1
|
Maytum A, Obier N, Cauchy P, Bonifer C. Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:freae.2024.1465958. [PMID: 39506987 PMCID: PMC7616781 DOI: 10.3389/freae.2024.1465958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The ability of cells to respond to external stimuli is one of the characteristics of life as we know it. Multicellular organisms have developed a huge machinery that interprets the cellular environment and instigates an appropriate cellular response by changing gene expression, metabolism, proliferation state and motility. Decades of research have studied the pathways transmitting the various signals within the cell. However, whilst we know most of the players, we know surprisingly little about the mechanistic details of how extrinsic signals are interpreted and integrated within the genome. In this article we revisit the long-standing debate of whether factors regulating cellular growth (cytokines) act in an instructive or permissive fashion on cell fate decisions. We touch upon this topic by highlighting the paradigm of AP-1 as one of the most important signaling-responsive transcription factor family and summarize our work and that of others to explain what is known about cytokine responsive cis-regulatory elements driving differential gene expression. We propose that cytokines and, by extension, multiple types of external signals are the main drivers of cell differentiation and act via inducible transcription factors that transmit signaling processes to the genome and are essential for changing gene expression to drive transitions between gene regulatory networks. Importantly, inducible transcription factors cooperate with cell type specific factors within a pre-existing chromatin landscape and integrate multiple signaling pathways at specific enhancer elements, to both maintain and alter cellular identities. We also propose that signaling processes and signaling responsive transcription factors are at the heart of tumor development.
Collapse
Affiliation(s)
- Alexander Maytum
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Arekatla G, Skylaki S, Corredor Suarez D, Jackson H, Schapiro D, Engler S, Auler M, Camargo Ortega G, Hastreiter S, Reimann A, Loeffler D, Bodenmiller B, Schroeder T. Identification of an embryonic differentiation stage marked by Sox1 and FoxA2 co-expression using combined cell tracking and high dimensional protein imaging. Nat Commun 2024; 15:7860. [PMID: 39251590 PMCID: PMC11385471 DOI: 10.1038/s41467-024-52069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hartland Jackson
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Health Systems; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Denis Schapiro
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | - Stefanie Engler
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Markus Auler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology and Laboratory Medicine, The University of Tennessee, Memphis, TN, USA
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
3
|
Mo J, Wermeling F, Nilsson G, Dahlin JS. CRISPR/Cas9-mediated gene disruption determines the roles of MITF and CITED2 in human mast cell differentiation. Blood Adv 2024; 8:3941-3945. [PMID: 38838231 PMCID: PMC11321385 DOI: 10.1182/bloodadvances.2023012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Affiliation(s)
- Jiezhen Mo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Wermeling
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Nilsson
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Pereira A, Diwakar J, Masserdotti G, Beşkardeş S, Simon T, So Y, Martín-Loarte L, Bergemann F, Vasan L, Schauer T, Danese A, Bocchi R, Colomé-Tatché M, Schuurmans C, Philpott A, Straub T, Bonev B, Götz M. Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1. Nat Neurosci 2024; 27:1260-1273. [PMID: 38956165 PMCID: PMC11239498 DOI: 10.1038/s41593-024-01677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/10/2024] [Indexed: 07/04/2024]
Abstract
Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Allwyn Pereira
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Nantes Université, CHU Nantes, INSERM, TaRGeT - Translational Research in Gene Therapy, UMR 1089, Nantes, France
| | - Jeisimhan Diwakar
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Giacomo Masserdotti
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Sude Beşkardeş
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany
| | - Tatiana Simon
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Younju So
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lucía Martín-Loarte
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Franziska Bergemann
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Lakshmy Vasan
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamas Schauer
- Biomedical Center Munich (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, Planegg, Germany
- Institute of Stem Cells and Epigenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Danese
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
| | - Riccardo Bocchi
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Biomedical Center Munich (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg, Germany
| | - Carol Schuurmans
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anna Philpott
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Straub
- Biological Science Platform, Sunnybrook Research Institute; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Boyan Bonev
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Neuherberg, Germany.
| | - Magdalena Götz
- Biomedical Center Munich (BMC), Physiological Genomics, LMU Munich, Planegg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, BMC LMU Munich, Planegg, Germany.
- Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| |
Collapse
|
5
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
6
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
7
|
Alhaj Hussen K, Chabaane E, Nelson E, Lekiashvili S, Diop S, Keita S, Evrard B, Lardenois A, Delord M, Verhoeyen E, Cornils K, Kasraian Z, Macintyre EA, Cumano A, Garrick D, Goodhardt M, Andrieu GP, Asnafi V, Chalmel F, Canque B. Multimodal cartography of human lymphopoiesis reveals B and T/NK/ILC lineages are subjected to differential regulation. iScience 2023; 26:107890. [PMID: 37766969 PMCID: PMC10520540 DOI: 10.1016/j.isci.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Aurélie Lardenois
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Delord
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France
- Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Kerstin Cornils
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf and Research Institute Children’s Cancer Center, Hamburg, Germany
| | - Zeinab Kasraian
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth A. Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Guillaume P. Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Frederic Chalmel
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
8
|
Reimann A, Kull T, Wang W, Dettinger P, Loeffler D, Schroeder T. Embryonic stem cell ERK, AKT, plus STAT3 response dynamics combinatorics are heterogeneous but NANOG state independent. Stem Cell Reports 2023:S2213-6711(23)00142-X. [PMID: 37207650 DOI: 10.1016/j.stemcr.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Signaling is central in cell fate regulation, and relevant information is encoded in its activity over time (i.e., dynamics). However, simultaneous dynamics quantification of several pathways in single mammalian stem cells has not yet been accomplished. Here we generate mouse embryonic stem cell (ESC) lines simultaneously expressing fluorescent reporters for ERK, AKT, and STAT3 signaling activity, which all control pluripotency. We quantify their single-cell dynamics combinations in response to different self-renewal stimuli and find striking heterogeneity for all pathways, some dependent on cell cycle but not pluripotency states, even in ESC populations currently assumed to be highly homogeneous. Pathways are mostly independently regulated, but some context-dependent correlations exist. These quantifications reveal surprising single-cell heterogeneity in the important cell fate control layer of signaling dynamics combinations and raise fundamental questions about the role of signaling in (stem) cell fate control.
Collapse
Affiliation(s)
- Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Weijia Wang
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
9
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Lin SJ, Lin KM, Chen SYJ, Ku CC, Huang CW, Huang CH, Gale M, Tsai CH. Type I Interferon Orchestrates Demand-Adapted Monopoiesis during Influenza A Virus Infection via STAT1-Mediated Upregulation of Macrophage Colony-Stimulating Factor Receptor Expression. J Virol 2023; 97:e0010223. [PMID: 37022164 PMCID: PMC10134875 DOI: 10.1128/jvi.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-β) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.
