations in structural parameters were analyzed in detail. We analyzed the simulation results by comparing them with previous simulation and experimental data, which are in good agreement. The prediction about the temperature dependence of dsDNA elastic properties provides a deeper understanding of DNA elasticities in biological environments and potentially helps in the further development of DNA nanotechnology.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
14
|
Elgar C, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, Péan EV, Davies ML, Staples CJ, Ahmad H, Gill MR. Ruthenium(II) Polypyridyl Complexes as FRET Donors: Structure- and Sequence-Selective DNA-Binding and Anticancer Properties. J Am Chem Soc 2023; 145:1236-1246. [PMID: 36607895 PMCID: PMC9853847 DOI: 10.1021/jacs.2c11111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
Collapse
Affiliation(s)
- Christopher
E. Elgar
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Nur Aininie Yusoh
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Paul R. Tiley
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Natália Kolozsvári
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Laura G. Bennett
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Amelia Gamble
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Emmanuel V. Péan
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Matthew L. Davies
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Christopher J. Staples
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Haslina Ahmad
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,Department
of Chemistry, Faculty of Science, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Martin R. Gill
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.,
| |
Collapse
|
15
|
Fan S, Takada T, Maruyama A, Fujitsuka M, Kawai K. Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuya Fan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kiyohiko Kawai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
16
|
Zhang Y, Yan M, Huang T, Wang X. Understanding the Structural Elasticity of RNA and DNA: All‐Atom Molecular Dynamics. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingtong Zhang
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Miao Yan
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Tingting Huang
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| | - Xianghong Wang
- Department of Physics Wenzhou University Wenzhou 325035 China
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
17
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Assenza S, Pérez R. Accurate Sequence-Dependent Coarse-Grained Model for Conformational and Elastic Properties of Double-Stranded DNA. J Chem Theory Comput 2022; 18:3239-3256. [PMID: 35394775 PMCID: PMC9097290 DOI: 10.1021/acs.jctc.2c00138] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
We introduce MADna,
a sequence-dependent coarse-grained model of
double-stranded DNA (dsDNA), where each nucleotide is described by
three beads localized at the sugar, at the base moiety, and at the
phosphate group, respectively. The sequence dependence is included
by considering a step-dependent parametrization of the bonded interactions,
which are tuned in order to reproduce the values of key observables
obtained from exhaustive atomistic simulations from the literature.
The predictions of the model are benchmarked against an independent
set of all-atom simulations, showing that it captures with high fidelity
the sequence dependence of conformational and elastic features beyond
the single step considered in its formulation. A remarkably good agreement
with experiments is found for both sequence-averaged and sequence-dependent
conformational and elastic features, including the stretching and
torsion moduli, the twist–stretch and twist–bend couplings,
the persistence length, and the helical pitch. Overall, for the inspected
quantities, the model has a precision comparable to atomistic simulations,
hence providing a reliable coarse-grained description for the rationalization
of single-molecule experiments and the study of cellular processes
involving dsDNA. Owing to the simplicity of its formulation, MADna
can be straightforwardly included in common simulation engines. Particularly,
an implementation of the model in LAMMPS is made available on an online
repository to ease its usage within the DNA research community.