Collapse
Affiliation(s)
- Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Huang
- Department of Family Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsiang Huang
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
12
|
Brown G. Retinoic acid receptor regulation of decision-making for cell differentiation. Front Cell Dev Biol 2023; 11:1182204. [PMID: 37082619 PMCID: PMC10110968 DOI: 10.3389/fcell.2023.1182204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial to an organism's proper development as established by findings for mouse foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-making by embryonic stem (ES) cells for differentiation including lineage fate. From studies of knockout mice, RARα and RARγ regulate haematopoiesis whereby active RARα modulates the frequency of decision-making for myeloid differentiation, but is not essential for myelopoiesis, and active RARγ supports stem cell self-renewal and maintenance. From studies of zebrafish embryo development, active RARγ plays a negative role in stem cell decision-making for differentiation whereby, in the absence of exogenous ATRA, selective agonism of RARγ disrupted stem cell decision-making for differentiation patterning for development. From transactivation studies, 0.24 nM ATRA transactivated RARγ and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the dose of ATRA that cells are exposed to in vivo, from gradients created by cells that synthesize and metabolize, is important to RARγ versus RARα and RARγ activation and balancing of the involvements in modulating stem cell maintenance versus decision-making for differentiation. RARγ activation favours stemness whereas concomitant or temporal activation of RARγ and RARα favours differentiation. Crosstalk with signalling events that are provoked by membrane receptors is also important.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Urao N, Liu J, Takahashi K, Ganesh G. Hematopoietic Stem Cells in Wound Healing Response. Adv Wound Care (New Rochelle) 2022; 11:598-621. [PMID: 34353116 PMCID: PMC9419985 DOI: 10.1089/wound.2021.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Emerging evidence has shown a link between the status of hematopoietic stem cells (HSCs) and wound healing responses. Thus, better understanding HSCs will contribute to further advances in wound healing research. Recent Advances: Myeloid cells such as neutrophils and monocyte-derived macrophages are critical players in the process of wound healing. HSCs actively respond to wound injury and other tissue insults, including infection and produce the effector myeloid cells, and a failing of the HSC response can result in impaired wound healing. Technological advances such as transcriptome at single-cell resolution, epigenetics, three-dimensional imaging, transgenic animals, and animal models, have provided novel concepts of myeloid generation (myelopoiesis) from HSCs, and have revealed cell-intrinsic and -extrinsic mechanisms that can impact HSC functions in the context of health conditions. Critical Issues: The newer concepts include-the programmed cellular fate at a differentiation stage that is used to be considered as the multilineage, the signaling pathways that can activate HSCs directly and indirectly, the mechanisms that can deteriorate HSCs, the roles and remodeling of the surrounding environment for HSCs and their progenitors (the niche). Future Directions: The researches on HSCs, which produce blood cells, should contribute to the development of blood biomarkers predicting a risk of chronic wounds, which may transform clinical practice of wound care with precision medicine for patients at high risk of poor healing.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA.,Correspondence: Department of Pharmacology, State University of New York Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Room 5322, Syracuse, NY 13210, USA.
| | - Jinghua Liu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kentaro Takahashi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Gayathri Ganesh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
14
|
Wittorf KJ, Weber KK, Swenson SA, Buckley SM. Ubiquitin E3 ligase FBXO21 regulates cytokine-mediated signaling pathways, but is dispensable for steady-state hematopoiesis. Exp Hematol 2022; 114:33-42.e3. [PMID: 35987460 DOI: 10.1016/j.exphem.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Hematopoietic cell fate decisions such as self-renewal and differentiation are highly regulated through multiple molecular pathways. One pathway, the ubiquitin proteasome system (UPS), controls protein levels by tagging them with polyubiquitin chains and promoting their degradation through the proteasome. Ubiquitin E3 ligases serve as the substrate-recognition component of the UPS. By investigating the FBOX family of E3 ligases, we discovered that Fbxo21 was highly expressed in the hematopoietic stem and progenitor cell (HSPC) population, and exhibited low to no expression in mature myeloid populations. To determine the role of FBXO21 on HSPC maintenance, self-renewal, and differentiation, we generated shRNAs against FBXO21 and a hematopoiesis-specific Fbxo21 conditional knockout (cKO) mouse model. We found that silencing FBXO21 in HSPCs led to a loss in colony formation and an increase in cell differentiation in vitro. Additionally, stressing the HSPC populations in our Fbxo21 cKO mouse with 5-fluorouracil injections resulted in a decrease in survival, despite these populations exhibiting minimal alterations during steady-state hematopoiesis. Although FBXO21 has previously been proposed to regulate cytokine signaling via ASK and p38, our results indicate that depletion of FBXO21 led to altered ERK signaling in vitro. Together, these findings suggest ubiquitin E3 ligase FBXO21 regulates HSPCs through cytokine-mediated pathways.
Collapse
Affiliation(s)
- Karli J Wittorf
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kasidy K Weber
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samantha A Swenson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Shannon M Buckley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
15
|
Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood 2022; 140:1482-1495. [PMID: 35820055 PMCID: PMC9523371 DOI: 10.1182/blood.2022016880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Molecular programs initiating cell fate divergence (CFD) are difficult to identify. Current approaches usually compare cells long after CFD initiation, therefore missing molecular changes at its start. Ideally, single cells that differ in their CFD molecular program but are otherwise identical are compared early in CFD. This is possible in diverging sister cells, which were identical until their mother's division and thus differ mainly in CFD properties. In asymmetrically dividing cells, divergent daughter fates are prospectively committed during division, and diverging sisters can thus be identified at the start of CFD. Using asymmetrically dividing blood stem cells, we developed a pipeline (ie, trackSeq) for imaging, tracking, isolating, and transcriptome sequencing of single cells. Their identities, kinship, and histories are maintained throughout, massively improving molecular noise filtering and candidate identification. In addition to many identified blood stem CFD regulators, we offer here this pipeline for use in CFDs other than asymmetric division.
Collapse
|
16
|
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022; 29:1273-1284.e8. [PMID: 35858618 PMCID: PMC9357150 DOI: 10.1016/j.stem.2022.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.
Collapse
|
17
|
Brown G. The Social Norm of Hematopoietic Stem Cells and Dysregulation in Leukemia. Int J Mol Sci 2022; 23:ijms23095063. [PMID: 35563454 PMCID: PMC9105962 DOI: 10.3390/ijms23095063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022] Open
Abstract
The hematopoietic cell system is a complex ecosystem that meets the steady-state and emergency needs of the production of the mature blood cell types. Steady-state hematopoiesis replaces worn out cells, and the hematopoietic system is highly adaptive to needs during, for example, an infection or bleeding. Hematopoiesis is highly integrated and the cell hierarchy behaves in a highly social manner. The social tailoring of hematopoietic stem cells to needs includes the generation of cells that are biased towards a cell lineage; these cells remain versatile and can still adopt a different pathway having made a lineage “choice”, and some cytokines instruct the lineage fate of hematopoietic stem and progenitor cells. Leukemia stem cells, which may well often arise from the transformation of a hematopoietic stem cell, sustain the hierarchy of cells for leukemia. Unlike hematopoietic stem cells, the offspring of leukemia stem cells belongs to just one cell lineage. The human leukemias are classified by virtue of their differentiating or partially differentiating cells belonging to just one cell lineage. Some oncogenes set the fate of leukemia stem cells to a single lineage. Therefore, lineage restriction may be largely an attribute whereby leukemia stem cells escape from the normal cellular society. Additional antisocial behaviors are that leukemia cells destroy and alter bone marrow stromal niches, and they can create their own niches.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
18
|
NfκB signaling dynamics and their target genes differ between mouse blood cell types and induce distinct cell behavior. Blood 2022; 140:99-111. [PMID: 35468185 DOI: 10.1182/blood.2021012918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Cells can use signaling pathway activity over time (i.e., dynamics) to control cell fates. However, little is known about the potential existence and function of signaling dynamics in primary hematopoietic stem and progenitor cells (HSPCs). Here, we use time-lapse imaging and tracking of single murine HSPCs from GFP-p65/H2BmCherry reporter mice to quantify their nuclear factor κB (NfκB) activity dynamics in response to TNFα and IL1β. We find response dynamics to be heterogeneous between individual cells, with cell type specific dynamics distributions. Transcriptome sequencing of single cells physically isolated after live dynamics quantification shows activation of different target gene programs in cells with different dynamics. Finally, artificial induction of oscillatory NfκB activity causes changes in GMP behavior. Thus, HSPC behavior can be influenced by signaling dynamics, which are tightly regulated during hematopoietic differentiation and enable cell type specific responses to the same signaling inputs.
Collapse
|
19
|
Stalmann USA, Banjanin B, Snoeren IAM, Nagai JS, Leimkühler NB, Li R, Benabid A, Pritchard J, Malyaran H, Neuss S, Bindels E, Costa IG, Schneider RK. Single cell analysis of cultured bone marrow stromal cells reveals high similarity to fibroblasts in situ. Exp Hematol 2022; 110:28-33. [PMID: 35341805 DOI: 10.1016/j.exphem.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- U S A Stalmann
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - B Banjanin
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - I A M Snoeren
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - J S Nagai
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - N B Leimkühler
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - R Li
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - A Benabid
- Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany
| | - J Pritchard
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands; Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany
| | - H Malyaran
- Institute of Pathology, Faculty of Medicine, (RWTH) Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, Biointerface Group, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - S Neuss
- Institute of Pathology, Faculty of Medicine, (RWTH) Aachen University, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, Biointerface Group, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - E Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - I G Costa
- Institute for Computational Genomics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - R K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands; Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands; Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Hematopoietic differentiation is characterized by a transient peak of entropy at a single-cell level. BMC Biol 2022; 20:60. [PMID: 35260165 PMCID: PMC8905725 DOI: 10.1186/s12915-022-01264-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background Mature blood cells arise from hematopoietic stem cells in the bone marrow by a process of differentiation along one of several different lineage trajectories. This is often represented as a series of discrete steps of increasing progenitor cell commitment to a given lineage, but as for differentiation in general, whether the process is instructive or stochastic remains controversial. Here, we examine this question by analyzing single-cell transcriptomic data from human bone marrow cells, assessing cell-to-cell variability along the trajectories of hematopoietic differentiation into four different types of mature blood cells. The instructive model predicts that cells will be following the same sequence of instructions and that there will be minimal variability of gene expression between them throughout the process, while the stochastic model predicts a role for cell-to-cell variability when lineage commitments are being made. Results Applying Shannon entropy to measure cell-to-cell variability among human hematopoietic bone marrow cells at the same stage of differentiation, we observed a transient peak of gene expression variability occurring at characteristic points in all hematopoietic differentiation pathways. Strikingly, the genes whose cell-to-cell variation of expression fluctuated the most over the course of a given differentiation trajectory are pathway-specific genes, whereas genes which showed the greatest variation of mean expression are common to all pathways. Finally, we showed that the level of cell-to-cell variation is increased in the most immature compartment of hematopoiesis in myelodysplastic syndromes. Conclusions These data suggest that human hematopoietic differentiation could be better conceptualized as a dynamical stochastic process with a transient stage of cellular indetermination, and strongly support the stochastic view of differentiation. They also highlight the need to consider the role of stochastic gene expression in complex physiological processes and pathologies such as cancers, paving the way for possible noise-based therapies through epigenetic regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01264-9.
Collapse
|
21
|
Oncogenes and the Origins of Leukemias. Int J Mol Sci 2022; 23:ijms23042293. [PMID: 35216407 PMCID: PMC8875247 DOI: 10.3390/ijms23042293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Self-maintaining hematopoietic stem cells are a cell population that is primarily ‘at risk’ to malignant transformation, and the cell-of-origin for some leukemias. Tissue-specific stem cells replenish the different types of functional cells within a particular tissue to meet the demands of an organism. For hematopoietic stem cells, this flexibility is important to satisfy the changing requirements for a certain type of immune cell, when needed. From studies of the natural history of childhood acute lymphoblastic leukemia, an initial oncogenic and prenatal insult gives rise to a preleukemic clone. At least a second genomic insult is needed that gives rise to a leukemia stem cell: this cell generates a hierarchy of leukemia cells. For some leukemias, there is evidence to support the concept that one of the genomic insults leads to dysregulation of the tissue homeostatic role of hematopoietic stem cells so that the hierarchy of differentiating leukemia cells belongs to just one cell lineage. Restricting the expression of particular oncogenes in transgenic mice to hematopoietic stem and progenitor cells led to different human-like lineage-restricted leukemias. Lineage restriction is seen for human leukemias by virtue of their sub-grouping with regard to a phenotypic relationship to just one cell lineage.