Collapse
|
19
|
Chhetri KB, Sharma A, Naskar S, Maiti PK. Nanoscale structures and mechanics of peptide nucleic acids. NANOSCALE 2022; 14:6620-6635. [PMID: 35421892 DOI: 10.1039/d1nr04239d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral polyamide oligomers having extremely favorable thermal stability and high affinity to cell membranes when coupled with cationic cell-penetrating peptides (CPPs), as well as the encouraging antisense and antigene activity in cell-free systems. The study of the mechanical properties of short PNA molecules is rare both in experiments and theoretical calculations. Here, we studied the microscopic structures and elastic properties; namely, persistence length, stretch modulus, twist-stretch coupling, and structural crookedness of double-stranded PNA (dsPNA) and their hybrid derivatives using all-atom MD simulation and compared them with those of double-stranded DNA (dsDNA) and double-stranded RNA (dsRNA). The stretch modulus of the dsPNA is found to be ∼160 pN, an order of magnitude lower than that of dsDNA and smaller than dsRNA, respectively. Similarly, the persistence length of dsPNA is found to be ∼35 nm, significantly smaller than those of dsDNA and dsRNA. The PNA-DNA and PNA-RNA hybrid duplexes have elastic properties lying between that of dsPNA and dsDNA/dsRNA. We argue that the neutral backbones of the PNA make it less stiff than dsDNA and dsRNA molecules. Measurement of structural crookedness and principal component analysis additionally support the bending flexibility of dsPNA. Detailed analysis of the helical-rise coupled to helical-twist indicates that the PNA-DNA hybrid over-winds like dsDNA, while PNA-PNA and PNA-RNA unwind like dsRNA upon stretching. Because of the highly flexible nature of PNA, it can bind other biomolecules by adopting a wide range of conformations and is believed to be crucial for future nanobiotechnology research studies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
| | - Akshara Sharma
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
20
|
Chhetri KB, Dasgupta C, Maiti PK. Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement. Front Chem 2022; 10:879746. [PMID: 35586267 PMCID: PMC9108266 DOI: 10.3389/fchem.2022.879746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are considered promising candidates for biomolecular confinement, including DNA encapsulation for gene delivery. Threshold values of diameters have been reported for double-stranded DNA (dsDNA) encapsulation inside CNTs. We have performed all-atom molecular dynamics (MD) simulations of dsDNAs confined inside single-walled CNTs (SWCNTs) at the physiologically relevant temperature of 300 K. We found that the dsDNA can be confined without being denatured only when the diameter of the SWCNT exceeds a threshold value. Below this threshold diameter, the dsDNA gets denatured and melts even at the temperature of 300 K. Our simulations using SWCNTs with chirality indices (20,20) to (30,30) at 300 K found the critical diameter to be 3.25 nm (corresponding to (24,24) chirality). Analyses of the hydrogen bonds (H-bonds), Van der Walls (VdW) energy, and other inter-base interactions show drastic reduction in the number of H-bonds, VdW energy, and electrostatic energies between the bases of dsDNA when it is confined in narrower SWCNTs (up to diameter of 3.12 nm). On the other hand, the higher interaction energy between the dsDNA and the SWCNT surface in narrower SWCNTs assists in the melting of the dsDNA. Electrostatic mapping and hydration status analyses show that the dsDNA is not adequately hydrated and the counter ion distribution is not uniform below the critical diameter of the SWCNT. As properly hydrated counter ions provide stability to the dsDNA, we infer that the inappropriate hydration of counter ions and their non-uniform distribution around the dsDNA cause the melting of the dsDNA inside SWCNTs of diameter below the critical value of 3.25 nm. For confined dsDNAs that do not get denatured, we computed their elastic properties. The persistence length of dsDNA was found to increase by a factor of about two and the torsional stiffness by a factor of 1.5 for confinement inside SWCNTs of diameters up to 3.79 nm, the stretch modulus also following nearly the same trend. Interestingly, for higher diameters of SWCNT, 3.79 nm and above, the dsDNA becomes more flexible, demonstrating that the mechanical properties of the dsDNA under cylindrical confinement depend non-monotonically on the confinement diameter.
Collapse
Affiliation(s)
- Khadka B. Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- *Correspondence: Prabal K. Maiti,
| |
Collapse
|
21
|
Zhang C, Tian F, Lu Y, Yuan B, Tan ZJ, Zhang XH, Dai L. Twist-diameter coupling drives DNA twist changes with salt and temperature. SCIENCE ADVANCES 2022; 8:eabn1384. [PMID: 35319990 PMCID: PMC8942373 DOI: 10.1126/sciadv.abn1384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
DNA deformations upon environmental changes, e.g., salt and temperature, play crucial roles in many biological processes and material applications. Here, our magnetic tweezers experiments observed that the increase in NaCl, KCl, or RbCl concentration leads to substantial DNA overwinding. Our simulations and theoretical calculation quantitatively explain the salt-induced twist change through the mechanism: More salt enhances the screening of interstrand electrostatic repulsion and hence reduces DNA diameter, which is transduced to twist increase through twist-diameter coupling. We determined that the coupling constant is 4.5 ± 0.8 kBT/(degrees∙nm) for one base pair. The coupling comes from the restraint of the contour length of DNA backbone. On the basis of this coupling constant and diameter-dependent DNA conformational entropy, we predict the temperature dependence of DNA twist Δωbp/ΔT ≈ -0.01 degree/°C, which agrees with our and previous experimental results. Our analysis suggests that twist-diameter coupling is a common driving force for salt- and temperature-induced DNA twist changes.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Fujia Tian
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Ying Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhi-Jie Tan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Qiang XW, Zhang C, Dong HL, Tian FJ, Fu H, Yang YJ, Dai L, Zhang XH, Tan ZJ. Multivalent Cations Reverse the Twist-Stretch Coupling of RNA. PHYSICAL REVIEW LETTERS 2022; 128:108103. [PMID: 35333091 DOI: 10.1103/physrevlett.128.108103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
When stretched, both DNA and RNA duplexes change their twist angles through twist-stretch coupling. The coupling is negative for DNA but positive for RNA, which is not yet completely understood. Here, our magnetic tweezers experiments show that the coupling of RNA reverses from positive to negative by multivalent cations. Combining with the previously reported tension-induced negative-to-positive coupling reversal of DNA, we propose a unified mechanism of the couplings of both RNA and DNA based on molecular dynamics simulations. Two deformation pathways are competing when stretched: shrinking the radius causes positive couplings but widening the major groove causes negative couplings. For RNA whose major groove is clamped by multivalent cations and canonical DNA, their radii shrink when stretched, thus exhibiting positive couplings. For elongated DNA whose radius already shrinks to the minimum and canonical RNA, their major grooves are widened when stretched, thus exhibiting negative couplings.
Collapse
Affiliation(s)
- Xiao-Wei Qiang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Fu-Jia Tian
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Rosenberg DJ, Syed A, Tainer JA, Hura GL. Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA. Methods Mol Biol 2022; 2444:183-205. [PMID: 35290639 PMCID: PMC9512051 DOI: 10.1007/978-1-0716-2063-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically critical, exquisite specificity and efficiency of nucleases, such as those acting in DNA repair and replication, often emerge in the context of multiple other macromolecules. The evolved complexity also makes biologically relevant nuclease assays challenging and low-throughput. Meiotic recombination 11 homolog 1 (MRE11) is an exemplary nuclease that initiates DNA double-strand break (DSB) repair and processes stalled DNA replication forks. Thus, DNA resection by MRE11 nuclease activity is critical for multiple DSB repair pathways as well as in replication. Traditionally, in vitro nuclease activity of purified enzymes is studied either through gel-based assays or fluorescence-based assays like fluorescence resonance energy transfer (FRET). However, adapting these methods for a high-throughput application such as inhibitor screening can be challenging. Gel-based approaches are slow, and FRET assays can suffer from interference and distance limitations. Here we describe an alternative methodology to monitor nuclease activity by measuring the small-angle X-ray scattering (SAXS) interference pattern from gold nanoparticles (Au NPs) conjugated to 5'-ends of dsDNA using X-ray scattering interferometry (XSI). In addition to reporting on the enzyme activity, XSI can provide insight into DNA-protein interactions, aiding in the development of inhibitors that trap enzymes on the DNA substrate. Enabled by efficient access to synchrotron beamlines, sample preparation, and the feasibility of high-throughput XSI data collection and processing pipelines, this method allows for far greater speeds with less sample consumption than conventional SAXS techniques. The reported metrics and methods can be generalized to monitor not only other nucleases but also most other DNA-protein interactions.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