Collapse
|
22
|
Khoogar R, Li F, Chen Y, Ignatius M, Lawlor ER, Kitagawa K, Huang THM, Phelps DA, Houghton PJ. Single-cell RNA profiling identifies diverse cellular responses to EWSR1/FLI1 downregulation in Ewing sarcoma cells. Cell Oncol (Dordr) 2022; 45:19-40. [PMID: 34997546 PMCID: PMC10959445 DOI: 10.1007/s13402-021-00640-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The EWSR1/FLI1 gene fusion is the most common rearrangement leading to cell transformation in Ewing sarcoma (ES). Previous studies have indicated that expression at the cellular level is heterogeneous, and that levels of expression may oscillate, conferring different cellular characteristics. In ES the role of EWSR1/FLI1 in regulating subpopulation dynamics is currently unknown. METHODS We used siRNA to transiently suppress EWSR1/FLI1 expression and followed population dynamics using both single cell expression profiling, CyTOF and functional assays to define characteristics of exponentially growing ES cells and of ES cells in which EWSR1/FLI1 had been downregulated. Novel transcriptional states with distinct features were assigned using random forest feature selection in combination with machine learning. Cells isolated from ES xenografts in immune-deficient mice were interrogated to determine whether characteristics of specific subpopulations of cells in vitro could be identified. Stem-like characteristics were assessed by primary and secondary spheroid formation in vitro, and invasion/motility was determined for each identified subpopulation. Autophagy was determined by expression profiling, cell sorting and immunohistochemical staining. RESULTS We defined a workflow to study EWSR1/FLI1 driven transcriptional states and phenotypes. We tracked EWSR1/FLI1 dependent proliferative activity over time to discover sources of intra-tumoral diversity. Single-cell RNA profiling was used to compare expression profiles in exponentially growing populations (si-Control) or in two dormant populations (D1, D2) in which EWSR1/FLI1 had been suppressed. Three distinct transcriptional states were uncovered contributing to ES intra-heterogeneity. Our predictive model identified ~1% cells in a dormant-like state and ~ 2-4% cells with stem-like and neural stem-like features in an exponentially proliferating ES cell line and in ES xenografts. Following EWSR1/FLI1 knockdown, cells re-entering the proliferative cycle exhibited greater stem-like properties, whereas for those cells remaining quiescent, FAM134B-dependent dormancy may provide a survival mechanism. CONCLUSIONS We show that time-dependent changes induced by suppression of oncogenic EWSR1/FLI1 expression induces dormancy, with different subpopulation dynamics. Cells re-entering the proliferative cycle show enhanced stem-like characteristics, whereas those remaining dormant for prolonged periods appear to survive through autophagy. Cells with these characteristics identified in exponentially growing cell populations and in tumor xenografts may confer drug resistance and could potentially contribute to metastasis.
Collapse
Affiliation(s)
- Roxane Khoogar
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Fuyang Li
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Myron Ignatius
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Washington, DC, USA
| | - Katsumi Kitagawa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Doris A Phelps
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Peter J Houghton
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
23
|
Musiu C, Caligola S, Fiore A, Lamolinara A, Frusteri C, Del Pizzo FD, De Sanctis F, Canè S, Adamo A, Hofer F, Barouni RM, Grilli A, Zilio S, Serafini P, Tacconelli E, Donadello K, Gottin L, Polati E, Girelli D, Polidoro I, Iezzi PA, Angelucci D, Capece A, Chen Y, Shi ZL, Murray PJ, Chilosi M, Amit I, Bicciato S, Iezzi M, Bronte V, Ugel S. Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death Differ 2022; 29:420-438. [PMID: 34518653 PMCID: PMC8435761 DOI: 10.1038/s41418-021-00866-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.
Collapse
Affiliation(s)
- Chiara Musiu
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Alessandra Fiore
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy ,grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, Martinsried, Planegg, Germany
| | - Alessia Lamolinara
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cristina Frusteri
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco Domenico Del Pizzo
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Francesco De Sanctis
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Annalisa Adamo
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Hofer
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Roza Maria Barouni
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Grilli
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Zilio
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Paolo Serafini
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Evelina Tacconelli
- grid.411475.20000 0004 1756 948XDivision of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Katia Donadello
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Leonardo Gottin
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Enrico Polati
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Domenico Girelli
- grid.411475.20000 0004 1756 948XDivision of Internal Medicine, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Ildo Polidoro
- Complex Operational Unit of Forensic Medicine, Local Health Authority of Pescara, Pescara, Italy
| | - Piera Amelia Iezzi
- Complex Operational Unit of Forensic Medicine, Local Health Authority of Pescara, Pescara, Italy
| | - Domenico Angelucci
- Pathological Anatomy Unit, Local Health Authority of Lanciano-Vasto-Chieti, Vasto, Italy
| | - Andrea Capece
- Pathological Anatomy Unit, Local Health Authority of Lanciano-Vasto-Chieti, Vasto, Italy
| | - Ying Chen
- grid.439104.b0000 0004 1798 1925CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zheng-Li Shi
- grid.439104.b0000 0004 1798 1925CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei People’s Republic of China
| | - Peter J. Murray
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, Martinsried, Planegg, Germany
| | - Marco Chilosi
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Ido Amit
- grid.13992.300000 0004 0604 7563Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silvio Bicciato
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Iezzi
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Bronte
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Ugel
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
24
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Ramos RN, Couto SCF, Oliveira TGM, Klinger P, Braga TT, Rego EM, Barbuto JAM, Rocha V. Myeloid Immune Cells CARrying a New Weapon Against Cancer. Front Cell Dev Biol 2022; 9:784421. [PMID: 34977027 PMCID: PMC8716000 DOI: 10.3389/fcell.2021.784421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are now under clinical evaluation for the treatment of hematologic cancers. Although encouraging clinical results have been reported for hematologic diseases, pre-clinical studies in solid tumors have failed to prove the same effectiveness. Thus, there is a growing interest of the scientific community to find other immune cell candidate to express CAR for the treatment of solid tumors and other diseases. Mononuclear phagocytes may be the most adapted group of cells with potential to overcome the dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such as migration, phagocytic capability, release of soluble factors and adaptive immunity activation, could be further explored along with gene therapy approaches. Here, we discuss the elements that constitute the tumor microenvironment, the features and advantages of these cell subtypes and the latest studies using CAR-myeloid immune cells in solid tumor models.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - Samuel Campanelli Freitas Couto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Theo Gremen M Oliveira
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Paulo Klinger
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - José Alexandre M Barbuto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Departamento de Imunologia, Instituto de CienciasBiomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil.,Churchill Hospital, Department of Hematology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Ahmed N, Etzrodt M, Dettinger P, Kull T, Loeffler D, Hoppe PS, Chavez JS, Zhang Y, Camargo Ortega G, Hilsenbeck O, Nakajima H, Pietras EM, Schroeder T. Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation. J Exp Med 2022; 219:e20202490. [PMID: 34817548 PMCID: PMC8624737 DOI: 10.1084/jem.20202490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 11/12/2022] Open
Abstract
Transcription factors (TFs) regulate cell fates, and their expression must be tightly regulated. Autoregulation is assumed to regulate many TFs' own expression to control cell fates. Here, we manipulate and quantify the (auto)regulation of PU.1, a TF controlling hematopoietic stem and progenitor cells (HSPCs), and correlate it to their future fates. We generate transgenic mice allowing both inducible activation of PU.1 and noninvasive quantification of endogenous PU.1 protein expression. The quantified HSPC PU.1 dynamics show that PU.1 up-regulation occurs as a consequence of hematopoietic differentiation independently of direct fast autoregulation. In contrast, inflammatory signaling induces fast PU.1 up-regulation, which does not require PU.1 expression or its binding to its own autoregulatory enhancer. However, the increased PU.1 levels induced by inflammatory signaling cannot be sustained via autoregulation after removal of the signaling stimulus. We conclude that PU.1 overexpression induces HSC differentiation before PU.1 up-regulation, only later generating cell types with intrinsically higher PU.1.