24
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
25
|
Naskar S, Maiti PK. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models. J Mater Chem B 2021; 9:5102-5113. [PMID: 34127998 DOI: 10.1039/d0tb02970j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The flexibility and stiffness of small DNA molecules play a fundamental role ranging from several biophysical processes to nano-technological applications. Here, we estimate the mechanical properties of short double-stranded DNA (dsDNA) with lengths ranging from 12 base-pairs (bp) to 56 bp, paranemic crossover (PX) DNA and hexagonal DNA nanotubes (DNTs) using two widely used coarse-grained models - Martini and oxDNA. To calculate the persistence length (Lp) and the stretch modulus (γ) of the dsDNA, we incorporate the worm-like chain and elastic rod model, while for the DNTs, we implement our previously developed theoretical framework. We compare and contrast all of the results with previously reported all-atom molecular dynamics (MD) simulations and experimental results. The mechanical properties of dsDNA (Lp ∼ 50 nm, γ ∼ 800-1500 pN), PX DNA (γ ∼ 1600-2000 pN) and DNTs (Lp ∼ 1-10 μm, γ ∼ 6000-8000 pN) estimated using the Martini soft elastic network and oxDNA are in very good agreement with the all-atom MD and experimental values, while the stiff elastic network Martini reproduces values of Lp and γ which are an order of magnitude higher. The high flexibility of small dsDNA is also depicted in our calculations. However, Martini models proved inadequate to capture the salt concentration effects on the mechanical properties with increasing salt molarity. oxDNA captures the salt concentration effect on the small dsDNA mechanics. But it is found to be ineffective for reproducing the salt-dependent mechanical properties of DNTs. Also, unlike Martini, the time evolved PX DNA and DNT structures from the oxDNA models are comparable to the all-atom MD simulated structures. Our findings provide a route to study the mechanical properties of DNA and DNA based nanostructures with increased time and length scales and has a remarkable implication in the context of DNA nanotechnology.
Collapse
Affiliation(s)
- Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
26
|
Sharma RK, Agrawal I, Dai L, Doyle P, Garaj S. DNA Knot Malleability in Single-Digit Nanopores. NANO LETTERS 2021; 21:3772-3779. [PMID: 33661654 DOI: 10.1021/acs.nanolett.0c05142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Knots in long DNA molecules are prevalent in biological systems and serve as a model system for investigating static and dynamic properties of biopolymers. We explore the dynamics of knots in double-stranded DNA in a new regime of nanometer-scale confinement, large forces, and short time scales, using solid-state nanopores. We show that DNA knots undergo isomorphic translocation through a nanopore, retaining their equilibrium morphology by swiftly compressing in a lateral direction to fit the constriction. We observe no evidence of knot tightening or jamming, even for single-digit nanopores. We explain the observations as the malleability of DNA, characterized by sharp buckling of the DNA in nanopores, driven by the transient disruption of base pairing. Our molecular dynamics simulations support the model. These results are relevant not only for the understanding of DNA packing and manipulation in living cells but also for the polymer physics of DNA and the development of nanopore-based sequencing technologies.
Collapse
Affiliation(s)
- Rajesh Kumar Sharma
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore
| | - Ishita Agrawal
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Patrick Doyle
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Slaven Garaj
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
27
|
Kogikoski S, Tapio K, von Zander RE, Saalfrank P, Bald I. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Molecules 2021; 26:1684. [PMID: 33802892 PMCID: PMC8002687 DOI: 10.3390/molecules26061684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 106 at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas—UNICAMP, P.O. Box 6154, Campinas 13084-974, SP, Brazil
| | - Kosti Tapio
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Robert Edler von Zander
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Peter Saalfrank
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| |
Collapse
|
28
|
A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 2021; 54:e5. [PMID: 33722316 DOI: 10.1017/s0033583521000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.
Collapse
|
29
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
30
|
Marin-Gonzalez A, Pastrana CL, Bocanegra R, Martín-González A, Vilhena JG, Pérez R, Ibarra B, Aicart-Ramos C, Moreno-Herrero F. Understanding the paradoxical mechanical response of in-phase A-tracts at different force regimes. Nucleic Acids Res 2020; 48:5024-5036. [PMID: 32282908 PMCID: PMC7229863 DOI: 10.1093/nar/gkaa225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
A-tracts are A:T rich DNA sequences that exhibit unique structural and mechanical properties associated with several functions in vivo. The crystallographic structure of A-tracts has been well characterized. However, the mechanical properties of these sequences is controversial and their response to force remains unexplored. Here, we rationalize the mechanical properties of in-phase A-tracts present in the Caenorhabditis elegans genome over a wide range of external forces, using single-molecule experiments and theoretical polymer models. Atomic Force Microscopy imaging shows that A-tracts induce long-range (∼200 nm) bending, which originates from an intrinsically bent structure rather than from larger bending flexibility. These data are well described with a theoretical model based on the worm-like chain model that includes intrinsic bending. Magnetic tweezers experiments show that the mechanical response of A-tracts and arbitrary DNA sequences have a similar dependence with monovalent salt supporting that the observed A-tract bend is intrinsic to the sequence. Optical tweezers experiments reveal a high stretch modulus of the A-tract sequences in the enthalpic regime. Our work rationalizes the complex multiscale flexibility of A-tracts, providing a physical basis for the versatile character of these sequences inside the cell.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Rebeca Bocanegra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - J G Vilhena
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
31
|
Ghosh S, Lawless MJ, Brubaker HJ, Singewald K, Kurpiewski MR, Jen-Jacobson L, Saxena S. Cu2+-based distance measurements by pulsed EPR provide distance constraints for DNA backbone conformations in solution. Nucleic Acids Res 2020; 48:e49. [PMID: 32095832 PMCID: PMC7229862 DOI: 10.1093/nar/gkaa133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2'dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hanna J Brubaker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci U S A 2020; 117:22823-22832. [PMID: 32868439 DOI: 10.1073/pnas.2005217117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.
Collapse
|
33
|
Zettl T, Shi X, Bonilla S, Sedlak SM, Lipfert J, Herschlag D. The structural ensemble of a Holliday junction determined by X-ray scattering interference. Nucleic Acids Res 2020; 48:8090-8098. [PMID: 32597986 PMCID: PMC7641307 DOI: 10.1093/nar/gkaa509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/31/2020] [Accepted: 06/26/2020] [Indexed: 11/14/2022] Open
Abstract
The DNA four-way (Holliday) junction is the central intermediate of genetic recombination, yet key aspects of its conformational and thermodynamic properties remain unclear. While multiple experimental approaches have been used to characterize the canonical X-shape conformers under specific ionic conditions, the complete conformational ensemble of this motif, especially at low ionic conditions, remains largely undetermined. In line with previous studies, our single-molecule Förster resonance energy transfer (smFRET) measurements of junction dynamics revealed transitions between two states under high salt conditions, but smFRET could not determine whether there are fast and unresolvable transitions between distinct conformations or a broad ensemble of related states under low and intermediate salt conditions. We therefore used an emerging technique, X-ray scattering interferometry (XSI), to directly probe the conformational ensemble of the Holliday junction across a wide range of ionic conditions. Our results demonstrated that the four-way junction adopts an out-of-plane geometry under low ionic conditions and revealed a conformational state at intermediate ionic conditions previously undetected by other methods. Our results provide critical information to build toward a full description of the conformational landscape of the Holliday junction and underscore the utility of XSI for probing conformational ensembles under a wide range of solution conditions.
Collapse
Affiliation(s)
- Thomas Zettl
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, 80799 Munich, Germany
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Xuesong Shi
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Steffen M Sedlak
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, 80799 Munich, Germany
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, 80799 Munich, Germany
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Taguchi Y, Saio T, Kohda D. Distance Distribution between Two Iodine Atoms Derived from Small-Angle X-ray Scattering Interferometry for Analyzing a Conformational Ensemble of Heavy Atom-Labeled Small Molecules. J Phys Chem Lett 2020; 11:5451-5456. [PMID: 32558579 DOI: 10.1021/acs.jpclett.0c01107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To obtain unbiased information about the dynamic conformational ensemble of a molecule in solution, one promising approach is small-angle X-ray scattering (SAXS). Conventionally, SAXS data are converted to a pair distribution function, which describes the distance distribution between all pairs of atoms within a molecule. If two strong X-ray scatterers are introduced and the background contributions from the other atoms are suppressed, then the distance distribution between the two scatterers provides spatial information about a flexible molecule. Gold nanocrystals can provide such information for distances of >50 Å. Here, we synthesized a chemical compound containing two iodine atoms attached to the ends of a flexible polyethylene glycol chain and used the relevant singly labeled and unlabeled compounds to suppress the background contribution. This is a feasibility demonstration to prove that the distance distribution in the range of 10-30 Å can be experimentally accessed by SAXS.