Collapse
Affiliation(s)
- Nouraiz Ahmed
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Martin Etzrodt
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Philip Dettinger
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Philipp S. Hoppe
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - James S. Chavez
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yang Zhang
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Germán Camargo Ortega
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Oliver Hilsenbeck
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eric M. Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Timm Schroeder
- Department of Biosystems Science & Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| |
Collapse
|
27
|
Abnormal monocyte differentiation and function in chronic myelomonocytic leukemia. Curr Opin Hematol 2022; 29:20-26. [PMID: 34854831 DOI: 10.1097/moh.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Monocytes serve as the phagocytic defense surveillance system of the human body. Although there is comprehensive evidence regarding monocyte development, characterization and function under steady state hematopoietic continuum, the deviations and complexities in the monocyte secretome during myeloid malignancies have not been comprehensively examined and delineated. RECENT FINDINGS This review summarizes the aspects of development, functions, transcriptional and cytokine-mediated regulation of monocytes during steady state hematopoiesis and also contrasts the aberrations observed in myelomonocytic leukemias like chronic myelomonocytic leukemia (CMML). It presents the findings from the major studies highlighting the novel markers for identifying CMML monocytes, altered signaling cascades, roles in disease progression and potential therapeutic interventions to reduce the monocyte mediated inflammatory milieu for disease amelioration. SUMMARY Recent findings provide rationale for the development of therapeutic strategies aimed at disrupting the leukemic initiating cells and malignant monocyte axis.
Collapse
|
28
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
29
|
Handzlik JE. Data-driven modeling predicts gene regulatory network dynamics during the differentiation of multipotential hematopoietic progenitors. PLoS Comput Biol 2022; 18:e1009779. [PMID: 35030198 PMCID: PMC8794271 DOI: 10.1371/journal.pcbi.1009779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular differentiation during hematopoiesis is guided by gene regulatory networks (GRNs) comprising transcription factors (TFs) and the effectors of cytokine signaling. Based largely on analyses conducted at steady state, these GRNs are thought to be organized as a hierarchy of bistable switches, with antagonism between Gata1 and PU.1 driving red- and white-blood cell differentiation. Here, we utilize transient gene expression patterns to infer the genetic architecture—the type and strength of regulatory interconnections—and dynamics of a twelve-gene GRN including key TFs and cytokine receptors. We trained gene circuits, dynamical models that learn genetic architecture, on high temporal-resolution gene-expression data from the differentiation of an inducible cell line into erythrocytes and neutrophils. The model is able to predict the consequences of gene knockout, knockdown, and overexpression experiments and the inferred interconnections are largely consistent with prior empirical evidence. The inferred genetic architecture is densely interconnected rather than hierarchical, featuring extensive cross-antagonism between genes from alternative lineages and positive feedback from cytokine receptors. The analysis of the dynamics of gene regulation in the model reveals that PU.1 is one of the last genes to be upregulated in neutrophil conditions and that the upregulation of PU.1 and other neutrophil genes is driven by Cebpa and Gfi1 instead. This model inference is confirmed in an independent single-cell RNA-Seq dataset from mouse bone marrow in which Cebpa and Gfi1 expression precedes the neutrophil-specific upregulation of PU.1 during differentiation. These results demonstrate that full PU.1 upregulation during neutrophil development involves regulatory influences extrinsic to the Gata1-PU.1 bistable switch. Furthermore, although there is extensive cross-antagonism between erythroid and neutrophil genes, it does not have a hierarchical structure. More generally, we show that the combination of high-resolution time series data and data-driven dynamical modeling can uncover the dynamics and causality of developmental events that might otherwise be obscured. The supply of blood cells is replenished by the maturation of hematopoietic progenitor cells into different cell types. Which cell type a progenitor cell develops into is determined by a complex network of genes whose protein products directly or indirectly regulate each others’ expression and that of downstream genes characteristic of the cell type. We inferred the nature and causality of the regulatory connections in a 12-gene network known to affect the decision between erythrocyte and neutrophil cell fates using a predictive machine-learning approach. Our analysis showed that the overall architecture of the network is densely interconnected and not hierarchical. Furthermore, the model inferred that PU.1, considered a master regulator of all white-blood cell lineages, is upregulated during neutrophil development by two other proteins, Cebpa and Gfi1. We validated this prediction by showing that Cebpa and Gfi1 expression precedes that of PU.1 in single-cell gene expression data from mouse bone marrow. These results revise the architecture of the gene network and the causality of regulatory events guiding hematopoiesis. The results also show that combining machine learning approaches with time course data can help resolve causality during development.
Collapse
Affiliation(s)
- Joanna E Handzlik
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
30
|
Ngo S, Oxley EP, Ghisi M, Garwood MM, McKenzie MD, Mitchell HL, Kanellakis P, Susanto O, Hickey MJ, Perkins AC, Kile BT, Dickins RA. Acute myeloid leukemia maturation lineage influences residual disease and relapse following differentiation therapy. Nat Commun 2021; 12:6546. [PMID: 34764270 PMCID: PMC8586014 DOI: 10.1038/s41467-021-26849-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.
Collapse
Affiliation(s)
- Steven Ngo
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Ethan P. Oxley
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Margherita Ghisi
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Maximilian M. Garwood
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Mark D. McKenzie
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Helen L. Mitchell
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Peter Kanellakis
- grid.1051.50000 0000 9760 5620Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Olivia Susanto
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Michael J. Hickey
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Andrew C. Perkins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Benjamin T. Kile
- grid.1002.30000 0004 1936 7857Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Ross A. Dickins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| |
Collapse
|
31
|
Chavakis T, Wielockx B, Hajishengallis G. Inflammatory Modulation of Hematopoiesis: Linking Trained Immunity and Clonal Hematopoiesis with Chronic Disorders. Annu Rev Physiol 2021; 84:183-207. [PMID: 34614373 DOI: 10.1146/annurev-physiol-052521-013627] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammation-adapted hematopoietic stem and progenitor cells (HSPCs) have long been appreciated as key drivers of emergency myelopoiesis, thereby enabling the bone marrow to meet the elevated demand for myeloid cell generation under various stress conditions, such as systemic infection, inflammation, or myelosuppressive insults. In recent years, HSPC adaptations were associated with potential involvement in the induction of long-lived trained immunity and the emergence of clonal hematopoiesis of indeterminate potential (CHIP). Whereas trained immunity has context-dependent effects, protective in infections and tumors but potentially detrimental in chronic inflammatory diseases, CHIP increases the risk for hematological neoplastic disorders and cardiometabolic pathologies. This review focuses on the inflammatory regulation of HSPCs in the aforementioned processes and discusses how modulation of HSPC function could lead to novel therapeutic interventions. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic, Technische Universität Dresden, 01307 Dresden, Germany; ,
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6030, USA;
| |
Collapse
|
32
|
Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22189667. [PMID: 34575830 PMCID: PMC8470404 DOI: 10.3390/ijms22189667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.