Collapse
Affiliation(s)
- Yuya Taguchi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
35
|
Kim J, Kim JG, Ki H, Ahn CW, Ihee H. Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:633-645. [PMID: 32381763 PMCID: PMC7206544 DOI: 10.1107/s1600577520002738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute-solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Ott K, Martini L, Lipfert J, Gerland U. Dynamics of the Buckling Transition in Double-Stranded DNA and RNA. Biophys J 2020; 118:1690-1701. [PMID: 32367807 PMCID: PMC7136337 DOI: 10.1016/j.bpj.2020.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 10/24/2022] Open
Abstract
DNA under torsional strain undergoes a buckling transition that is the fundamental step in plectoneme nucleation and supercoil dynamics, which are critical for the processing of genomic information. Despite its importance, quantitative models of the buckling transition, in particular to also explain the surprising two-orders-of-magnitude difference between the buckling times for RNA and DNA revealed by single-molecule tweezers experiments, are currently lacking. Additionally, little is known about the configurations of the DNA during the buckling transition because they are not directly observable experimentally. Here, we use a discrete worm-like chain model and Brownian dynamics to simulate the DNA/RNA buckling transition. Our simulations are in good agreement with experimentally determined parameters of the buckling transition. The simulations show that the buckling time strongly and exponentially depends on the bending stiffness, which accounts for more than half the measured difference between DNA and RNA. Analyzing the microscopic conformations of the chain revealed by our simulations, we find clear evidence for a solenoid-shaped transition state and a curl intermediate. The curl intermediate features a single loop and becomes increasingly populated at low forces. Taken together, the simulations suggest that the worm-like chain model can account semiquantitatively for the buckling dynamics of both DNA and RNA.
Collapse
Affiliation(s)
- Katharina Ott
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany
| | - Linda Martini
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany.
| |
Collapse
|
37
|
Dohnalová H, Dršata T, Šponer J, Zacharias M, Lipfert J, Lankaš F. Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. J Chem Theory Comput 2020; 16:2857-2863. [DOI: 10.1021/acs.jctc.0c00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Zacharias
- Physics-Department T38, Technical University of Munich, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
38
|
Fu H, Zhang C, Qiang XW, Yang YJ, Dai L, Tan ZJ, Zhang XH. Opposite Effects of High-Valent Cations on the Elasticities of DNA and RNA Duplexes Revealed by Magnetic Tweezers. PHYSICAL REVIEW LETTERS 2020; 124:058101. [PMID: 32083903 DOI: 10.1103/physrevlett.124.058101] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We report that trivalent cobalt hexammine cations decrease the persistence length, stretching modulus, helical density, and size of plectonemes formed under torque of DNA but increase those of RNA. Divalent magnesium cations, however, decrease the persistence lengths, contour lengths, and sizes of plectonemes while increasing the helical densities of both DNA and RNA. The experimental results are explained by different binding modes of the cations on DNA and RNA in our all-atom molecular dynamics simulations. The significant variations of the helical densities and structures of DNA and RNA duplexes induced by high-valent cations may affect interactions of the duplexes with proteins.
Collapse
Affiliation(s)
- Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Wei Qiang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
39
|
Zoli M. First-passage probability: a test for DNA Hamiltonian parameters. Phys Chem Chem Phys 2020; 22:26901-26909. [DOI: 10.1039/d0cp04046k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method is developed to chose the set of input parameters for DNA mesoscopic Hamiltonian models.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology
- University of Camerino
- I-62032 Camerino
- Italy
| |
Collapse
|
40
|
Velasco-Berrelleza V, Burman M, Shepherd JW, Leake MC, Golestanian R, Noy A. SerraNA: a program to determine nucleic acids elasticity from simulation data. Phys Chem Chem Phys 2020; 22:19254-19266. [DOI: 10.1039/d0cp02713h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AT-rich motifs can generate extreme mechanical properties, which are critical for creating strong global bends when phased properly.