Collapse
|
33
|
Philonenko ES, Tan Y, Wang C, Zhang B, Shah Z, Zhang J, Ullah H, Kiselev SL, Lagarkova MA, Li D, Dai Y, Samokhvalov IM. Recapitulative haematopoietic development of human pluripotent stem cells in the absence of exogenous haematopoietic cytokines. J Cell Mol Med 2021; 25:8701-8714. [PMID: 34342123 PMCID: PMC8435420 DOI: 10.1111/jcmm.16826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023] Open
Abstract
To improve the recapitulative quality of human pluripotent stem cell (hPSC) differentiation, we removed exogenous haematopoietic cytokines from the defined differentiation system. Here, we show that endogenous stimuli and VEGF are sufficient to induce robust hPSC-derived haematopoiesis, intensive generation of haematopoietic progenitors, maturation of blood cells and the emergence of definitive precursor cells including those that phenotypically identical to early human embryonic haematopoietic stem cells (HSCs). Moreover, the cytokine-free system produces significantly higher numbers of haematopoietic progenitors compared to the published protocols. The removal of cytokines revealed a broad developmental potential of the early blood cells, stabilized the hPSC-derived definitive precursors and led to spontaneous activation of inflammatory signalling. Our cytokine-free protocol is simple, efficient, reproducible and applicable for embryonic stem cells (ESCs) and induced PSCs. The spectrum of recapitulative features of the novel protocol makes the cytokine-free differentiation a preferred model for studying the early human haematopoietic development.
Collapse
Affiliation(s)
- Elena S. Philonenko
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| | - Ying Tan
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cuihua Wang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Baoyun Zhang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Zahir Shah
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianguang Zhang
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Hanif Ullah
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sergei L. Kiselev
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical‐Chemical Medicine of Federal Medical Biological AgencyMoscowRussia
| | - Dandan Li
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Diseases and Precision MedicineShenzhen People’s HospitalThe First Affiliated Hospital of SouthernUniversity of Science and TechnologyThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Yong Dai
- Clinical Medical Research CenterGuangdong Provincial Engineering Research Center of Autoimmune Diseases and Precision MedicineShenzhen People’s HospitalThe First Affiliated Hospital of SouthernUniversity of Science and TechnologyThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Igor M. Samokhvalov
- CAS Key Laboratory of Regenerative BiologyGuangdong Provincial Key Laboratory of Stem Cells and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
34
|
Asymmetric organelle inheritance predicts human blood stem cell fate. Blood 2021; 139:2011-2023. [PMID: 34314497 DOI: 10.1182/blood.2020009778] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.
Collapse
|
35
|
Schulz C, Petzold T, Ishikawa-Ankerhold H. Macrophage Regulation of Granulopoiesis and Neutrophil Functions. Antioxid Redox Signal 2021; 35:182-191. [PMID: 33107319 DOI: 10.1089/ars.2020.8203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Neutrophils are potent effector cells of innate immunity requiring precise regulation of their numbers and functions in blood and tissues. Recent Advances: Macrophages have emerged as modulators of neutrophil properties. In inflammatory conditions, tissue macrophages modulate neutrophil trafficking and activation. Further, macrophages govern granulopoiesis in the bone marrow hematopoietic niche. Interactions of macrophages and neutrophils can be induced by cytokines and damage-associated molecular patterns, and they are also regulated by oxidative signaling. Critical Issues: We review the impact of macrophages on neutrophil development and function, and its consequences in health and disease. Future Directions: Targeting the liaison between macrophages and neutrophils might provide an interesting therapeutic strategy to reduce tissue inflammation and promote immune tolerance. Antioxid. Redox Signal. 35, 182-191.
Collapse
Affiliation(s)
- Christian Schulz
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany
| |
Collapse
|
36
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
37
|
Singh P, Pelus LM. Prostaglandin E 2 Regulates Bipotent Monocyte-Dendritic Progenitor Cell Lineage-Commitment. Stem Cell Rev Rep 2021; 17:2338-2346. [PMID: 34159458 DOI: 10.1007/s12015-021-10202-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
The factors/mechanisms regulating multipotent or bipotent hematopoietic progenitor cells lineage-commitment are not well understood. In this study, we found that prostaglandin E2 (PGE2) is a crucial physiological regulator of lineage choice for the bipotential monocyte-dendritic progenitor cell (MDP). Inhibition of endogenous PGE2 biosynthesis in mice by the dual cyclooxygenase inhibitor, indomethacin, enhances bone marrow and spleen monocyte (MO) differentiation and reduces dendritic cell (DC) differentiation. Ex vivo treatment of purified MDP with indomethacin preferentially increases MO development at the expense of DC generation, whereas addition of exogenous PGE2 reverses the indomethacin-mediated alteration in MDP differentiation potential. Treatment of MDP with selective EP receptor agonists demonstrated that EP1 signaling promotes MDP differentiation into DC at the expense of MO generation. Conversely, EP1 receptor knockout mice showed reduced DC and increased MO differentiation. Mechanistic studies revealed that PGE2 increases expression of the tyrosine kinase receptor Flt3 on MDP and increases the DC-lineage-related transcription factor PU.1, while reducing expression of M-CSFR and the MO-lineage-related transcription factor MafB. These data indicate that PGE2-EP1 signaling plays a critical role in MDP lineage commitment and DC and MO differentiation.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Medicine, Indiana University School of Medicine, 980 West Walnut Street, Indianapolis, IN, 46202, USA.
| | - Louis M Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Indiana University School of Medicine, 980 West Walnut Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
38
|
Magidey-Klein K, Cooper TJ, Kveler K, Normand R, Zhang T, Timaner M, Raviv Z, James BP, Gazit R, Ronai ZA, Shen-Orr S, Shaked Y. IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. J Immunother Cancer 2021; 9:jitc-2021-002856. [PMID: 34140316 PMCID: PMC8212411 DOI: 10.1136/jitc-2021-002856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of death in patients with cancer. Myeloid skewing of hematopoietic cells is a prominent promoter of metastasis. However, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern from hematopoietic stem and progenitor cells (HSPCs) have not been explored. METHODS We used a unique model system consisting of tumor cell clones with low metastatic potential or high metastatic potential (met-low and met-high, respectively) to investigate the fate of HSPC differentiation using murine melanoma and breast carcinoma. Single-cell RNA sequencing (scRNA-seq) analysis was performed on HSPC obtained from the BM of met-low and met-high tumors. A proteomic screen of tumor-conditioned medium integrated with the scRNA-seq data analysis was performed to analyze the potential cross talk between cancer cells and HSPCs. Adoptive transfer of tumor-educated HSPC subsets obtained from green fluorescent protein (GFP)+ tagged mice was then carried out to identify the contribution of committed HSPCs to tumor spread. Peripheral mononuclear cells obtained from patients with breast and lung cancer were analyzed for HSPC subsets. RESULTS Mice bearing met-high tumors exhibited a significant increase in the percentage of HSPCs in the BM in comparison with tumor-free mice or mice bearing met-low tumors. ScRNA-seq analysis of these HSPCs revealed that met-high tumors enriched the monocyte-dendritic progenitors (MDPs) but not granulocyte-monocyte progenitors (GMPs). A proteomic screen of tumor- conditioned medium integrated with the scRNA-seq data analysis revealed that the interleukin 6 (IL-6)-IL-6 receptor axis is highly active in HSPC-derived MDP cells. Consequently, loss of function and gain of function of IL-6 in tumor cells resulted in decreased and increased metastasis and corresponding MDP levels, respectively. Importantly, IL-6-educated MDPs induce metastasis within mice bearing met-low tumors-through further differentiation into immunosuppressive macrophages and not dendritic cells. Consistently, MDP but not GMP levels in peripheral blood of breast and lung cancer patients are correlated with tumor aggressiveness. CONCLUSIONS Our study reveals a new role for tumor-derived IL-6 in hijacking the HSPC differentiation program toward prometastatic MDPs that functionally differentiate into immunosuppressive monocytes to support the metastatic switch.
Collapse
Affiliation(s)
| | - Tim J Cooper
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ksenya Kveler
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Rachelly Normand
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Michael Timaner
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Brian P James
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Roi Gazit
- Department for Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Southern, Israel
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Shai Shen-Orr
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
Schaberg E, Theocharidis U, May M, Lessmann K, Schroeder T, Faissner A. Sulfation of Glycosaminoglycans Modulates the Cell Cycle of Embryonic Mouse Spinal Cord Neural Stem Cells. Front Cell Dev Biol 2021; 9:643060. [PMID: 34169071 PMCID: PMC8217649 DOI: 10.3389/fcell.2021.643060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
In the developing spinal cord neural stem and progenitor cells (NSPCs) secrete and are surrounded by extracellular matrix (ECM) molecules that influence their lineage decisions. The chondroitin sulfate proteoglycan (CSPG) DSD-1-PG is an isoform of receptor protein tyrosine phosphatase-beta/zeta (RPTPβ/ζ), a trans-membrane receptor expressed by NSPCs. The chondroitin sulfate glycosaminoglycan chains are sulfated at distinct positions by sulfotransferases, thereby generating the distinct DSD-1-epitope that is recognized by the monoclonal antibody (mAb) 473HD. We detected the epitope, the critical enzymes and RPTPβ/ζ in the developing spinal cord. To obtain insight into potential biological functions, we exposed spinal cord NSPCs to sodium chlorate. The reagent suppresses the sulfation of glycosaminoglycans, thereby erasing any sulfation code expressed by the glycosaminoglycan polymers. When NSPCs were treated with chlorate and cultivated in the presence of FGF2, their proliferation rate was clearly reduced, while NSPCs exposed to EGF were less affected. Time-lapse video microscopy and subsequent single-cell tracking revealed that pedigrees of NSPCs cultivated with FGF2 were strongly disrupted when sulfation was suppressed. Furthermore, the NSPCs displayed a protracted cell cycle length. We conclude that the inhibition of sulfation with sodium chlorate interferes with the FGF2-dependent cell cycle progression in spinal cord NSPCs.
Collapse
Affiliation(s)
- Elena Schaberg
- Department for Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ursula Theocharidis
- Department for Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Marcus May
- Department for Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Katrin Lessmann
- Department for Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zürich, Zurich, Switzerland
| | - Andreas Faissner
- Department for Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
40
|
Tian L, Tomei S, Schreuder J, Weber TS, Amann-Zalcenstein D, Lin DS, Tran J, Audiger C, Chu M, Jarratt A, Willson T, Hilton A, Pang ES, Patton T, Kelly M, Su S, Gouil Q, Diakumis P, Bahlo M, Sargeant T, Kats LM, Hodgkin PD, O'Keeffe M, Ng AP, Ritchie ME, Naik SH. Clonal multi-omics reveals Bcor as a negative regulator of emergency dendritic cell development. Immunity 2021; 54:1338-1351.e9. [PMID: 33862015 DOI: 10.1016/j.immuni.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.
Collapse
Affiliation(s)
- Luyi Tian
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sara Tomei
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jaring Schreuder
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tom S Weber
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Daniela Amann-Zalcenstein
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Single Cell Open Research Endeavour (SCORE), The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Dawn S Lin
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica Tran
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Cindy Audiger
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mathew Chu
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Andrew Jarratt
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tracy Willson
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Adrienne Hilton
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Timothy Patton
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Madison Kelly
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Shian Su
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Diakumis
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Melanie Bahlo
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Toby Sargeant
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley P Ng
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Single Cell Open Research Endeavour (SCORE), The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| |
Collapse
|
41
|
MLKL promotes cellular differentiation in myeloid leukemia by facilitating the release of G-CSF. Cell Death Differ 2021; 28:3235-3250. [PMID: 34079078 PMCID: PMC8630008 DOI: 10.1038/s41418-021-00811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
The blockade of cellular differentiation represents a hallmark of acute myeloid leukemia (AML), which is largely attributed to the dysfunction of lineage-specific transcription factors controlling cellular differentiation. However, alternative mechanisms of cellular differentiation programs in AML remain largely unexplored. Here we report that mixed lineage kinase domain-like protein (MLKL) contributes to the cellular differentiation of transformed hematopoietic progenitor cells in AML. Using gene-targeted mice, we show that MLKL facilitates the release of granulocyte colony-stimulating factor (G-CSF) by controlling membrane permeabilization in leukemic cells. Mlkl−/− hematopoietic stem and progenitor cells released reduced amounts of G-CSF while retaining their capacity for CSF3 (G-CSF) mRNA expression, G-CSF protein translation, and G-CSF receptor signaling. MLKL associates with early endosomes and controls G-CSF release from intracellular storage by plasma membrane pore formation, whereas cell death remained unaffected by loss of MLKL. Of note, MLKL expression was significantly reduced in AML patients, specifically in those with a poor-risk AML subtype. Our data provide evidence that MLKL controls myeloid differentiation in AML by controlling the release of G-CSF from leukemic progenitor cells.