Collapse
Affiliation(s)
| | | | | | - Mark C. Leake
- Department of Physics
- University of York
- York
- UK
- Department of Biology
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)
- Göttingen
- Germany
- Rudolf Peierls Center for Theoretical Physics
- University of Oxford
| | - Agnes Noy
- Department of Physics
- University of York
- York
- UK
| |
Collapse
|
41
|
Drozdetski AV, Mukhopadhyay A, Onufriev AV. Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment. FRONTIERS IN PHYSICS 2019; 7:195. [PMID: 32601596 PMCID: PMC7323118 DOI: 10.3389/fphy.2019.00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
Collapse
Affiliation(s)
| | | | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, VA, United States
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
42
|
Li X, Wang X, Li H, Shi X, Zheng P. A Programming 20-30nm Rectangular DNA Origami for Loading Doxorubicin to Penetrate Ovarian Cancer Cells. IEEE Trans Nanobioscience 2019; 19:152-157. [PMID: 31581088 DOI: 10.1109/tnb.2019.2943923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In DNA nanotechnology, the aim in folding DNA origami is to find a good piece of rectangular DNA origami with desired sizes, which could be larger or smaller for different application purposes. In recent three years, the technique of folding smaller ones is paid heavily attentions. In this work, we design a programming rectangular DNA origami in size 20*30nm with M13p18, which is smallest and cheapest to the best acknowledge of the authors. Since it is not hard to prepare with 30 staple strands and short annealing time, the cost of folding our designed rectangular DNA origami is less than 100 dollars. Although the large origami give more space, the smaller ones are cheaper and has the potential applications in penetrating cancer cells. It is obtained by cell penetrating experiments that our designed rectangular DNA origami can penetrate ovarian cancer cells efficiently even loading doxorubicin, but the thermodynamic stability needs further improved. Our designed programming 20 30nm triangular DNA origami shows potential applications in precision control of nanoscale particles and anti-tumor drug delivery in vivo.
Collapse
|
43
|
Xiao S, Liang H, Wales DJ. The Contribution of Backbone Electrostatic Repulsion to DNA Mechanical Properties is Length-Scale-Dependent. J Phys Chem Lett 2019; 10:4829-4835. [PMID: 31380654 DOI: 10.1021/acs.jpclett.9b01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanics of DNA bending is crucially related to many vital biological processes. Recent experiments reported anomalous flexibility for DNA on short length scales, calling into doubt the validity of the harmonic worm-like chain (WLC) model in this region. In the present work, we systematically probed the bending dynamics of DNA at different length scales. In contrast to the remarkable deviation from the WLC description for DNA duplexes of less than three helical turns, our atomistic studies indicate that the neutral "null isomer" behaves in accord with the ideal elastic WLC and exhibits a uniform decay for the directional correlation of local bending. The backbone neutralization weakens the anisotropy in the effective bending preference and the helical periodicity of bend correlation that have previously been observed for normal DNA. The contribution of electrostatic repulsion to stretching cooperativity and the mechanical properties of DNA strands is length-scale-dependent: the phosphate neutralization increases the stiffness of DNA below two helical turns, but it is decreased for longer strands. We find that DNA rigidity is largely determined by base pair stacking, with electrostatic interactions contributing only around 10% of the total persistence length.
Collapse
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
44
|
Temperature-dependence of the bending elastic constant of DNA and extension of the two-state model. Tests and new insights. Biophys Chem 2019; 251:106146. [DOI: 10.1016/j.bpc.2019.106146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
|
45
|
Schurr JM. Effects of Sequence Changes on the Torsion Elastic Constant and Persistence Length of DNA. Applications of the Two-State Model. J Phys Chem B 2019; 123:7343-7353. [DOI: 10.1021/acs.jpcb.9b05139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Michael Schurr
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
46
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
47
|
Bhat A, Khan I, Usmani MA, Umapathi R, Al-Kindy SM. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. Int J Biol Macromol 2019; 129:750-777. [DOI: 10.1016/j.ijbiomac.2018.12.190] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
48
|
A simple dialysis device for large DNA molecules. Biotechniques 2019; 66:93-95. [PMID: 30744406 DOI: 10.2144/btn-2018-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential of genomic DNA is realized when new modalities are invented that manipulate large DNAs with minimal breakage or loss of sample. Here, we describe a polydimethylsiloxane-polycarbonate membrane device to remove small molecules from a sample while retaining large DNAs. Dialysis rates dramatically change as DNA size in kb (M) increases and DNA dimensions become comparable to pore size, and chain characteristics go from rod-like to Gaussian. Consequently, we describe empirical rates of dialysis, R, as a function of M as falling into two regimes: DNAs ≤ 1 kb show R(M) ∼e - t/τ M (t = time, τM = time constant), while DNAs ≥1.65 kb slowly passage with R(M) ∼M -1.68; such partitioning potentiates single-molecule imaging.
Collapse
|
49
|
Brouns T, De Keersmaecker H, Konrad SF, Kodera N, Ando T, Lipfert J, De Feyter S, Vanderlinden W. Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. ACS NANO 2018; 12:11907-11916. [PMID: 30346700 DOI: 10.1021/acsnano.8b06994] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA supercoiling fundamentally constrains and regulates the storage and use of genetic information. While the equilibrium properties of supercoiled DNA are relatively well understood, the dynamics of supercoils are much harder to probe. Here we use atomic force microscopy (AFM) imaging to demonstrate that positively supercoiled DNA plasmids, in contrast to their negatively supercoiled counterparts, preserve their plectonemic geometry upon adsorption under conditions that allow for dynamics and equilibration on the surface. Our results are in quantitative agreement with a physical polymer model for supercoiled plasmids that takes into account the known mechanical properties and torque-induced melting of DNA. We directly probe supercoil dynamics using high-speed AFM imaging with subsecond time and ∼nanometer spatial resolution. From our recordings we quantify self-diffusion, branch point flexibility, and slithering dynamics and demonstrate that reconfiguration of molecular extensions is predominantly governed by the bending flexibility of plectoneme arms. We expect that our methodology can be an asset to probe protein-DNA interactions and topochemical reactions on physiological relevant DNA length and supercoiling scales by high-resolution AFM imaging.
Collapse
Affiliation(s)
- Tine Brouns
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Herlinde De Keersmaecker
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Sebastian F Konrad
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Noriyuki Kodera
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Toshio Ando
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Jan Lipfert
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Steven De Feyter
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Willem Vanderlinden
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| |
Collapse
|
50
|
Hosier CA, Ackerson CJ. Regiochemistry of Thiolate for Selenolate Ligand Exchange on Gold Clusters. J Am Chem Soc 2018; 141:309-314. [PMID: 30532966 DOI: 10.1021/jacs.8b10013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ligand exchange is a fundamental reaction of metal nanoparticles. Multiple symmetry and kinetic exchange environments are observed for thiolate protected gold nanoparticles, but the correlation between these is unclear. Structural study of ligand exchange on chalcogenide passivated gold clusters has so-far revealed the locations of 10% or fewer of incoming ligands. In a set of 13 crystal structures, we reveal the locations of up to 17 ligands of the 18 ligands in thiolate for selenolate exchanged Au25(SeR)18- x(SR) x clusters. Overall, we see a distinct preference for the locations of thiolate and selenolate ligands that emerges over time. This most-comprehensive to-date structural study of ligand exchange on gold clusters evidences a structural basis for exchange of solvated ligands, exchange of ligands between clusters, and a net reaction that amounts to translation of ligands on the cluster surface.
Collapse
Affiliation(s)
- Christopher A Hosier
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Christopher J Ackerson
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|