Collapse
|
42
|
Malkomes P, Lunger I, Oppermann E, Abou-El-Ardat K, Oellerich T, Günther S, Canbulat C, Bothur S, Schnütgen F, Yu W, Wingert S, Haetscher N, Catapano C, Dietz MS, Heilemann M, Kvasnicka HM, Holzer K, Serve H, Bechstein WO, Rieger MA. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021; 40:4352-4367. [PMID: 34103685 PMCID: PMC8225513 DOI: 10.1038/s41388-021-01847-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein-protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Oellerich
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Department I Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Can Canbulat
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Susanne Wingert
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Nadine Haetscher
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Claudia Catapano
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Goethe University Frankfurt, Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Katharina Holzer
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
- Philipps University of Marburg, Department of Visceral-, Thoracic- and Vascular Surgery, Marburg, Germany
| | - Hubert Serve
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Brown G. Hematopoietic Stem Cells: Nature and Niche Nurture. BIOENGINEERING (BASEL, SWITZERLAND) 2021; 8:bioengineering8050067. [PMID: 34063400 PMCID: PMC8155961 DOI: 10.3390/bioengineering8050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Like all cells, hematopoietic stem cells (HSCs) and their offspring, the hematopoietic progenitor cells (HPCs), are highly sociable. Their capacity to interact with bone marrow niche cells and respond to environmental cytokines orchestrates the generation of the different types of blood and immune cells. The starting point for engineering hematopoiesis ex vivo is the nature of HSCs, and a longstanding premise is that they are a homogeneous population of cells. However, recent findings have shown that adult bone marrow HSCs are really a mixture of cells, with many having lineage affiliations. A second key consideration is: Do HSCs "choose" a lineage in a random and cell-intrinsic manner, or are they instructed by cytokines? Since their discovery, the hematopoietic cytokines have been viewed as survival and proliferation factors for lineage committed HPCs. Some are now known to also instruct cell lineage choice. These fundamental changes to our understanding of hematopoiesis are important for placing niche support in the right context and for fabricating an ex vivo environment to support HSC development.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
44
|
Cytokine combinations for human blood stem cell expansion induce cell type- and cytokine-specific signaling dynamics. Blood 2021; 138:847-857. [PMID: 33988686 DOI: 10.1182/blood.2020008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
Collapse
|
45
|
Gogoleva VS, Atretkhany KSN, Dygay AP, Yurakova TR, Drutskaya MS, Nedospasov SA. Current Perspectives on the Role of TNF in Hematopoiesis Using Mice With Humanization of TNF/LT System. Front Immunol 2021; 12:661900. [PMID: 34054827 PMCID: PMC8155636 DOI: 10.3389/fimmu.2021.661900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
TNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases. With increased number of patients undergoing treatment with TNF inhibitors and concerns regarding possible adverse effects of systemic cytokine blockade, the interest in using humanized mouse models to study the efficacy and safety of TNF-targeting biologics in vivo is justified. This Perspective discusses the main functions of TNF and its two receptors, TNFR1 and TNFR2, in steady state, as well as in emergency hematopoiesis. It also provides a comparative overview of existing mouse lines with humanization of TNF/TNFR system. These genetically engineered mice allow us to study TNF signaling cascades in the hematopoietic compartment in the context of various experimental disease models and for evaluating the effects of various human TNF inhibitors on hematopoiesis and other physiological processes.
Collapse
Affiliation(s)
- Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia
| | - Kamar-Sulu N Atretkhany
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Arina P Dygay
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Taisiya R Yurakova
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Russia.,Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
46
|
Di Buduo CA, Aguilar A, Soprano PM, Bocconi A, Miguel CP, Mantica G, Balduini A. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo. Haematologica 2021; 106:947-957. [PMID: 33472355 PMCID: PMC8017859 DOI: 10.3324/haematol.2020.262485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.
Collapse
Affiliation(s)
| | - Alicia Aguilar
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Alberto Bocconi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano
| | | | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
47
|
Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with immune cell contributions. iScience 2021; 24:102179. [PMID: 33718831 PMCID: PMC7921600 DOI: 10.1016/j.isci.2021.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are due to tumor metastasis rather than the primary tumor. Metastasis is a highly complex and dynamic process that requires orchestration of signaling between the tumor, its local environment, distant tissue sites, and immune system. Animal models of cancer metastasis provide the necessary systemic environment but lack control over factors that regulate cancer progression and often do not recapitulate the properties of human cancers. Bioengineered "organs-on-a-chip" that incorporate the primary tumor, metastatic tissue targets, and microfluidic perfusion are now emerging as quantitative human models of tumor metastasis. The ability of these systems to model tumor metastasis in individualized, patient-specific settings makes them uniquely suitable for studies of cancer biology and developmental testing of new treatments. In this review, we focus on human multi-organ platforms that incorporate circulating and tissue-resident immune cells in studies of tumor metastasis.
Collapse
|
48
|
Lin DS, Tian L, Tomei S, Amann-Zalcenstein D, Baldwin TM, Weber TS, Schreuder J, Stonehouse OJ, Rautela J, Huntington ND, Taoudi S, Ritchie ME, Hodgkin PD, Ng AP, Nutt SL, Naik SH. Single-cell analyses reveal the clonal and molecular aetiology of Flt3L-induced emergency dendritic cell development. Nat Cell Biol 2021; 23:219-231. [PMID: 33649477 DOI: 10.1038/s41556-021-00636-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.
Collapse
Affiliation(s)
- Dawn S Lin
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Luyi Tian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Sara Tomei
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Daniela Amann-Zalcenstein
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Tracey M Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Tom S Weber
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jaring Schreuder
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Olivia J Stonehouse
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Samir Taoudi
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew E Ritchie
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley P Ng
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Stephen L Nutt
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute, Parkville, VIC, Australia.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are in an inactive quiescent state for most of their life. To replenish the blood system in homeostasis and after injury, they activate and divide. HSC daughter cells must then decide whether to return to quiescence and metabolic inactivity or to activate further to proliferate and differentiate and replenish lost blood cells. Although the regulation of HSC activation is not well understood, recent discoveries shed new light on involved mechanisms including asymmetric cell division (ACD). RECENT FINDINGS HSC metabolism has emerged as a regulator of cell fates. Recent evidence suggests that cellular organelles mediating anabolic and catabolic processes can be asymmetrically inherited during HSC divisions. These include autophagosomes, mitophagosomes, and lysosomes, which regulate HSC quiescence. Their asymmetric inheritance has been linked to future metabolic and translational activity in HSC daughters, showing that ACD can regulate the balance between HSC (in)activity. SUMMARY We discuss recent insights and remaining questions in how HSCs balance activation and quiescence, with a focus on ACD.
Collapse
|
50
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|